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Phenomena and applications

Nonlinear bending: Large deformations, incompressibility, nonuniqueness

-l

Applications: Flexible bio structures, origami folding, aneurysm coiling

waw.sciencemag.org

Source:

Source:
Www.peakpx.com
Source:

Uni Innsbruck

Goals: Modeling, simulation, optimization
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Bilayer bending

Bilayers: Externally controlled large deformations

—~ - - —
S - > =

Application: Development of small scale technologies

[B.. Bonito & Nochetto '17]

[Smela et al. '95]

Y

Effects: Obstacles, self-contact
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Mathematical description



Modeling

Classical: Insert ansatz into 3D elastic model

Modern approach: Rigorous reduction from 3D with minimal assumptions
3D Hyperelasticity: Energy functional for deformation y : Q — R?
I*[y] :/ W(Vy)dx —/ f-ydx
Q Q

with isotropic stored energy density W : R**3 — R>o

W(lsx3) =0, W(QFR)= W(F) VQ,R € SO(3)
Bending: Determined for thin plate Q5 = w x (—§/2,5/2) via scaling

i~ o0 —

min 7~ 0 5t

I-limit: [DeGiorgi '75] Identify functional /°? such that

. — 2d
lim 6313 = |
5—0
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Kirchhoff's bending model

Quantitative version of Liouville’s theorem or nonlinear Korn inequality:

Lemma [Friesecke, James, Miiller '01] For all y € W1’2(Ql; Ra)

Jmin [[Vy = Rl < C|ldist(Vy, SO()]|.

Theorem [Kirchhoff 1850, FJM '01]. Functionals 6—3/3¢ [-converge to

1%y] = %/ |//|2dx’—/?-ydx’

for isometries y : w — R3, i.e., | = I, with fundamental forms
| =Vy'Vy, Il =v"D%

I2d

and normal v = 01y X Ooy. Moreover, = oo otherwise.

» fourth order, pointwise constraint, no injectivity
> attainment via y(x) = y(x') + dxsv(x') + 62(x3 /2)d(x)

» extreme case - combined models involving &, hierarchies, expansions?
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Flat isometries

Partial derivatives of C? isometry y : w — R* orthonormal
Oy’ =1, [&y[P =1, Biy -y =0
Implies 81-2)/ -Oky =0 and //////Z&\l\\\\
1 = 4k = Ay = D7y @

» Gaussian curvature vanishes (theorema egregium), developable surface
» cannot deform egg surfaces isometrically [Herglotz '43]

» same assertions for W22 isometries [Pakzad '04, Hornung '08]
Model problem: Find y : w — R® minimal for
2d o 2012 1 = ’
/ [y]:—/\Dy| dx f/f«ydx
2 w w
subject to pointwise isometry constraint and clamped boundary conditions

Vy'Vy=DLyx> and y|y, =yp, Vyly, = ¢p
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Elastic rods

Consider elastic object with

circular cross-sections Qs = (0, L) x B;(0)

Theorem [Mora & Miiller '03] Limiting energy for § — 0 given by

Cb t )2 Ct L / 2
I[u,b,d]:j/ |u\dx1+§/(b~d) dxq
0 0

with pointwise frame condition [u’,b,d] € SO(3) and rigidities ¢, =

1 pu(BAt2u) _©
= and ¢t = 5-.

H*-coercivity in b implicit via
|b/|2 _ (b/ . u/)2+(b/ . b)2+(bl | d)z — (b U//)2+0+(bl ~d)2

» not available for discretization; note ¢, > 2¢; and modify E
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Overtwisted circle

Gradient flow for conforming finite element discretization

from flat but twisted circle with selfavoidance [B. & Reiter '21]

Material:
cop=2c=1
BCs:
Periodic/Dirichlet

Selfavoidance:
0o=10""1
\ e Discretization:
>~ — h =1/200,

e T=he=h

» moderate drop of total twist angle
» preservation of topology and length

» occurrence of Michell’s instability
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Numerical approximation



Kirchhoff triangles

Idea: 2d variant of splines avoiding H* conformity

Construction: H' conforming spaces W, (cubic) and ©; (quadratic)

SNSRI

Discrete gradient: V, for w, € W, defined as 0y = Viyw,, € O via
0n(z) = Vwn(z),  On(ze) - ne = %(VW,,(Z;-) + Vwh(22)) - ne
On(ze) - te = Vwy(ze) - te
for vertices z € Aj, and side midpoints zg = (z£ + z2) /2
Proposition [Braess '05]: Operator Vj, : W), — ©, satisfies for £ = 0, 1,
1D whllo(ry ~ 1D Vawnllo(ry, IV awh — Vwallo(ry < chl|D*wal| o7y,

Wh| g2 = hWh|| is semi-norm, and V, interpolates .
12 \AY i i d Vi | VH(Q
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Discrete plate bending

DKT discretization: For triangulation 7, with nodes Ny

Minimize /h[yh]:%/ |vvhyh|2dx_/ o - yndx
subject to  yi(z) = yp(2), Vyn(z) = ¢p(2) fa. z€ NyNp
{Vyh(z)]Tv)/h(Z) = Ibx2 fa. z€N,

» coercivity yields existence
> cubics: (yn(2)),., and (Vyn(2)),., are independent dof’s !

Proposition [B. '13]. Discrete (quasi-) minimizers weakly accumulate at energy
minimizing H? isometries. Convergence is strong in H*.

» lower bound (stability) by weak lower semicontinuity
> recovery (consistency) via interpolation of smooth approximating isometry

» only need P2 stiffness matrix of —A
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Iterative solution

Gradient descent: Given (-,-). compute correction d.y; € Fuly; '] via
(deyi, wa) , + o (Dhys, Diws) = (fa, i)
n—1
for all wy € Fuly; "], where v ’/;ty:

Fulyn] = {Wh e W : [th]TV)?h + [Vj/\h]TVWh =0in Nh} yot ; : Tdey}f
and d;a" = (a" — a"" ') /7, D} = VV,

Proposition [5. '13]. If [Vyf] Vy? = Loxz in Ny and [|DEws|| < c.||wal

. n T n n—
(i) Inlyn] + §||dt)’h||i < hlyy 1,

(i) VYR Vyh — Lzl < E7h[ys].

» unconditional stability and well-posedness, choose wy = d:y}
» no projection — progressive violation of isometry constraint
n
GhP = |G P+ PG = =1+ 7> [di Gy
=1
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Experiment: free boundary

w = (0,4) x (0,4), vp = {0} x [0,4] U [0, 4] x {0},
yo = (id,0)" and ¢p(x) = (0,0,1)" on Ip,
f=25,-(0,0,1)T, a=1

04

Discrete Gaussian curvature (displayed) and isometry errors:

i h Niter En(yn) 160]l0 1Kkl

K = det [(Vva)' V] 273 40 0821 ; 7.124_; 3.043_3
5ly = (YZhyn) VIhyh — Toxo 24 71 —9.041_3 5.143_3 2.308_3
b 27 130 —7.666_3 3.032_3 1.469_3
276 272 —6.024_3 1511_3 8.656_4

» improvement via dG methods [Bonito, Nochetto & Ntogkas '20+]

Nonlinear bending: [Deckelnick, Dziuk & Elliott '05, Barrett, Garcke & Niirnberg '07, '12,
Pozzi & Stinner '17, Walker '17, Hornung, Rumpf & Simon '19, Kovacs, Li & Lubich 20, ]
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Model extensions



Extension |: obstacles

Approach: Include rigid obstacle y3(x) < 0 via penalty term
e +1 2 12 1 2
obS[.y] ) L ‘D Y| dx + 2 w(y3)+dx

Quadratic-concave splitting: Use

()2 = s> — (s)2

» unconditionally stable implicit-explicit iteration with linear problems

Experiments: Characterization of contact zones for single and bilayers

» nontrivial dependence of contact zone on forcing strength
» pointwise penetration control via H? and W bounds [B. & Palus '20+]
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Confined elastic rods

Goal: Characterize energy minimiz-
ing configurations of elastic rods of
length L inside a sphere of radius R?

Obtained rods described as [B. & Weyer
21+]:
» u-circles, i.e., p times covered
circles
» u-v-clews, i.e., p-fold winding
about discrete rotation axis and
2v-fold periodicity of curvature

All rods entirely belong to sphere

Related: ([Gerlach & von der Mosel '11,
Dondl, Mugnai & Roéger '11]

L=28.08 L=33.75
initial C, symmetry

initial C5 symmetry
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R=238,

Knax=0.38

2-1-clew

R=2.7,
R=2.5, Kinax=0.37
Kmax=0-61 2-circle
1-2-clew

R=2.3,
R=1.9, o051
Kmax=0.67 2-3-clew
3-2-clew

R=1.6,
R=1.4, Kna=0.71
Kmax=0.68 4-3-clew
3-circle

R=1.3,
R=1.2, Kmax=0.75
Kmax=0.88 4-circle
3-4-clew

R=1.1,
R=1.0, Kne=0.91
Kmay=1.04 4-5-clew
5-4-clew
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Extension Il injectivity

Computing injective deformations [B., Meyer & Palus '20+]

Tangent-point potential: [Gonzalez & Maddocks '99] for strength g > 0

2749 1 -
TP ==~ / / Ay T F

with unique radius r as radius of sphere S,(m) with
» touching (tangent) in y(x)
> intersecting (point) in y(X)

Formula:
o ) —y(x)P
r(y(x),y(x)) = 2lv(x) - (y(X) — y(x))]
Analysis:

» self-avoidance for g > 4 [Strzelecki & von der Mosel '11]
» good integrability and differentiability properties [Blatt '13, Reiter '20+]

> fully explicit treatment in discrete gradient flow (no stability analysis)

S. Bartels Simulating free boundaries in nonlinear bending 19/25



Selfavoidance experiments

Compressed strip: Bilayer O-shaped plate:

Twisted trefoil ribbon: Energy:

Iyl = henaly] 4+ ¢TP[y]
Interpretation: Charged plates
Limitations: Choice of parameters
Complexity: Parallelized assembly

CPU times: O(1d)
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Extension IlI: LCE plates

Ongoing work [B., Griehl, Neukamm, Palus '20-++] within DFG research unit Dresden

Setting: » thin plate made of liquid crystal elastomer

» externally control configuration via light

[Agostiniani &
DeSimone '17]

» splay or twist in vertical direction

Model: [Agostiniani & DeSimone '17] for fixed n(x) Tw X (—(5/27 5/2) — R3

1 diag(—1,1 twist
heely] = */ = APdx, A=y ?ag( s
2/, diag(—1,0), splay

Experiment: Fixed 7/2-twist director (vertical), constant (horizontal)

Related: Nematic elastomer sheet actuation [Plucinsky, Lemm & Bhattacharya '18]
Application: Light-fueled locomotion via optical reconfiguration [Jiang et al. '19]
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Extension IV: curved folding

Ongoing work [B., Bonito & Hornung '21+]

Setting: Material softer/thinner along arc C C @ NG

Model reduction: Q = w x (—§/2,§/2) 4

» narrow region Cs, soft material Cs

» Vy discontinuous along C

For isometry y € H*(w \ C;R*) N Wh°(w; R?)

1
toab =5 [ 10— [ fyax
w\C w

Numerical scheme:

» isoparametric dG [Bonito, Nochetto & Ntogkas '20+]
resolving C

» omit penalty terms along edges on C related
to C! continuity

Related: Uniqueness [Duncan & Duncan '82], shape programming [Mahadevan '19]
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Extension V: wrinkling and break of symmetry

Foppl-von Karman model [Friesecke, James & Miiller '06]
2
1
Erplu,w] = % / |D*wl|? dx + > / le(u) + Vw @ Vw|? dx

Numerical scheme [B. '17]:
» scalar Kirchhoff elements for w, P1 for u

» discrete gradient flow with decoupling

Analysis: Break of symmetry [Conti, Olbermann & Tobasco '15]

Compression on one side: Cone indentation :

Obervation: Scales in experiments highly dependent on mesh-size
Shells: [Rumpf et al. '21+]
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Summary



Summary

Wide range of applications of nonlinear bending
Rigorously derived models in various settings

Reliablity of discretizations via I' convergence

vvyyypwy

Gradient descent with linearized isometry constraint

» Ongoing and future work:

> Stability for selfavoidance
> Modeling dynamics
> Constructing admissible starting values

» More information

http://aam.uni-freiburg.de/bartels

)
Thank you'!
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