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S. Bartels Babuška’s paradox 2/22



The paradox



Babuška’s paradox

Simply supported plates: Linear Kirchhoff model with u|∂ω = 0

I (u) =
σ

2

∫
ω

|∆u|2 dx +
1− σ

2

∫
ω

|D2u|2 dx −
∫
ω

fu dx

Babuška ’61: Incorrect convergence um → u∞ ̸= u

for solutions um on polygons ωm ⊂ ω

Euler–Lagrange eq’s: If ∂ω piecewise C 2,1

∆2u = f in ω

u = 0 on ∂ω

∆u + (1− σ)κ∂nu = 0 on ∂ω

▶ Pointwise clamped condition in corners ∇u(ci ) = 0

▶ For polygonal domains ωm term involving κ disappears

Limit u∞ = limm→∞ solves

∆2u∞ = f in ω, u∞ = 0 on ∂ω, ∆u∞ = 0 on ∂ω

ωm → ω

Polygonal approximation: Failure of compactness for κ∂nu
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Aspects and developments

Regularity: Role of corners in Euler–Lagrange equations ?

Clamped BC: No paradox due to density of C∞
c (ω) in H2

0 (ω)

Operator splitting: Two standard Poisson problems if ω convex & polygonal

Isoparametric methods: No paradox for quadratic boundary approximations

[Ciarlet & Raviart ’72, Zlámal ’72, Brenner, Neilan & Sung ’13, Bonito, Guignard, Nochetto,

Yang ’23, ...]

Nonconforming/dG methods: Correct convergence on simplicial meshes

[Arnold & Walker ’20, Wissel ’23, ...]

Selected references:

▶ [Babuška ’61] Domain perturbations

▶ [Scott ’76] Ideas for avoding the paradox

▶ [Rannacher ’79] Special treatment of BC

▶ [Utku & Carey ’83] Penalty approaches

▶ [Maz’ya & Nazarov ’86] Other plate paradoxes

▶ [Babuška & Pitkäranta ’90] Hard and soft simple support

▶ [Davini ’02] Exterior approximations

▶ [De Coster, Nicaise & Sweers ’19] Variational re-formulations
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Practical relevance?

Modeling: Paradox due to limitations of linear Kirchhoff model?

▶ No paradox for Reissner–Mindlin (asymptotically, fixed t > 0)

▶ Free support u|∂ω ≥ 0 different due to non-positivity of Green’s functions
[Nazarov, Sweers & Stylianou ’11]

S. Bartels Babuška’s paradox 6/22



Variational viewpoint

Curvature quantities: Elementary calculations yield

|D2u|2 − |∆u|2 = −2 detD2u

Null Lagrangian: Express determinant as divergence (Jv = v⊥)

2 detD2u = div(JD2uJ∇u)

Simple support: Condition u = 0 on ∂ω yields ∂τu = 0 and

∂2
τu = −κ∂nu

Representation: Using density of H3 ∩ H1
0 functions (f = 0) for p/w C 2,1 bdy

I (u) =
σ

2

∫
ω
|∆u|2 dx +

1− σ

2

∫
ω
|D2u|2 dx

=
1

2

∫
ω
|∆u|2 dx +

1− σ

2

∫
∂ω

κ(∂nu)
2 ds

Im(u) =
1

2

∫
ωm

|∆u|2 dx + 0

Consequence: Failure of Γ-convergence Im → I for functionals Im using
polygonal domain approximations ωm if ∂ω has curved parts
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Ways to avoid it



Main idea

Reduced BC: Impose simple support in corners of ωm only

Approximations: Im = I |ωm for

v ∈ Ṽm = {v ∈ H2(ωm) : v(ci ) = 0, i = 0, . . . ,m }

Justification: Γ-convergence w.r.t. strong convergence in
L2(ω) using trivial extensions of functions and derivatives

Full BC:

Reduced BC:

▶ Stability: If Im(vm) ≤ c then Imvm ∈ H1
0 and D2vm ⇀ D2v for v ∈ H2 ∩H1

0

lim inf
m→∞

Im(vm) ≥ I (v)

▶ Consistency: If v ∈ H3 ∩ H1
0 then restrictions vm = v |ωm admissible in Vm

and D2vm → D2v , hence Im(vm) → I (v)

▶ Equicoercivity: Perturbed Poincaré inequality ∥∇Imvm∥ ≤ c̃P∥D2vm∥

Other topologies: Strong convergence of Imvm in H1
0

Rates: Bound ∥D2(u − um)∥L2(ωm) ≤ c(u, f )|ω \ ωm|1/2 = O(hm)
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Sufficient conditions

Necessary: Need to introduce nonconformity in BCs

Goal: Abstract Γ-convergence result Ih → I for approximations

Ih(uh) =
σ

2

∫
ωh

|∆huh|2 dx +
1− σ

2

∫
ωh

|D2
huh|2 dx , uh ∈ Vh

▶ ωh domain triangulated by simplicial mesh Th

▶ Vh ⊂ L2(ωh) finite element space including BCs

▶ D2
h approximation of D2

Assumptions: ωh ⊂ ω convex, boundary nodes of Th belong to ∂ω

▶ Equicoercivity: Jhvh ∈ H1
0 with ∥∇Jhvh∥2 ≲ Ih(vh)

▶ Stability of D2
h : If vh ⇀ v then D2

hvh ⇀ D2v

▶ Interpolation in Vh: Ihv ∈ Vh and D2
hIhv → D2v for v ∈ H3 ∩ H1

0

Theorem (Correct convergence) [B. & Tscherner ’24+]

If conditions are satisfied then Ih → I w.r.t. strong convergence in L2.
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Typical examples

Argyris element: H2-conforming FE using quintic polynomials

▶ Stability of D2
h : Trivial as D

2
h = D2

▶ Equicoercivity: Integration by parts and interpolation

∥∇Ip1
h vh∥2 =

∫
ωh

Ip1
h vh(−∆vh) +∇Ip1

h vh · ∇(Ip1
h vh − vh) dx

≤
(
cP∥∆vh∥+ cp1h∥D2vh∥

)
∥∇Ip1

h vh∥

▶ Interpolation: Use averaging in highest order derivatives
for quasiinterpolation of v ∈ H3(ω)

Discrete Kirchhoff element: Discrete gradient ∇h : Vh → Wh

and D2
h = ∇∇h

▶ Stability of D2
h : Approximation properties of ∇h

▶ Equicoercivity: As above with ∆h and D2
T

▶ Interpolation: Use canonical interpolation operator Idkt
h

S5,1

S2

S3,dkt

∇h

BC’s: No canonical way to impose conditions for Hermite elements
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DG methods

Discrete operator: Elementwise integration by parts in strong form

ah(vh,wh) = (D2
hvh,D

2
hwh)

+ ({∂n∇hvh}, J∇hwhK)∪Sh\∂ωh
+ ({∂n∇hwh}, J∇hvhK)∪Sh\∂ωh

− ({∂n∆hvh}, JwhK)∪Sh − ({∂n∆hwh}, JvhK)∪Sh

Stabilization: With suitable parameters γ0, γ1 > 0

sh(vh,wh) = γ0(h
−3
S JvhK, JwhK)∪Sh + γ1(h

−1
S J∇hvhK, J∇hwhK)∪Sh\∂ωh

Discrete energy: SIPG formulation for uh ∈ Lℓ(Th)

Ih(uh) =
1

2
ah(uh, uh) +

1

2
sh(uh, uh)

BC via penalty: Since dist(∂ω, ∂ωh) ≤ ch2, for v ∈ H3 ∩ H1
0

ε−1

∫
∂ωh

|v |2 ds ≲ ε−1h4∥v∥H3(ω) → 0

▶ Stability of D2
h : Apply lifting Hh(vh) ∈ L2(ω)2×2

[Bonito et al. ’23]

▶ Equicoercivity: As above with node averaging
▶ Interpolation: Use quadratic Lagrange interpolant
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Experimental convergence

Babuška’s example: For ω = B1(0) and f = 1 obtain

u(x) =
(5 + σ)− (6 + 2σ)|x |2 + (1 + σ)|x |4

64(1 + σ)
, u∞(x) =

3

64
−

1

16
|x |2 +

1

64
|x |4

Experiment: Midpoint- and H2-errors for σ = 0
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Thin sheet folding



Kirchhoff’s bending model

3D hyperelasticity: Isotropic & objective material

I 3d (y) =

∫
Ω
W (∇y)dx dt −

∫
Ω
f · y dx dt

Bending: Ωδ = ω × (−δ/2, δ/2) and

min
y∈A

I 3d (y) ∼ δ3

δ

Rigidity: [Friesecke, James, Müller ’02] minR∈SO(3) ∥∇y − R∥ ≤ C
∥∥dist(∇y ,SO(3))

∥∥
Theorem [Kirchhoff 1850, FJM ’02]. Functionals δ−3I 3d Γ-converge to

I 2d(y) =
1

2

∫
ω

|II |2 dx −
∫
ω

f̃ · y dx

for isometries y : ω → R3, i.e., I = I2×2, with fundamental forms

I = ∇yT∇y , II = νTD2y , ν = ∂1y × ∂2y

Isometry condition implies ∂2
j y · ∂ky = 0 and

|II |2 = 4H2 = |∆y |2 = |D2y |2, K = 0
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Modeling

Prepared material: Inhomogeneous material and deformation y : Ω → R3

I 3d(y) =

∫
Ω

W (x ,∇y)dx dt −
∫
Ω

f · y dx dt

ω

Cϱ

Material softer (damaged) along arc C ⊂ ω

Model reduction: Ω = ω × (−δ/2, δ/2)

▶ narrow region Cϱ, soft material Cε

▶ appropriate scaling relations ε, ϱ, δ

▶ ∇y discontinuous across C

For isometry y ∈ H2(ω \ C ;R3) ∩W 1,∞(ω;R3)

Ifold(y) =
1

2

∫
ω\C

|D2y |2 dx −
∫
ω

f̃ · y dx

Proof: [B., Bonito & Hornung ’22] following [Friesecke, James & Müller ’02]

Related: [Conti & Dolzmann ’09, Santilli & Schmidt ’23]
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Frames and folding angle

Isometries: Piecewise C 1 isometry [Kirchheim ’01, Müller & Pakzad ’05] y : ω → R3

(∇y)T∇y = I2×2

Folding arcs: Folding curve b : I → ω maintains
geodesic curvature κ under isometric deformation

Darboux frames: Normals nℓ define Darboux frames

r ℓ =
[
γ′, nℓ, γ′ × nℓ] ∈ SO(3), γ = y ◦ b

Folding angle: Since frames share tangent γ′

r 2 = R(θ, γ′)r 1

Curvatures: Geodesic κ = (r ℓ1 )
′ · r ℓ2 and normal µℓ = (r ℓ1 )

′ · r ℓ3 curvatures and
torsion τ ℓ = (r ℓ2 )

′ · r ℓ3 related via, unless θ ∈ 2πZ,

κ sin
(θ
2

)
= ±µℓ cos

(θ
2

)
, τ 2 = τ 1 + θ′

Related: Simpler version in [Duncan & Duncan ’82]
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Real-life verification

Implications: For deformed plate along crease C

▶ if κ = 0 then either unfolded or folded back or θ constant and µℓ = 0

▶ if κ ̸= 0 then either unfolded or µℓ ̸= 0 and θ uniquely defined

Related: Periodic kirigami structures (e.g., maps and deployable structures)

▶ [Liu, Choi, Mahadevan ’21] 17 patterns define periodic tilings of the plane

▶ [James & Liu ’22+] Origami structures with curved tiles between creases
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Polygonal creases



Nonexistence

No paradox? |D2y |2 = |∆y |2 for isometries; K enters via iso constraint

Experiment: Singularities at corner points, i.e., ym ̸∈ H2(ω \ Cm) ?

Theorem [B., Bonito & Hornung ’24+]

There are no nontrivially folded isometries ym ∈ H2(ω \ Cm) for polygonal
crease lines Cm which are C 1 in the closure of a subdomain.

Idea of proof:

▶ ym folded =⇒ flat (µ = 0, θ constant) or folded back (µ arbitrary, θ = π)

▶ If ym ∈ C 1(ω1) then ∇y(x±
c ) = Q±∇y(xc) with Q+ ̸= Q−

▶ Obtain jumps of ∇ym in corner xc contradicting H2 property
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Slit segments

Idea: Use slits along segments

Approximation:

Am = {y ∈ H2(ω \ Cm) ∩W 1,∞(ω) :

y iso & continuous in corners}

Im(y) =
1

2

∫
ω\Cm

|D2y |2 dx , y ∈ Am

Cm C̃m

ω1
m

ω2
m ω̂2

m

ω̂1
m

Theorem [B., Bonito & Hornung ’24+] Γ-convergence Im → I .

Proof: (i) D2ym p/w bounded in L2 gives weak limit H; linear interpolation of
ym gives limit y ∈ W 1,∞(ω) satisfying iso constraint and D2y = H in ω \ C
(ii) Extensions/restrictions y |ωi

m∩ωi provide recovery sequence

Avoid extension: Cut out diamonds along Cm so that ω̂i
m ⊂ ωi
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Summary

▶ Babuška’s paradox in variational formulation

▶ Impose simple support in corners only, avoid curved elements

▶ Paradox explains singularities in nonlinear bending problems

▶ Ongoing and future work:

▷ Efficient numerics

▷ Optimize crease lines

▷ Transfer to applications

▶ More information

http://aam.uni-freiburg.de/bartels

Thank you !
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