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Motivation: Bilayer bending

Energy for large bending deformations of thin elastic sheets (e.g., paper):

hena(y) = /\//\2dx—/f ydx, [ =id

with fundamental forms /, /] : Q — R?*2? associated with y : Q — R3

e Flat isometries: angle/length relations preserved
o Nonlinear constraint implies linearity: |//|? = |D?y|?
e Kirchhoff’s bending model derived by [Friesecke, James & Miiller 02]

Nanotechnology application [B., Bonito & Nochetto '15]: bilayer bending
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Challenge: Large deformations ok but injectivity not guaranteed



Overview

Energy as sum of bending and self-avoidance effects for arclength curves:

Ew) =5 ['(s)Fds+0TP(w), |l =1
!
Reduce energy via gradient flow d;u = —VxE(u) + (Au')’, discretized:

(deuf, vi)x + s([uf]” vi)) = —o TP(uf ), [deufl’, [val’ L [uf ™Y

(Loading Movie)

e Stability and convergence (energy law and consistency) ?
e Characterization of representatives (e.g., elastic knots always flat) ?
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knot_76.mp4
Media File (video/mp4)


Modeling curves



Nonlinear bending

Aim: Detect low-energy configurations within isotopy class of ug, i.e.,
prevent curves from self-intersecting and pulling tight

D-CO-OO- O
Curvature of arc-length curve v : R/7Z — R3 given by k(s) = |u”(s)]|
Bending energy

R/Z

e Applications: cell filaments, DNA molecules, nanotechnology, ...

e Gradient flow
— global constraints, no injectivity

e OPSBBBBS -



Minimization problem

Let ¢ = {uc H*(R/Z,R%) | |u'| = 1,u € K} for some isotopy class K

Variational problem
VA

E(v) = é/R/Z |u"(s)|* ds + o — minl  on ¥

e >0, 0 >0, in particular s > o (physical knots)

e Tangent-point functional is potential that prevents curves from
leaving the isotopy class

Simple model ignoring twist

Computational challenge: strong forces related to bending have to
be compensated by repulsive forces to avoid self-intersections

e Existence of minimizers for ¢ > 0



Tangent-point energies



Tangent-point energies

Modeling “thickness” by a smooth functional

dxd
TP(u) = // X y q>2,
29q J Jigzpe rulx

ru(x, y) is radius of circle tangential at u(y) |ntersecting in u(x):

TP is nonlocal and nonlinear with ru()1<,y) =, k(y)

e Self-avoiding property
e Characterization of energy spaces ~ W2—1/aa
e Smooth, two-dimensional domain, integrand of first variation in L?
2 2
lu(x) —uy)I” _ |u(x) — uly)

rulxy) = 2dist(u(x), ((y)) 2|/ (y) A (u(x) = u(y))]

Generalization to plates available



Bi-Lipschitz bounds

Bi-Lipschitz constant of embedded arclength parametrized curve u

biL(v) =  sup x =yl

wyeR )z, xty [U(X) = u(y)] (=1).

Lemma (Uniform bi-Lipschitz estimate)
There is a uniform bound Cpq < oo such that if TP(u) < M then

X =Ygz < Cmglu(x) —uly)l  forall x,y € R/Z.

Note: Cannot expect to control TP(u) by Sobolev norms of u

Corollary (Self-avoidance)

Let uy — us € CO(R/Z,R®) pointwise with self-intersection, ie.,
Uso(X) = Uso(y) for x #£ y. Then TP(uyx) — oo as k — co.

Proof. Assuming the contrary, we infer the existence of a constant
C < oo with 0 < [x — y|g,z < Cluk(x) — uk(y)| LEEaNY) O



Fractional Sobolev spaces

TP finite for bi-Lipschitz curves u € Wt$9(R/Z; R?) with s =1 —1/q:

1/2 _ q
g TP(u / / ' (y) A (u(y +2) — uly) — - )| dzdy
R/ZJ-1/2 |u(y +2) — u(y)]
q
12 ‘fo "(y +9z) — u'(y)) dv
< / / dzdy
R/Z J—1/2
1/2 _ q
< b|L 2q/ / y+192)q u(y)| dzdy
R/Z 1/2 k4
’ o q
R/Z |z
1/2 q
< biL(u 2q/ / )/+T K wiy) dzdy = biL(u)*?|u' [}
1/2

e Use of Sobolev-Slobodeckii seminorm
e Argument transfers to various other estimates



Bounds on variations of TP

Lemma (B)
There are ¢, ¢, R > 0 depending on 0 < A < A, M > 0, n, and q such
that any embedded and regular curve u € W2~/ 99(R/Z,R3) with

AL U] <A and TP(u) <M

satisfies
6 TP(u)[w]| < c1 16| §y2-1/0.0

WlHWl—l/q.q
and, for any z € W2=Y99 with ||2'|| y1-1/0.0 < I,

. 2q+2
62 TP(u+ 2)lv, ]| < c2 (1135 0+ 1) IV s 19 s

e Use explicit formula for the second derivative of TP
e Employ uniform bi-Lipschitz estimate
e Extends results from



The gradient flow



The H? flow

Recall energy functional

E(u) = ;/R/Z |u”(s)|2 ds + oTP(u) — min! on %

H? gradient flow in ¥
Compute family v : [0, T] — H?(R/Z; R3) with u(0) = up and
(ur, ) = —3e(U”, ") — 06 TP(u)[¢]
for all ¢ € H? subject to ¢’ - v/ =0 and u} - v’ = 0.
Semi-implicit discretization defined by linearly constrained system
(det”, ) + 5([u"]", @) = —00 TP(u* 1)[¢]
st [ded]) - [u" ) =0, ¢ [T =0
where diu” = (v — v ')/7 is backward difference quotient.

e Explicit treatment of TP: parallelization of assembly, sparse matrices



Stability result |5, reiter 18]

For >0, 0> 0, and q € (2,4], let (t)k=0...k C H*(R/Z,R®) be
unique sequence defined for u® with |[u°]'|? = 1 via

(det*, @) e + 2([u¥]", ¢") 2 = — 08 TP(u*1)[¢],
subject to the linearized arclength conditions

[dtuk]/ . [ukfl]/ =0, & - [uk—l]/ —0.

There exists ¢’ = c/(s, 0, €9, q) > 0 with ey = E(u®) which is
independent of 7 > 0 such that if 7¢’ < 1 then we have the
energy stability property

E(ut) + (1 c'7) Zudfu 12 < E(u0)

for all 0 < L < K. Moreover, arclength parametrization is preserved:

2
nax H\ u — 1 Lo SATC €0
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Proof of stability property

Want to obtain discrete energy law:

e existence of iterates due to Lax—Milgram
e inductionover L=1,..., K
(%) choose ¢ = dyuy in (deuX, ¢) e + 2([u]", ¢") 12 = —00 TP(u*1)[¢]
e applying Lemma (B) and Poincaré inequalities yields
||dtuk||f_,2 + %dtH[Uk]NHiz < Ca = Ca(%7 0,4q, eO)
o 7¢o < e gives 7 oy || drut |3 + ]| [u¥]"][3 < eo
_ k
° |[Uk]/|2 — |[uk 1]’\2+7'2|[dtuk]’|2 — .= |[u0]/|2+7_2 Zé:l |[dtué]/‘2
~ arc-length preservation

e apply second part of Lemma (B) to expand the TP-term in (x)
(1= cp7) || det®||? + deE(uk) <0 for 7 < 1
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Spatial discretization



Choice of FE space

Subspaces V), C H3(/,IR®) subordinated to a partition 7;, of /| = [0, 1]
given by nodes zp < z3 < -+ < zy

o V, C SY3(T;,,R?) cubic C! splines; dof's are positions and tangents

e given 1y, € SV3(Th, R3) include linearized arc-length condition via
Fyltp] = {va € Vi |vp(z)-Ty(z)) =0 forall i=0,...,M}

o Start with initial curve u) € Vj, with |(u})/(z)| =1fori=0,....M

Algorithm. (i) Given uf € V}, compute velocity v/ € Fy[uf] such that
(viis on)ie = —oe([ugs + 71", 0h) — 0O TP(up)[n]  Von € Fifuy]

(ii) Update uf™ = uf + 7v/ and repeat.

Scheme requires solving linearly constrained quadratic problems
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Removing the diagonal

If the integration domain in TP is replaced by R.,

// |u'(y _ j(y;(qu dxdy,

Here R. is any measurable set with

Re={(xy) ER/ZXR/L:|x —ylg,; > ¢} CRe C Repr

Lemma

We have TP.(u) , TP(u) as e \ 0 for any u € ¥ and g € [2,0).
If ue €N H?*(R/Z,R3) and g € [2.4) we have

TP (u) = TP(u)| < G- @7 " biL(u)? [[u'|[ -

e Linear convergence if u € €N W39(R/Z,R3) and g € [2, )
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Approximation result
Define Qj, via nodal averages on rectangles /; x [ CR
' (y) A (u(x) — u(y))|?
dxd
=4 [, @ [ 0(x) — () ] <

Proposition
For 0 < 2h < -, g €[2,00), and u € €N H? we have

biL(u)

TP (u) = TP-(u)] < Cov/h
where integration domain of TP_ is chosen to be R. =R ;.

Proof. Show that f € C%'/2 on R, , for

|u'(y) A (u(x) — u(y))I?
|u(x) = u(y)|**

e Linear convergence assuming higher regularity

f(X’y):

o Related estimate for first variation

q+1
) (1]l + 1),



Discrete energy barrier

Discretized tangent-point functional

u’ z; u(z;) — u(z; q
Thop) =2 S0 g @0 (@)~ uE)]

ij=0,...,M |U(Zi) - U(Zj)}k7
|zi—z| >
Consider discrete self-contact up(z)
N N
lun(z) — un(2)[ ~ h \ S
for non-neighboring nodes z and Z. un(2)

If uj(z) and up(z) — us(Z) are non-parallel then

e Exponent g = 2 insufficient to avoid self-intersections

o For discrete energy barrier choose o > ch?2~7 with o > 0;
allows forc —-0as h— 0

e Need h sufficiently small to dominate initial total energy
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Stability and isotopy preservation



Preasymptotic instability

Using an initial curve from the 5; isotopy class with length ~ 39.9.

0 =1, 400 nodes, 7 = £v/hmax — note critical o/»x>1

w =

L
10

5

length 47.526655

length 59.041003

length 61.777820

length 62.042947

length 62.151359

10 length 62.216288

16

length 62.312458
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Preasymptotic instability
Using an initial curve from the 5; isotopy class with length ~ 39.9.

» = 1_10, 0 =1, 400 nodes, 7 = %\/hmax — note critical o/ > 1
0. Il o~ rm — = Il
- I — E(u*), 200 nodes
! \ - - E(u*), 400 nodes
60+ ) Y --—-TP(u"), 200 nodes
L R P TP(u), 400 nodes
length 61.777820

length 62.312458

:
30 - F
f
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Change of isotopy class

Same curve; x =1, p = ﬁ, 50 nodes, T & % — note critical 0 < p < 1




Change of isotopy class

Same curve; x =1, p = ﬁ, 50 nodes, T & % — note critical 0 < p < 1
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Observations
Numerical scheme is ...

...energy stable if the time-step size 7 satisfies 7 < F (¢, 0)
o F(se,0)=0Q1) if s> 0
o F(3¢,0) > 0asx/p—0
e mesh dependence if o > ¢, possibly related to
quadrature errors for TP
... preserving the isotopy class if energy stable and if for fixed s > 0
the spacial mesh size h > 0 satisfies h < G(ep, 0)
e initial energy ey = E(ug)

e G(ey,0) +0ase —ooorp—0

. i.e., bending term gives stability and self-avoidance potential
requires sufficient resolution
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Simulations



How do minimizers look like?

Expect points of self-intersection for o — 0

e Extract a weakly converging subsequence of minimizers as ¢ — 0

e If the limit is embedded, there is a C! neighborhood of admissible

compa rison curves

~ limit curve is a local minimizer of the bending energy

Theorem [Langer & Singer '85]

The circle is the only (local) minimizer of the bending energy in R3.

e the bending energy cannot be minimized within an
isotopy class except for the trivial class

e self-contact is present also in physical models
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Unknot class

A non-global minimizer in the unknot class, evolution gets stuck

(Loading Movie)

nodes: 376, hpmax = 0.1255
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knot_1.mp4
Media File (video/mp4)


Trefoil evolution

Evolution towards a symmetric possibly unstable configuration

(Loading Movie)

nodes: 401, hmay = 0.1312
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knot_2A.mp4
Media File (video/mp4)


Trefoil with perturbation

Avoid unstable symmetric configuration via perturbations

(Loading Movie)

nodes: 401, hmay = 0.1312
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knot_2B.mp4
Media File (video/mp4)


Trefoil with and without perturbation

Comparison of energies for unperturbed and perturbed evolutions
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Minimizer close to doubly

covered circle [Gerlach, Reiter, von der Mosel '17]
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Figure-eight — first experiment

Initial curve equivalent to figure-eight knot

(Loading Movie)

nodes 400, hmax = 0.1370
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knot_3A.mp4
Media File (video/mp4)


Figure-eight — second experiment

Different initial curve equivalent to figure-eight knot

(Loading Movie)

nodes 415, hpax = 0.1306
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knot_3B.mp4
Media File (video/mp4)


Figure-eight — comparison

Comparison of energies for different initial curves
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Spherical [Gallotti & Pierre-Louis '07 ; Gerlach et al. '17] and
planar [Avvakumov & Sossinsky '14] stationary configurations
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Summary



Summary

numerical scheme for self-avoiding inextensible curves
stability result for the semi-discrete setting
e energy decay and arclength preservation (imply convergence)

e preservation of isotopy class (for sufficient resolution)

fast, simple scheme (minutes to compute evolutions)

future aspects
e include other physical quantities, e.g., twist
e extension to self-avoiding flat plates
e elastic knots always flat ?

Thank you!
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