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Error Estimates for the Adaptive Computation of a
Scalar Three Well Problem

We investigate the numerical approximation of Young measure solutions appearing as generalised solutions in scalar
non-convex variational problems. A priori and a posteriori error estimates for a macroscopic quantity, i.e., the
stress, are given. Numerical experiments for a scalar three well problem, occurring as a subproblem in the theory
of phase transitions in crystalline solids, show that the computational effort can be significantly reduced using an
adaptive mesh-refinement strategy combined with an active set technique by Carstensen and Roub́ıček.

1. Introduction

Non-convex variational problems occur in the theory of phase transitions in martensitic crystals, e.g., in shape
memory alloys [2].

Infimising sequences for the corresponding typically non-convex energy functional show fast oscillations and
this leads to the necessity of a natural extension of the problem. We use an extension that is constructed by means
of Young measures.

A scalar subproblem of the mathematical model reads as follows.

(P )
{

Minimise I(u) :=
∫
Ω

W (∇u(x)) dx− ∫
Ω

f(x)u(x) dx
subject to u ∈ W 1,2(Ω), u|∂Ω = uD|∂Ω.

Here, Ω ⊆ IRn is a bounded Lipschitz-domain, W 1,2(Ω) is the standard Sobolev space, uD ∈ W 1,2(Ω) is some given
boundary data, f ∈ L2(Ω) is a given force, and W : IRn → IR is a given continuous energy density satisfying
c|F |2 −C ≤ W (F ) ≤ C(1 + |F |2), F ∈ IRn, for constants c, C > 0. Note that I is not weakly lower semi continuous
if W is not convex so that we can, in general, not expect existence of solutions [2, 5]. If we consider a crystal in the
austenite phase with three tetragonal variants then W can be modelled, with F1, F2 ∈ IRn given, by

W (F ) = min{|F |2, |F − F1|2, |F − F2|2}, F ∈ IRn. (1)

This specific energy density leads to a three well problem.

2. Relaxation of (P ) and its Discretisation

Young measures are weakly measurable maps from Ω into the space of probability measures PM(IRn) on IRn and
are denoted by Y M(Ω; IRn) [1, 5]. A relaxation of (P ) reads as follows.

(GP )

 Minimise I(u, ν) :=
∫
Ω

∫
IRn W (F ) dνx(F ) dx− ∫

Ω
f(x)u(x) dx

subject to ∇u(x) =
∫
IRn F dνx(F ) f.a.a. x ∈ Ω,

u ∈ W 1,2(Ω), ν ∈ Y M(Ω; IRn), u|∂Ω = uD|∂Ω.

Problem (GP ) admits a solution which is the weak limit of an appropriate infimising sequence for (P ). In [4, 5] the
following discretisation of (GP ) is proposed for a regular triangulation T of Ω and a uniform discretisation of IRn

with mesh-size d > 0.

(GPd,h)

 Minimise I(uh, νh) subject to ∇uh(x) =
∫
IRn F dνh,x(F ) f.a.a. x ∈ Ω,

uh ∈ S := {vh ∈ C(Ω) : ∀T ∈ T , vh|T affine},
∀T ∈ T , νh|T =

∑
θT
i δSi , θT

i ∈ IR≥0 ,
∑

θT
i = 1, Si ∈ d Z Z n, u|∂Ω = uD,h|∂Ω.

The Dirac measure δSi is for Si ∈ IRn defined by
∫
IRn W (F ) δSi (F ) = W (Si). The pair (uh, νh) is a solution of

(GPd,h) if and only if there exists a multiplier λh ∈ L∞(Ω; IRn) elementwise constant such that [4, 5]

max
S∈dZ Zn(λh(x) · S −W (S)) =

∫
IRn(λh(x) · F −W (F )) dνh,x(F ) f.a.a. x ∈ Ω (2)

and
∫
Ω
(λh(x) · ∇vh(x) dx− f(x)vh(x)) dx = 0 for all vh ∈ S, vh|∂Ω = 0. (3)
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3. Error Estimates and Active Set Strategy

Based on the optimality conditions (2) and (3) we can derive the following error estimates for the stresses.

T h e o r e m 1 ([3]). Let (uh, νh) be a solution of (GPd,h) with multiplier λh. Let (u, ν) solve (GP ), let W ∗∗

denote the convex hull of W , and let σ := DW ∗∗(∇u). Then, there holds

‖σ − λh‖2
L2(Ω;IRn) ≤ c1minvh∈S,vh|∂Ω=uD,h

‖∇(u− vh)‖2
L2(Ω) + c2d, and

‖σ − λh‖2
L2(Ω;IRn) ≤ c3

(∑
T∈T

h2
T ‖divλh + f‖2

L2(T )

)1/2 + c4

(∑
E∈E

hE‖[λh · nE ]‖2
L2(E)

)1/2 + c5d.

E denotes the set of faces of elements in T , hT and hE the lengths of elements and faces, and [λh · nE ] the jump of
λh in the normal component across an edge E ∈ E .

The theorem proves convergence for the stresses but the convergence cannot be quantified. Note that we face a loss
of efficiency due to degeneracy of the problem. The terms in the first two sums of the second estimate are well-known
refinement indicators and allow an adaptive refinement of T [6]. The optimality conditions state that the discrete
probability measure νh(x) is supported only in those atoms Si ∈ d Z Z n in which the maximum is attained. To reduce
the numerical effort, Carstensen and Roubicek define in [4] an ’active set’ A and compute a Young measure solution
νh that is supported in A.

In a numerical experiment we solve (GPd,h) with Ω = (0, 1)2 and W
as in (1) for F1 = (1, 0) and F2 = (0, 1). The right hand sides are
piecewise polynomial and chosen such that the solution uh is in a single
variant in (1/4, 1)2 and a mixture of all three variants in (0, 1/4)2. In
the remaining parts of Ω a mixture of two variants determines uh.
Our numerical example shows that the adaptive algorithm refines the
mesh in the region where the stresses are large. Moreover, the active
set strategy selects only those atoms which are needed to attain the
minimum in (GPd,h). The figure shows the adaptively refined mesh
after five iterations and the support of the probability measure νh|T
for three different elements T ∈ T . The implementation was performed
in MATLAB and the large optimisation problem was solved with the
interior-point linear program solver HOPDM.
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