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Abstract. We consider variational problems that model the bending
behavior of curves that are constrained to belong to given hypersurfaces.
Finite element discretizations of corresponding functionals are justified
rigorously via Γ-convergence. The stability of semi-implicit discretiza-
tions of gradient flows is investigated which provide a practical method
to determine stationary configurations. A particular application of the
considered models arises in the description of conical sheet deformations.

Dedicated to the memory of John W. Barrett

1. Introduction

The elastic flow of curves has attracted considerable attention among ap-
plied and numerical analysts within the last decades, cf., e.g., [LS85; DKS02;
DLP14] for analytical results, and [DDE05; BGN08; DD09; BGN10; BGN11;
BGN12; Bar13; PS17; BRR18; BGN19] for results concerning the discretiza-
tion. Corresponding applications occur in the modeling of phase transitions,
the description of large deformations of elastic rods and ribbons [AP10], and
prediction of prefered shapes of molecules [CGM06; CS00]. For the class of
inextensible curves, which arise naturally as dimensionally reduced descrip-
tions in nonlinear elasticity [Ant05; MM03], recent developments concern-
ing the numerical treatment of partial differential equations with holonomic
constraints such as harmonic maps turned out be useful for their efficient ap-
proximation, cf. [Bar05; Bar+07; Bar16]. In this article we consider curves
that are restricted to belong to given surfaces and whose behavior is deter-
mined by appropriate bending energies. To model their relaxation dynamics
and find stationary configurations of low energy we adapt techniques de-
veloped in [Bar13] to develop convergent finite element discretizations and
stable iterative numerical schemes. Our approach provides an alternative to
the methods developed in [BGN12; BGN19]. Here, motivated by applica-
tions in nonlinear elasticity, we consider curves in euclidean space that are
parametrized by arclength which allows for an efficient numerical treatment.
Related analytical contributions are contained in [Lin91; Koi96].
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1.1. Constrained nonlinear bending. We first consider relaxation pro-
cesses of curves u on a given surface S whose bending behavior is determined
by the functional

I[u] =
1

2

∫ L

0
|u′′|2 dx.

Here, we require u : (0, L)→ R3 to be an arclength parametrized curve, i.e.,
that |u′(x)| = 1 for all x ∈ (0, L), so that |u′′|2 is the squared curvature of
the curve parametrized by the function u. The constraint

u(x) ∈ S

for all x ∈ (0, L) restricts the curve to belong to the regular hypersurface
S ⊂ R3. We also incorporate boundary conditions modeled by a bounded
and linear functional Lbc : H2(Ω;R3) → R` and a vector `bc ∈ R`. The
setting may describe the behavior of a wire on a magnetic surface neglecting
effects related to twist. Corresponding torsion contributions can however
be directly included, cf. [BR19]. We thus consider the following constrained
minimization problem.

(Pbend)



Find a minimizing curve u ∈ H2(0, L;R3) for

I[u] =
1

2

∫ L

0
|u′′|2 dx

subject to u(x) ∈ S, |u′(x)|2 = 1 for all x ∈ [0, L]

and Lbc[u] = `bc.

For an initial configuration described by a function u0 and for given bound-
ary conditions, e.g., that the wire is clamped at one end, the relaxation of
the bending energy is modeled by the formal gradient flow evolution

∂tu = −I ′[u] + (λu′)′ + µΦ′S(u)

for a family of curves (u(t))t∈[0,T ] satisfying the the initial, holonomic, and
boundary conditions

u(0) = u0, |u′|2 = 1, ΦS(u) = 0, Lbc[u] = `bc.

The functions λ and µ are Lagrange multipliers related to the arclength
and surface constraints, respectively, where we assume that the surface S is
given as the zero level set of the function ΦS . With the backward difference
quotient operator

dta
k =

1

τ
(ak − ak−1)

we use a time-stepping scheme that linearizes the constraints at a previous
approximation. By restricting to test functions that belong to the intersec-
tion of the kernels of the linearized constraints this eliminates the explicit
occurence of the Lagrange multipliers. Since the time-derivative obeys the
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same linear constraints we obtain for an appropriate inner product (·, ·)∗
and the L2 inner product (·, ·) the time-stepping scheme

(dtu
k, v)∗ + ([uk]′′, v′′) = 0

subject to the inclusions

dtu
k, v ∈ F [uk−1],

where the set F [uk−1] contains the linearized constraints, i.e., for a given
curve û we have

F [û] =
{
v ∈ H2(0, L;R3) : û′ · v = 0, Φ′S(û) · v = 0, Lbc[v] = 0

}
.

The time-stepping scheme thus requires solving linearly constrained linear
systems of equations, where the constraints are pointwise. We show that
the scheme is unconditionally energy decreasing and that the violation of
the constraints is controlled by the step size independently of the number
of iterations. Our spatial discretization uses an H2-conforming ansatz and
imposes the constraints at the nodes of a partitioning of the reference inter-
val (0, L). We justify the spatial discretization by proving its Γ-convergence
to the continuous minimization problem.

1.2. Geodesic curvature. An intrinsic variant of the constrained varia-
tional problem arises, e.g., in the description of phase separation processes
on surfaces. It replaces the curvature κ = |u′′| by the geodesic curvature κg.
For an arclength parametrized curve u : (0, L)→ S it is defined as

κ2
g = |u′′|2 − |u′′ · nS(u)|2 = |u′′ × nS(u)|2,

where nS = Φ′S/|Φ′S | is a unit normal field on S and where we used that
u′′ · u′ = 0. The corresponding energy functional

I[u] =
1

2

∫
Ω
κ2
g ds

still controls the H2 norm of u since the normal part of the curvature is
bounded by the curvature of S, i.e., we have

|u′′|2 ≤ κ2
g + c2

S ,

where cS is the maximum of the principal curvatures of S. This estimate
is not availabe when only nodal values of a piecewise polynomial curve uh
belong to S. To cope with this aspect we introduce a stabilization via a
damping parameter γ ≤ 1 in the energy functional.

(Pγgeod)



Find a minimizing curve u ∈ H2(0, L;R3) for

Iγ [u] =
1

2

∫ L

0
|u′′|2 − γ|u′′ · nS(u)|2 dx

subject to u(x) ∈ S, |u′(x)|2 = 1 for all x ∈ [0, L]

and Lbc[u] = `bc.
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δ

1 = r2 + δ2

rC

Figure 1. A point C of an initially flat elastic sheet (gray
line representing cross section) is displaced by a distance δ.
The resulting deformation is constrained by a circular obsta-
cle at distance r to C. Points on the deformed sheet (black

lines) at distance (r2 + δ2)1/2 to the center C either touch
the obstacle (right end point) or are above it (left end point).

We prove that the stabilized problems converge in a variational sense to
the unstabilized original problem as γ → 1. The stabilization allows us to
prove convergence of discretizations. As an alternative to or in combination
with stabilizations additional constraints may be imposed to ensure that
discrete curves remain sufficiently close to the surface S so that their second
derivative in normal direction is controlled by the curvature of the surface.
This approach however leads to difficulties in the iterative solution. For
the stabilized problem we follow the ideas described above with an explicit
treatment of the nonlinear term. Hence, we compute a sequence (uk)k=0,1,...

via the recursion

(dtu
k, v)∗ + ([uk]′′, v′′)

= γ
(
[uk−1]′′ · nS(uk−1), v′′ · nS(uk−1) + [uk−1]′′ · n′S(uk−1)v

)
subject to dtu

k, v ∈ F [uk−1]. Under moderate conditions on the step size τ
in terms of γ we obtain a monotonicity property for the iteration.

1.3. Conical sheets. Motivated by the problem of understanding fold-
ing and crumpling deformations of thin elastic sheets, the articles [CM05;
BKN13; MO14; Olb16; FM18] address the situation in which an elastic plate
is placed on a circular obstacle of radius r and then indented by an amount
δ at the center C. The resulting deformation is homogeneous along rays
starting from the center, points at a distance (r2 + δ2)1/2 from the cen-
ter are either in contact with the obstacle or above it. The displacement
of these points entirely determines the full deformation of the sheet and it
therefore suffices to compute the deformation of the points belonging to this
circle. The displaced points belong to a sphere and are constrained by the
obstacle. By an appropriate rescaling we may assume that r2 + δ2 = 1.
A cross section of the rotationally symmetric setting through the center C
is depicted in Figure 1. The solutions of the two-dimensional problem and
its one-dimensional reduction cannot be rotationally symmetric unless the
indendation depth δ is trivial.
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The corresponding reduced description has been rigorously identified in
[FM18] and characterizes the deformation u : S1 → R3 of the unit circle
S1 ⊂ R2 via a minimization of the functional

I[u] =
1

2

∫
S1

κ2
g dx

in the set of periodic curves u ∈ H2(S1;R3) subject to the constraints that
u attains its values on the unit sphere S = S2 ⊂ R3 and is inextensible, i.e.,

|u(x)|2 = 1, |u′(x)|2 = 1,

and that the curve does not penetrate the obstacle, i.e., for the vertical
component u3 of u we have

u3(x) ≥ δ,
for all x ∈ S1. Because of the unit-length constraints on u and u′ we have
that the normal curvature κn of u is given by

κn = u′′ · u = (u′ · u)′ − |u′|2 = −1,

so that for the geodesic part we have

κ2
g = κ2 − κ2

n = |u′′|2 − 1.

The reduced indentation problem thus leads to the following minimization
problem for a given indentation depth δ ≥ 0.

(Pind)


Find a minimizing curve u ∈ H2(S1;R3) for

I[u] =
1

2

∫
S1

|u′′|2 ds− π

subject to |u(x)|2 = 1, |u′(x)|2 = 1, u3(x) ≥ δ for all x ∈ S1.

Various features of minimizers have been characterized in [FM18], e.g., that
the non-contact zone {s ∈ S1 : u3(s) > δ} is an interval. Via less rigorous
arguments it has been stated in [CM05] that minimizers have, in a certain
projection, a unique maximum, i.e., that single folds of the indented sheet
are preferred over double folds, as is observed in reality. To investigate
such questions via numerical experiments we approximate the problem by
imposing the inequality constraint using a penalty approximation, i.e., we
consider

Iε[u] =
1

2

∫
S1

|u′′|2 dx+
1

2ε

∫
S1

(u3 − δ)2
− dx− π.

The minimimization of Iε is done with a gradient flow that linearizes the
constraints and which uses an implicit-explicit treatment of the penalty term
defined via the convex-concave splitting

(s− δ)2
− = (s− δ)2 − (s− δ)2

+

i.e., we compute a sequence (uk)k=0,1,... via

(dtu
k, v)∗ + ([uk]′′, v′′) + ε−1(uk3 − δ, v3) = ε−1((uk−1

3 − δ)+, v3)
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for all v ∈ H2(S1;R3) subject to the linearized unit-length constraints and
periodicity conditions contained in the space F [uk−1]

dtu
k, v ∈ F [uk−1].

The resulting iterative method is unconditionally energy monotone and con-
verges to stationary configurations of low bending energy.

1.4. Outline. The article is organized as follows. In Section 2 we intro-
duce the finite element spaces used to approximate H2 curves and prove
Γ-convergence results for the model problems. Section 3 is devoted to the
development of stable gradient flow discretizations used to compute station-
ary configurations. In Section 4 we illustrate the theoretical findings by
numerical experiments.

2. Discretization and Γ-convergence

In this section we define suitable finite element spaces to approximate
curves, devise discretizations of the constrained minimization problems, and
prove their variational convergence as discretization parameters tend to zero.

2.1. Finite element spaces. We discretize the constrained minimization
problems using H2 conforming finite element spaces for partitions

0 = z0 < z1 < · · · < zJ = L

of the interval (0, L) with maximal mesh size h = maxj=1,...,J |zj − zj−1| of
the subintervals Ij = [zj−1, zj ]. A finite element space subordinated to this
partitioning is defined by imposing continuity and differentiability of the
piecewise cubic curves at the nodes, i.e., we set

Vh = {vh ∈ C1(0, L;R3) : vh|Ij ∈ P3(Ij)
3, j = 1, 2, . . . , J},

where P`(I) denotes the set of polynomials of maximal degree ` ≥ 0 on an
interval I. The degrees of freedom in the space Vh are the function values
and derivatives at the nodes, i.e.,(

vh(zj), v
′
h(zj)

)
j=0,...,J

.

Correspondingly, an interpolation operator I3,1
h : H2(0, L;R3) → Vh is de-

fined by requiring that

I3,1
h v(zj) = v(zj), [I3,1

h v]′(zj) = v′(zj)

for j = 0, 1, . . . , J . We note that we have the interpolation estimates

‖(I3,1
h v − v)(k)‖Lp(0,L) ≤ ch3−k‖v‖W 3,p(0,L)

for all v ∈ W 3,p(0, L) and k ≤ 2, cf. [BS08]. We also employ the standard
piecewise linear interpolation operator

Ih : C0([0, L])→Wh

which is defined by requiring

Ihw(zj) = w(zj)
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for j = 0, 1, . . . , J and thereby defines an element in the space

Wh = {wh ∈ C0([0, L]) : wh|Ij ∈ P1(Ij), j = 1, 2, . . . , J}.
For the interpolation operator we have that

‖Ihw − w‖Lp(0,L) ≤ ch‖w′‖Lp(0,L),

if p > 1. With the interpolation operator Ih we define discrete inner prod-
ucts and norms via

(v, w)h =

∫ L

0
Ih[vw] dx, ‖v‖p

Lp
h(0,L)

=

∫ L

0
Ih[|v|p] dx

for v, w ∈ C([0, L];R`) and 1 ≤ p ≤ ∞, where ‖v‖L∞h (0,L) = maxj=0,...,J |v(zh)|.

2.2. Discrete minimization problems. The pointwise constraints and
the nonlinearities require making certain approxiomations which lead to
inconsistency terms. We impose the arclength condition and the surface
constraints at the nodes of a partitioning, i.e., we impose that

Ih|v′h|2 = 1, IhΦS(vh) = 0,

which is equivalent to the nodal constraints

|v′h(zj)| = 1, vh(zj) ∈ S
for j = 0, 1, . . . , J . The discrete set of admissible curves is then given by

Ah =
{
vh ∈ Vh : Ih|v′h|2 = 1, IhΦS(vh) = 0, Lbc[vh] = `bc

}
.

It provides an approximation of the continuous set of admissible curves
defined as

A =
{
v ∈ H2(0, L;R3) : |v′|2 = 1, ΦS(v) = 0, Lbc[v] = `bc

}
.

We note that if the continuous admissible set is nonempty then also the
discrete admissible set is nonempty, i.e., we have the implication

v ∈ A =⇒ I3,1
h v ∈ Ah,

where we assume that Lbc[v] only depends on the boundary values of v and
v′. Our convergence result considers the minimization of

Iγ [u] =


1

2

∫ L

0
|u′′|2 − γ|u′′ · nS(u)|2 dx for u ∈ A,

+∞ for H2(0, L;R3) \ A,
with a parameters γ ∈ [0, 1). The approximating discrete functionals are
given by

Iγ,h[uh] =


1

2

∫ L

0
|u′′h|2 − γ|u′′h · nS(uh)|2 dx for uh ∈ Ah,

+∞ for H2(0, L;R3) \ Ah,

for uh ∈ Ah with the extension by +∞ on H2(0, L;R3) \ Ah. To prove the
convergence Iγ,h → Iγ we impose a definiteness property on the boundary
condition operator Lbc and an approximability condition on A.
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Assumption 2.1 (Definiteness). The seminorm v 7→ ‖v′′‖ is a norm on
the kernel of the operator Lbc : H2(0, L;R3)→ R`.

The assumption is satisfied for clamped boundary conditions, e.g., Lbc[v] =
(v(0), v′(0)), and boundary conditions that fix both end points, i.e., Lbc[v] =
(v(0), v(L)). We always assume that the boundary conditions lead to a
nonempty set A.

Assumption 2.2 (Density of smooth curves). The subset of smooth curves
A ∩H3(0, L;R3) is dense in A with respect to strong convergence in H2.

A relaxation of the assumption is discussed below in Remark 2.4. The
assumption can be justified by regularizing curves in A, projecting regular
curves on S, adjusting the boundary conditions, and carrying out a suitable
reparametrization. We refer the reader to [BR19] for related ideas.

Proposition 2.3 (Γ-convergence). If 0 ≤ γ < 1, ΦS ∈ C1(R3) and As-
sumptions 2.1 and 2.2 are satisfied then we have Iγ,h → Iγ in the sense
of Γ-convergence with respect to weak convergence in H2, i.e., we have the
following:
(i) If (uh)h>0 ⊂ H2(0, L;R3) such that uh ∈ Ah for every h > 0 and
Iγ,h[uh] ≤ c then there exists u ∈ A such that uh ⇀ u in H2 and

Iγ [u] ≤ lim inf
h→0

Iγ,h[uh].

(ii) For every u ∈ A there exists a sequence (uh)h>0 ⊂ H2(0, L;R3) such
that uh → u in H2 and

Iγ [u] = lim
h→0

Iγ,h[uh].

(iii) Weak accumulation points of sequences of quasiminimizers (uh)h>0 for
the functionals Iγ,h in H2 are minimizers for Iγ.

Proof. (i) If Iγ,h[uh] ≤ c for a sequence (uh)h>0 then, since γ < 1 and since

|u′′h|2 − γ|u′′h·nS(uh)|2

= (1− γ)|u′′h|2 + γ
∣∣(I3 − nS(uh)⊗ nS(uh)

)
u′′h
∣∣2,(1)

we have that the sequence is bounded in H2(0, L;R3) and there exists a
weak limit u ∈ H2(0, L;R3) of an appropriate subsequence which is not
relabeled. The boundedness of the linear operator Lbc[v] shows that we have
Lbc[u] = `bc. The compactness of the embedding H2(0, L) → W 1,∞(0, L)
implies that the sequence (u′h)h>0 is strongly convergent in L∞(0, L;R3).
Using that Iγ,h|u′h|2 = 1 we thus deduce that∥∥|u′h|2 − 1

∥∥
L2(0,L)

=
∥∥|u′h|2 − Ih|u′h|2∥∥L2(0,L)

≤ 2ch‖u′h‖L∞(0,L)‖u′′h‖2L2(0,L),
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which implies that |u′h|2 → 1 in L2(0, L). We have that

‖ΦS(uh)‖L∞(0,L) = ‖ΦS(uh)− IhΦS(uh)‖L∞(0,L)

≤ ch‖Φ′S(uh)u′h‖L∞(0,L).

The pointwise convergence uh → u and continuity of ΦS imply that ΦS(u) =
0 in (0, L). Hence, we have that u ∈ A. Since

Puh = I3 − nS(uh)⊗ nS(uh)→ Pu = I3 − nS(u)× nS(u)

strongly in L∞(0, L;R3×3) it follows that Puhu
′′
h ⇀ Puu

′′ in L2(0, L;R3)
and the weak lower semicontinuity of the L2 norm in combination with the
identity (1) shows that∫ L

0
|u′′|2 − γ|u′′ · nS(u)|2 dx ≤ lim inf

h→0

∫ L

0
|u′′h|2 − γ|u′′h · nS(uh)|2 dx,

i.e., that Iγ [u] ≤ lim infh→0 Iγ,h[uh].
(ii) Since Iγ is continuous on A with respect to strong convergence in H2

and because of Assumption 2.2, we may assume that u ∈ A ∩H3(0, L;R3).

Letting uh = I3,1
h u we have that uh ∈ Ah, uh → u in H2, and Iγ [u] =

limh→0 Iγ,h[uh].
(iii) The convergence of quasi-minimizers is an immediate consequence of
the equicoercivity of the functionals Iγ,h owing to the condition γ < 1 and
assertions (i) and (ii). �

Remark 2.4. To avoid Assumption 2.2 one may impose the arclength and
surface constraints in a relaxed sense in defining Ah, i.e., using

Ãh =
{
vh ∈ Vh :, Lbc[vh] = `bc,

‖Ih|v′h|2 − 1‖L∞(0,L) ≤ αh, ‖IhΦS(vh)‖L∞(0,L) ≤ βh
}
,

with h-dependent parameters αh, βh > 0. In this case, one may construct a
recovery sequence uh in part (ii) of the Proposition by letting ũ ∈ C∞(0, L;R3)
be a regularization of u ∈ A which obeys the boundary conditions and define

uh = I3,1
h u. If αh, βh are appropriately chosen we have uh ∈ Ãh and uh → u

in H2.

2.3. Application to model problems. We next apply the abstract Γ-
convergence result to the model problems defined by the variational prob-
lems (Pbend), (Pγgeod), and (Pind). We assume throughout the following that

ΦS ∈ C1(R3) and that Assumptions 2.1 and 2.2 are satisfied and always
consider weak convergence in H2. The discretization of the constrained
nonlinear bending problem (Pbend) is defined as:

(Phbend)


Find a minimizing curve uh ∈ Ah for

I[uh] =
1

2

∫ L

0
|u′′h|2 dx.

A convergence result is obtained from choosing γ = 0 in Proposition 2.3.



10 SÖREN BARTELS

Corollary 2.5 (Constrained nonlinear bending). The minimization prob-
lems (Phbend) approximate the problem (Pbend) as h→ 0.

A discretization of the geodesic curvature minimization problem (Pγgeod)

is defined as:

(Pγ,hgeod)


Find a minimizing curve uh ∈ Ah for

Iγ,h[uh] =
1

2

∫ L

0
|u′′h|2 − γ|u′′h · nS(uh)|2 dx.

This problem approximates for fixed 0 < γ < 1 the stabilized problem (Pγgeod)

which is a direct consequence of Proposition 2.3. We also have that the
regularized minimization problems converge for γ → 1 to the original, un-
stabilized problem defined with γ = 1.

Corollary 2.6 (Geodesic curvature minimization). The minimization prob-

lems (Pγ,hgeod) approximate problem (Pγgeod) as h → 0. For γ → 1 prob-

lems (Pγgeod) approximate problem (Pγgeod) with γ = 1.

Proof. The first part follows from Proposition 2.3. To prove the second part
one uses that second derivatives of arclength-parametrized curves on S are
bounded by their geodesic curvature. �

Remarks 2.7. (i) For an efficient numerical realization it is helpful to re-
place the function u′′h ·nS(uh) by u′′h ·nS(uh), where uh is a piecewise constant
approximation of uh. The approximation result remains valid if uh−uh → 0
in L∞(0, L;R3) for every bounded seqence (uh)h>0 in H2(0, L;R3), e.g., if
uh is defined via the midpoint values of uh.
(ii) A modification of the method is necessary to justify a joint limit pas-
sage (h, γ) → (0, 1). In particular, control on the normal part of u′′h is
needed, e.g., via requiring that u′h(zj) is a tangent vector at every node zj,
j = 0, 1, . . . , J .

A discretization of the sheet indentation problem (Pind) is defined as:

(Ph,εind)


Find a minimizing curve uh ∈ Ah for

Ih,ε[uh] =
1

2

∫ L

0
|u′′h|2 +

1

2ε

∫ L

0
Ih(u3,h − δ)2

− dx.

A convergence result is obtained from choosing γ = 0 in Proposition 2.3 and
showing that the penalty term turns into a rigid constraint as (h, ε)→ 0.

Corollary 2.8 (Constrained nonlinear bending). Assume that Assump-
tion 2.2 holds with A replaced by the set of functions u ∈ A with u3 ≥ δ.

Then the minimization problems (Ph,εind) approximate the problem (Pind) as
(h, ε)→ 0.

Proof. Certain modifications of the proof of Proposition 2.3 are required.
If the sequence (uh)h>0 is such that Ih,ε[uh] ≤ c then we have ‖(u3,h −
δ)−‖2L2

h(0,L)
≤ 2cε and every weak accumulation point u ∈ H2(0, L;R3)
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satisfies u3 ≥ δ. Since the penalty term is nonnegative we have that
lim inf(h,ε)→0 Ih,ε[uh] ≥ I[u]. For a curve u ∈ A ∩ C∞(0, L;R3) obeying

the constraint u3 ≥ δ we have that the interpolants uh = I3,1
h u also satisfy

Ihu3,h ≥ δ so that the penalty term in the functional disappears and the
second part of the proof of Proposition 2.3 applies verbatimly. �

3. Discrete gradient flows on surfaces

We investigate in this section the stability of gradient flows for curvature
energies defined on classes of arclength parametrized curves that belong to
a given surface. The first model uses the full bending energy, the second
one is defined by the geodesic curvature, while the third problem involves
an obstacle constraint.

3.1. Constrained elastic flow of curves. Minimizing the bending energy
of curves restricted to a surface S subject to inextensibility and boundary
conditions as formulated in problem (Pbend) leads to gradient flows such as

∂tu = −u(4) + (λu′)′ + µΦ′S(u),

where λ and µ are Lagrange multipliers related to inextensibility and surface
constraints. More generally, given a metric (·, ·)∗ defined on L2(0, L;R3) we
consider the evolution problem

(∂tu, v)∗ + (u′′, v′′) = 0

that determines a family u : [0, T ]→ H2(0, L;R3) of curves satisfying

u(0) = u0, u(t) ∈ A
for all t ∈ [0, T ]. We require the test functions v ∈ H2(0, L;R3) to belong
to the linearization of A at u(t), i.e., that v ∈ F [u(t)], where

F [û] =
{
v ∈ H2(0, L;R3) : Φ′S(û) · v = 0, û′ · v = 0, Lbc[v] = 0

}
.

Note that also ∂tu(t) ∈ F [u(t)]. To discretize the evolution equation we use
a step size τ > 0 and the backward difference operator

dtu
k =

1

τ
(uk − uk−1).

For a partition z0 < z1 < · · · < zJ of (0, L) we define the discrete linearized
admissible space

Fh[ûh] =
{
vh ∈ Vh : Ih[Φ′S(ûh) · vh] = 0, Ih[û′h · v′h] = 0, Lbc[vh] = 0

}
,

i.e., the orthogonality relations are imposed only at the nodes z0, zz, . . . , zJ ,
in accordance with the definition of the discrete admissible set Ah. This
leads to the following algorithm.

Algorithm 3.1 (Constrained curvature flow). Choose u0
h ∈ Vh such that

IhΦS(u0
h) = 0 and Ih|[u0]′|2 = 1 and Lbc[u

0
h] = `bc. Set k = 0.

(1) Compute dtu
k
h ∈ Vh such that

(dtu
k
h, vh)∗ + ([uk−1

h + τdtu
k
h]′′, v′′h) = 0
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for all vh ∈ Vh subject to the constraints

dtu
k
h, vh ∈ Fh[uk−1

h ].

(2) Define ukh = uk−1
h + τdtu

k
h; set k → k + 1, and continue with (1).

The iteration of Algorithm 3.1 is unconditionally well defined and energy
decreasing and leads to a violation of the constraints that is controlled by
the step size τ > 0.

Proposition 3.2. (i) Algorithm 3.1 defines a sequence (ukh)k=0,1,... ⊂ Vh
such that for every K ≥ 0 we have

I[uKh ] + τ
K∑
k=1

‖dtukh‖2∗ ≤ I[u0
h] = e0,h.

(ii) Assume that u0
h ∈ Ah and that the inner product (·, ·)∗ induces a norm

‖ · ‖∗ with

‖v′h‖2L∞h (0,L) = ‖Ihv′h‖2L∞(0,L) ≤ c∗‖vh‖
2
∗

for all vh ∈ Vh and |Φ′′S(s)| ≤ cS,2(1 + |s|r) for all s ∈ R3. Then, we have
for every K ≥ 0 that

max
k=0,1,...,K

‖|[ukh]′|2 − 1‖L∞h (0,L) ≤ c∗τe0,h,

and

max
k=0,1,...,K

‖ΦS(ukh)‖L∞h (0,L) ≤ c∗cS,2c′τer+1
0,h .

Proof. We test the formulation of Step (1) of Algorithm 3.1 with vh = dtu
k
h

to deduce with a binomial formula that

‖dtukh‖2∗ + dt
1

2
‖[ukh]′′‖2 +

τ

2
‖[dtukh]′′‖2 = 0.

A summation over k = 1, 2, . . . ,K yields the asserted energy estimate. The
nodewise orthogonality [dtu

k
h]′·[uk−1

h ]′ = 0 and the relation ukh = uk−1
h +τdtu

k
h

imply that at every node z ∈ Nh we have

|[ukh]′|2 = |[uk−1
h ]′|2 + τ2|[dtukh]′|2 = · · · = 1 + τ2

k∑
`=1

|[dtukh]′|2.

The energy bound and the assumed inequality for ‖ · ‖∗ imply the bound
for the arclength violation. For the surface constraint we note that the
application of a Taylor formula and the fact that dtu

k
h ∈ Fh[uk−1

h ] yield that
at every node we have

ΦS(ukh) = ΦS(uk−1
h ) +

1

2
τ2Φ′′S(ξkh)[dtu

k
h, dtu

k
h].
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Repeating this argument and using ΦS(u0
h) = 0 at the nodes we infer with

the assumed estimate for Φ′′S that

‖IhΦS(ukh)‖L∞(0,L) ≤
1

2
τcS,2

(
1 + ‖Ihξkh‖rL∞(0,L)

)
τ

k∑
`=1

‖Ihdtu`h‖2L∞(0,L).

Since the nodal values of ξkh belongs to the line segment connecting ukh and

uk−1
h we may incorporate the discrete L∞ estimates to deduce the estimate

for the nodewise surface constraint violation. �

3.2. Geodesic curvature flow. To develop an iterative scheme for the
approximate solution of the geodesic curvature problem (Pγgeod) we follow

the ideas used for the constrained bending problem and use that

κ2
g = |u′′|2 − |u′′ · nS(u)|2.

To control the nonlinear second term by the first one, we introduce a stabi-
lization via a damping factor γε = (1− ε2). This leads to the functional

Iε[u] =
1

2

∫ L

0
|u′′|2 − γε|u′′ · nS(u)|2 dx.

Because of the stabilization we have the implication

Iε[u] ≤ c0 =⇒ ‖u′′‖2 ≤ 2c0ε
−2.

While on the continuous level the geodesic curvature of a curve on the surface
S controls the full curvature this is not the case for the discretization and
hence necessitates the stabilization. We assume that

nS : R3 → R3

is a C2 vector field which coincides with the normal field on S, i.e., we have

nS |S =
Φ′S(u)

|Φ′S(u)| . We further assume that nS has bounded derivatives. To

simplify notation we use the mapping

Gε[u] =
γε
2

∫ L

0
|u′′ · nS(u)|2 dx.

The constrained gradient flow for Iε can thus be represented as

(∂tu, v)∗ + (u′′, v′′) = G′ε[u; v],

where

G′ε[u; v] = γε

∫ L

0
u′′ · nS(u)

(
v′′ · nS(u) + u′′ · n′S(u)v

)
dx.

We note that we have

G′ε[u; v] ≤ γε
(
‖u′′‖‖v′′‖+ cnS‖u

′′‖2‖v‖L∞(0,L)

)
.

For ease of presentation we consider a semi-discrete setting. All arguments
carry over to the case of a spatially discrete scheme.
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Algorithm 3.3 (Constrained geodesic curvature flow). Choose u0 ∈ V such
that ΦS(u0) = 0 and |[u0]′|2 = 1 and Lbc[u

0] = `bc. Set k = 0.
(1) Compute dtu

k ∈ V such that

(dtu
k, v)∗ + ([uk−1 + τdtu

k]′′, v′′) = G′ε[u
k−1; v]

for all v ∈ V subject to the constraints

dtu
k, v ∈ F [uk−1].

(2) Define uk = uk−1 + τdtu
k; set k → k + 1, and continue with (1).

We have the following stability properties for Algorihm 3.3.

Proposition 3.4. Assume that there exists c∗ > 0 such that

‖v‖L∞(0,L) + ‖v′′‖ ≤ c∗‖v‖∗
for all v ∈ V .
(i) There exists c3 ≥ 0 such that if c3τε

−1 ≤ 1/2 then the iterates of Algo-
rithm 3.3 satisfy for all K ≥ 0

Iε[u
K ] + (1− c3τε

−1)τ

K∑
k=1

‖dtuk‖2∗ ≤ Iε[u0].

(ii) Under the above condition the bounds on the constraint violation errors
apply as in Proposition 3.2 (ii).

Proof. We argue by induction and assume that the energy estimate and
the constraint violation bounds have been established up to some number
k − 1 ≥ 0 so that

Iε[u
k−1] +

τ

2

k−1∑
`=1

‖dtu`‖2∗ ≤ Iε[u0] = e0.

This implies that

‖[uk−1]′′‖ ≤
√

2e
1/2
0 ε−1.

By the assumption on the boundary data we thus have that ‖uk−1‖H2(0,L) ≤
c1ε
−1. Moroever, we have that ‖uk−1‖L∞(0,L) ≤ c. To derive an auxiliary

bound we choose v = dtu
k in Step (1) of Algorithm 3.3. Incorporating the

bound for G′ε and noting γε ≤ 1 this leads to

‖dtuk‖2∗ + dt
1

2
‖[uk]′′‖2 +

τ

2
‖[dtuk]′′‖2

≤ ‖[uk−1]′′‖‖[dtuk]′′‖+ ‖[uk−1]′′‖2cnS‖dtu
k‖L∞(0,L).

By the assumption on the inner product (·, ·)∗ we have that

‖dtuk‖L∞(0,L) + ‖[dtuk]′′‖ ≤ c∗‖dtuk‖∗
and we deduce that

1

2
‖dtuk‖2∗ + dt

1

2
‖[uk]′′‖2 ≤ c1ε

−2.
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Hence, by choosing τ sufficiently small, we have that

‖[uk]′′‖2 ≤ ‖[uk−1]′′‖2 + 2τc1ε
−2 ≤ 5e0ε

−2.

We next improve the latter bound by choosing again v = dtu
k and using

Gε[u
k]−Gε[uk−1] = τG′ε[u

k−1; dtu
k] + τ2G′′ε [ξ

k; dtu
k, dtu

k],

where G′′ε [ξ
k; dtu

k, dtu
k] is a formal representation of the Taylor remainder

term

RGε [u
k−1, uk; dtu

k, dtu
k] =

∫ 1

0
(1− s)G′′ε [uk−1 + s(uk − uk−1); dtu

k, dtu
k] ds.

With the bounds for uk and uk−1 we obtain that∣∣G′′ε [ξk; dtuk, dtuk]∣∣ ≤ c2(1 + ‖[ξk]′′‖)‖[dtuk]′′‖2 ≤ c′2ε−1‖[dtuk]′′‖2.
We thus obtain that

‖dtuk‖2∗ + dt
1

2
‖[uk]′′‖2 +

1

2
‖[dtuk]′′‖2 = G′ε[u

k−1; dtu
k]

= dtGε[u
k]− τG′′ε [ξk; dtuk, dtuk] ≤ dtGε[uk] + τc′2ε

−1‖dtuk‖2∗.
This proves the energy monotonicity and hence part (i) of the proposition.
Part (ii) follows as in the proof of Proposition 3.2. �

3.3. Conical sheet indentation flow. To iteratively solve the reduced
conical sheet indentation problem (Pind) we include the obstacle condition
us(x) ≥ δ via a penalty term in the energy functional, i.e.,

Iε[u] =
1

2

∫
S1

|u′′|2 dx+
1

2ε

∫
S1

(u3 − δ)2
− dx,

where (s)− = min{s, 0}. The discretization of the related gradient flow

(∂tu, v)∗ + (u′′, v′′) + ε−1((u3 − δ)−, v3) = 0

uses the convex-concave splitting

(u3 − δ)2
− = (u3 − δ)2 − (u3 − δ)2

+

and an implicit treatment of the corresponding monotone and an explicit
treatment of the corresponding antimonotone terms, i.e., we use the time-
stepping scheme

(dtu
k, v)∗ + ([uk]′′, v′′) + ε−1(uk3 − δ, v3) = ε−1

(
(uk−1

3 − δ)+, v3

)
.

A spatial discretization leads to the following algorithm where periodicity is
guaranteed via an appropriate definition of the operator Lbc.

Algorithm 3.5 (Conical sheet flow). Choose u0
h ∈ Vh such that IhΦS(u0

h) =
0 and Ih|[u0

h]′|2 = 1 and Ihu0
h ≥ δ and Lbc[u

0
h] = `bc. Set k = 0.

(1) Compute dtu
k
h ∈ Vh such that

(dtu
k
h, vh)∗ + ([uk−1

h + τdtu
k
h]′′, v′′h) + ε−1(ukh,3 − δ, vh,3)h

= ε−1
(
(uk−1
h,3 − δ)+, vh,3

)
h
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for all vh ∈ Vh subject to the constraints

dtu
k
h, vh ∈ Fh[uk−1

h ].

(2) Define ukh = uk−1
h + τdtu

k
h; set k → k + 1, and continue with (1).

The iteration of Algorithm 3.5 has the same features as that of Algo-
rithm 3.1. We use the discrete penalized energy functional

Ih,ε[uh] =
1

2

∫
S1

|u′′h|2 dx+
1

2ε

∫
S1

Ih(uh,3 − δ)2
− dx.

Proposition 3.6. (i) Assume that u0
h ∈ Ah with u0

h,3 ≥ δ. Algorithm 3.5

defines a sequence (ukh)k=0,1,... ⊂ Vh such that for every K ≥ 0 we have

Ih,ε[u
K
h ] + τ

K∑
k=1

‖dtukh‖2∗ ≤ Ih,ε[u0
h] = e0,h.

(ii) Under the above conditions the bounds on the constraint violation errors
apply as in Proposition 3.2 (ii).

Proof. We follow the steps of the proof of Proposition 3.2 and use vh = dtu
k
h

in Step (1) of Algorithm 3.5. Defining the convex and concave functions pcx
and pcv, suitably embedded into R3, via

pcx(s) = (s3 − δ)2e3, pcv(s) = −(s3 − δ)2
+e3,

with the canonical basis vector e3 ∈ R3, we thus have

‖dtuk‖2∗ + dt
1

2
‖[ukh]′′‖2 +

τ

2
‖[dtukh]′′‖2

= −ε−1(p′cx(ukh), dtu
k
h)− ε−1(p′cv(u

k−1
h ), dtu

k
h).

The convexity of pcx and −pcv imply that we have

p′cx(ukh) · (uk−1
h − ukh) + pcx(ukh) ≤ pcx(uk−1

h ),

−p′cv(uk−1
h ) · (ukh − uk−1

h )− pcv(uk−1
h ) ≤ −pcv(ukh).

By adding the inequalities and dividing by τ we find that

−
(
p′cx(ukh) + p′cv(u

k−1
h )

)
· dtukh ≤ −dt

(
pcx(ukh) + pcv(u

k
h)
)
.

Combining the estimates implies the unconditional energy decay property.
The remaining part (ii) is derived as in the proof of Proposition 3.2. �

Remark 3.7. To obtain a consistency property for the discrete gradient flow
as an approximation of a corresponding continuous gradient flow a condition
relating the step-size τ and the penalty parameter ε is required.
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4. Numerical experiments

We illustrate the performance of the numerical methods devised in the
previous sections by various numerical experiments which are specified in
the following subsections. The implementation of the algorithms was real-
ized in Matlab with a direct solution of the linear systems of equations.
The evolution metric (·, ·)∗ was always chosen to coincide with L2 inner
product which leads to a mesh-dependent constant c∗ in Propositions 3.2,
3.4, and 3.6. We observe however good stability properties for the resulting
discrete L2 flow.

4.1. Elastic and geodesic flows on a torus. We compare discrete re-
laxation dynamics for curves on a torus that are determined by the elastic
bending energy and by the geodesic curvature functional. The torus Tr,R
has radii R = 2 and r = 1 and is described by the zero level set of the
function

ΦS(s) = (|s|2 +R2 − r2)2 − 4R2(|s|2 − s2
3).

The following example defines an open curve on Tr,R.

Example 4.1. Let L̃ = 2π and for x ∈ (0, L̃) define ũ0 : (0, L̃)→ Tr,R via

ũ0(x) =

sin(ax)
(
R+ sin(bx)r

)
cos(ax)

(
R+ sin(bx)r

)
cos(bx)r


The curve u0 : (0, L)→ Tr,R is obtained from a re-parametrization of ũ0.

We use clamped boundary conditions at x = 0 that fix the initial position
and tangent, i.e., we have

Lbc[u] = (u(0), u′(0)).

For a partition of the interval (0, L) we ran Algorithms 3.1 and 3.3 with the
parameters

J = 80, h = 2π/J, τ = h, γ = 1− h.

Figure 2 shows snapshots of the iterations. We observe that the curve
changes quicker initially in the case of the bending energy and slightly slower
for the geodesic curvature functional. This behavior is also seen in the en-
ergy plot shown in Figure 3 where we plotted the energies in dependence of
the iteration numbers. In Figure 4 we illustrate for the evolution of closed
curves on the torus the necessity of a stabilizing damping factor for the geo-
desic curvature flow. When no stabilization is used, i.e., in case that γ = 1,
then energy monotonicity fails and the discrete curves fail to belong to a
small neighborhood of the given surface.
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Figure 2. Snapshots of the discrete gradient flow evolu-
tions after n = 0, 20, 40, . . . , 160 iterations for the bending
(solid curves) and geodesic curvature (dashed curves) ener-
gies from the same initial curve.
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Figure 3. Decay of the bending energy and geodesic cur-
vature functional for the evolution of clamped curves on a
torus illustrated in Figure 2.

Figure 4. Initial closed curve (dashed) and correspond-
ing relaxed curves for bending energy and geodesic curva-
ture with stabilization (nearly coinciding solid curves) and
configuration for geodesic curvature flow without stabiliza-
tion (dotted irregular curve).
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4.2. Conical sheet indentation. We consider the following specification
of the conical sheet indentation problem (Pind).

Example 4.2 (Conical sheet). Let δ = 1/4 and r = (15/16)2.

We used uniform partitions with mesh size h > 0 and nodes 0 = z0 <
· · · < zJ = 2π of the cirle S1 where z0 and zJ are identified in the sense that
we impose the periodic boundary condition Lbc[u] = 0 with

Lbc[u] =
(
u(zJ)− u(z0), u′(zJ)− u′(z0)

)
.

Figure 5 shows snapshots of the discrete evolution computed with Algo-
rithm 3.5 for the discretization parameters

J = 80, h = 2π/J, ε = h2, τ = h.

The visualization displays the two-dimensional deformation of the elastic
sheet by linearly connecting the origin with points on the curve. The initial
configuration u0

h is a randomly generated function with corrected values to
satisfy the condition u0

h ∈ Ah. The discrete evolution shows a rapid change
to a smooth curve approximately obeying the obstacle constraint. In the
following iterations the number of local maxima decreases until finally only
one fold can be observed while the remaining part of the curve is in contact
with the obstacle. Only a small penetration error occurs as can be seen in
Figure 6, where we plotted the third component of the iterates unh with n
such that tn = nτ = 2, i.e., n = 160, for the choices

(i) ε = h, (ii) ε = h2, (iii) ε = h3.

For ε = h we observe a strong penetration of the obstacle. Our energy
monotonicity property implies the estimate

‖(un3,h − δ)−‖ ≤ (2e0,h)1/2ε1/2

and from the experimental results we infer that ε = h2 leads to the best re-
sults. It is also interesting to see how smaller penalization terms decrease the
speed of the relaxation process. For ε = h only one fold is present indicating
stationarity, while for ε = h2 and ε = h3 a larger number of local maxima
can be observed after 160 iteration steps. Figure 7 shows the decay of the
bending energy for different resolutions and confirms the energy monotonic-
ity and convergence to a stationary configuration. The large values of the
energies are related to a strong dependence of minimal energies on the in-
dentation depth δ. For the significantly smaller choice δ = 0.05 we obtained
the stationary energy values Ih,ε[u

n∗
h ] = 24.104, 17.828, 21.822, 21.569, 21.565

for discretizations with J = 40, 80, . . . , 640 grid points. These values also
confirms convergence of the discrete minimal energies as h→ 0.

Acknowledgments. The author is grateful to Rebecca Kromer for providing
first versions of the numerical experiments.
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Figure 5. Snapshots of the discrete gradient
flow for the sheet indentation problem after n =
0, 10, 20, 30, 40, 70, 190, 430 iterations. The family of curves
(solid lines) relax their bending energies until only one fold
is present which is stationary and energy minimizing.
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Figure 6. Penetration of the obstacle at height δ = 0.25
(straight line) by the third component un3,h of the iterates in
the sheet indentation problem after a fixed number n = 160
of iterations for different choices of penalty parameters ε.
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Figure 7. Energy decay n 7→ Ih,ε[u
n
h] in the sheet in-

dentation problem for different spatial resolutions for mesh-
dependent randomly generated initial configurations of large
bending energy.
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