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Motivation: Bilayer bending

Energy for large bending deformations of thin elastic sheets (e.g., paper):

Ibend(y) =
1

2

∫
Ω

|II |2 dx −
∫

Ω

f · y dx , I = id

with fundamental forms I , II : Ω→ R2×2 associated with y : Ω→ R3

• Flat isometries: angle/length relations preserved

• Nonlinear constraint implies linearity: |II |2 = |D2y |2

• Kirchhoff’s bending model derived by [Friesecke, James & Müller ’02]

Nanotechnology application [B., Bonito & Nochetto ’15]: bilayer bending

Challenge: Large deformations ok but injectivity not guaranteed
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Overview

Energy as sum of bending and self-avoidance effects for arclength curves:

E (u) =
κ
2

∫
I

|u′′(s)|2 ds + %TP(u), |u′|2 = 1

Reduce energy via gradient flow ∂tu = −∇XE (u) +
(
λu′)′, discretized:

(dtu
k
h , vh)X + κ([uk

h ]′′, v ′′h ) = −%TP(uk−1
h ), [dtu

k
h ]′, [vh]′ ⊥ [uk−1

h ]′
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• Stability and convergence (energy law and consistency) ?

• Characterization of representatives (e.g., elastic knots always flat) ? 2
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Modeling curves



Nonlinear bending

Aim: Detect low-energy configurations within isotopy class of u0, i.e.,

prevent curves from self-intersecting and pulling tight

Curvature of arc-length curve u : R/Z→ R3 given by k(s) = |u′′(s)|

Bending energy [Bernoulli, 1738]

u 7→ 1
2

∫
R/Z

k(s)2 ds

• Applications: cell filaments, DNA molecules, nanotechnology, . . .

• Gradient flow [Dziuk, Kuwert, Schätzle; Barrett, Garcke, Nürnberg;

Dall’Acqua, Lin, Pozzi; . . . ] – global constraints, no injectivity

Examples: · · ·
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Minimization problem

Let C =
{

u ∈ H2(R/Z,R3)
∣∣ |u′| = 1, u ∈ K

}
for some isotopy class K

Variational problem

E (u) =
κ
2

∫
R/Z
|u′′(s)|2 ds + %TP(u)→ min! on C

• κ > 0, % ≥ 0, in particular κ � % (physical knots)

• Tangent-point functional TP is potential that prevents curves from

leaving the isotopy class

• Simple model ignoring twist

• Computational challenge: strong forces related to bending have to

be compensated by repulsive forces to avoid self-intersections

• Existence of minimizers for κ > 0
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Tangent-point energies



Tangent-point energies

Modeling “thickness” by a smooth functional [Gonzalez & Maddocks ’99]

TP(u) =
1

2qq

∫∫
[R/Z]2

dx dy

ru(x , y)q
, q > 2,

ru(x , y) is radius of circle tangential at u(y) intersecting in u(x):

• TP is nonlocal and nonlinear with 1
ru(x,y)

x→y−−−→ k(y)

• Self-avoiding property [Strzelecki & von der Mosel ’10]

• Characterization of energy spaces [Blatt ’13]  W 2−1/q,q

• Smooth, two-dimensional domain, integrand of first variation in L1

ru(x , y) =
|u(x)− u(y)|2

2 dist(u(x), `(y))
=

|u(x)− u(y)|2

2 |u′(y) ∧ (u(x)− u(y))|
• Generalization to plates available 5



Bi-Lipschitz bounds

Bi-Lipschitz constant of embedded arclength parametrized curve u

biL(u) = sup
x,y∈R/Z, x 6=y

|x − y |
|u(x)− u(y)|

(≥ 1) .

Lemma (Uniform bi-Lipschitz estimate) [Blatt & Reiter ’15]

There is a uniform bound CM,q <∞ such that if TP(u) ≤ M then

|x − y |R/Z ≤ CM,q |u(x)− u(y)| for all x , y ∈ R/Z.

Note: Cannot expect to control TP(u) by Sobolev norms of u

Corollary (Self-avoidance)

Let uk → u∞ ∈ C 0(R/Z,R3) pointwise with self-intersection, i.e.,

u∞(x) = u∞(y) for x 6= y. Then TP(uk)→∞ as k →∞.

Proof. Assuming the contrary, we infer the existence of a constant

C <∞ with 0 < |x − y |R/Z ≤ C |uk(x)− uk(y)| k→∞−−−→ 0.
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Fractional Sobolev spaces

TP finite for bi-Lipschitz curves u ∈W 1+s,q(R/Z;R3) with s = 1− 1/q:

q TP(u) =

∫
R/Z

∫ 1/2

−1/2

|u′(y) ∧ (u(y + z)− u(y)− zu′(y))|q

|u(y + z)− u(y)|2q
dz dy

≤ biL(u)2q

∫
R/Z

∫ 1/2

−1/2

∣∣∣∫ 1

0
(u′(y + ϑz)− u′(y)) dϑ

∣∣∣q |z |q
|z |2q

dz dy

≤ biL(u)2q

∫
R/Z

∫ 1/2

−1/2

∫ 1

0

|u′(y + ϑz)− u′(y)|q

|z |q
dϑ dz dy

≤ biL(u)2q

∫ 1

0

∫
R/Z

∫ ϑ/2

−ϑ/2

ϑq−1 |u′(y + z̃)− u′(y)|q

|z |q
dz̃ dy dϑ

≤ biL(u)2q

∫
R/Z

∫ 1/2

−1/2

|u′(y + z)− u′(y)|q

|z |q
dz dy = biL(u)2q|u′|qW s,q .

• Use of Sobolev-Slobodeckii seminorm

• Argument transfers to various other estimates
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Bounds on variations of TP

Lemma (B)

There are c1, c2,R > 0 depending on 0 < λ ≤ Λ, M > 0, n, and q such

that any embedded and regular curve u ∈W 2−1/q,q(R/Z,R3) with

λ ≤ |u′| ≤ Λ and TP(u) ≤ M

satisfies

|δ TP(u)[w ]| ≤ c1 ‖u′‖
q
W 1−1/q,q ‖w ′‖W 1−1/q,q

and, for any z ∈W 2−1/q,q with ‖z ′‖W 1−1/q,q ≤ R,∣∣δ2 TP(u + z)[v ,w ]
∣∣ ≤ c2

(
‖u′‖2q+2

W 1−1/q,q + 1
)
‖v ′‖W 1−1/q,q ‖w ′‖W 1−1/q,q .

• Use explicit formula for the second derivative of TP

• Employ uniform bi-Lipschitz estimate

• Extends results from [Blatt & Reiter ’15]
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The gradient flow



The H2 flow

Recall energy functional

E (u) =
κ
2

∫
R/Z
|u′′(s)|2 ds + %TP(u)→ min! on C

H2 gradient flow in C

Compute family u : [0,T ]→ H2(R/Z;R3) with u(0) = u0 and

(ut , φ)H2 = −κ(u′′, φ′′)− %δ TP(u)[φ]

for all φ ∈ H2 subject to φ′ · u′ = 0 and u′t · u′ = 0.

Semi-implicit discretization defined by linearly constrained system

(dtu
k , φ)H2 + κ([uk ]′′, φ′′) = −%δ TP(uk−1)[φ]

s.t. [dtu
k ]′ · [uk−1]′ = 0, φ′ · [uk−1]′ = 0

where dtu
k = (uk − uk−1)/τ is backward difference quotient.

• Explicit treatment of TP: parallelization of assembly, sparse matrices
9



Stability result [B., Reiter ’18]

For κ > 0, % ≥ 0, and q ∈ (2, 4], let (uk)k=0,...,K ⊂ H2(R/Z,R3) be

unique sequence defined for u0 with |[u0]′|2 = 1 via

(dtu
k , φ)H2 + κ([uk ]′′, φ′′)L2 = −%δ TP(uk−1)[φ],

subject to the linearized arclength conditions

[dtu
k ]′ · [uk−1]′ = 0, φ′ · [uk−1]′ = 0.

There exists c ′ = c ′(κ, %, e0, q) > 0 with e0 = E (u0) which is

independent of τ > 0 such that if τc ′ ≤ 1 then we have the

energy stability property

E (uL) + (1− c ′τ)τ
L∑
`=1

‖dtu
`‖2

H2 ≤ E (u0)

for all 0 ≤ L ≤ K . Moreover, arclength parametrization is preserved:

max
k=0,...,L

∥∥|[uk ]′|2 − 1
∥∥
L∞
≤ 4τc2

∞e0.
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Proof of stability property

Want to obtain discrete energy law:

E (uL) + (1− c ′τ)τ
L∑
`=1

‖dtu
`‖2

H2 ≤ E (u0)

• existence of iterates due to Lax–Milgram

• induction over L = 1, . . . ,K

(∗) choose φ = dtuk in (dtu
k , φ)H2 + κ([uk ]′′, φ′′)L2 = −%δ TP(uk−1)[φ]

• applying Lemma (B) and Poincaré inequalities yields

‖dtu
k‖2

H2 + κdt‖[uk ]′′‖2
L2 ≤ ca = ca(κ, %, q, e0)

• τca ≤ e0 gives τ
∑k
`=1 ‖dtu

`‖2
H2 + κ‖[uk ]′′‖2

L2 ≤ e0

• |[uk ]′|2 = |[uk−1]′|2 +τ 2|[dtu
k ]′|2 = · · · = |[u0]′|2 +τ 2

∑k
`=1 |[dtu

`]′|2

 arc-length preservation

• apply second part of Lemma (B) to expand the TP-term in (∗)
 (1− cbτ)‖dtu

k‖2
H2 + dtE (uk) ≤ 0 for τ � 1
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Spatial discretization



Choice of FE space

Subspaces Vh ⊂ H2
BC(I ,R3) subordinated to a partition Th of I = [0, 1]

given by nodes z0 < z1 < · · · < zM

• Vh ⊂ S1,3(Th,R3) cubic C 1 splines; dof’s are positions and tangents

• given ũh ∈ S1,3(Th,R3) include linearized arc-length condition via

Fh[ũh] = {vh ∈ Vh | v ′h(zi ) · ũ′h(zi ) = 0 for all i = 0, . . . ,M}

• Start with initial curve u0
h ∈ Vh with

∣∣(u0
h)′(zi )

∣∣ = 1 for i = 0, . . . ,M

Algorithm. (i) Given uk
h ∈ Vh compute velocity vk

h ∈ Fh[uk
h ] such that

(vk
h , φh)H2 = −κ([uk

h + τvk
h ]′′, φ′′h )− % δ TP(uk

h )[φh] ∀φh ∈ Fh[uk
h ]

(ii) Update uk+1
h = uk

h + τvk
h and repeat.

Scheme requires solving linearly constrained quadratic problems
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Removing the diagonal

If the integration domain in TP is replaced by Rε,

TPε(u) = 1
q

∫∫
Rε

|u′(y) ∧ (u(x)− u(y))|q

|u(x)− u(y)|2q
dx dy ,

Here Rε is any measurable set with

R̃ε =
{

(x , y) ∈ R/Z× R/Z : |x − y |R/Z ≥ ε
}
⊂ Rε ⊂ R̃ε/2.

Lemma [B., Reiter, Riege ’17]

We have TPε(u)↗ TP(u) as ε↘ 0 for any u ∈ C and q ∈ [2,∞).

If u ∈ C ∩ H2(R/Z,R3) and q ∈ [2, 4) we have

|TPε(u)− TP(u)| ≤ Cδ,qε
2−q/2−δ biL(u)2q ‖u′‖qH1 .

• Linear convergence if u ∈ C ∩W 3,q(R/Z,R3) and q ∈ [2,∞)

13



Approximation result

Define Qh via nodal averages on rectangles Ij × Ik ⊂ R

TPε,h(u) = 1
q

∫∫
Rε,h

Qh

[
|u′(y) ∧ (u(x)− u(y))|q

|u(x)− u(y)|2q

]
dx dy ,

Proposition [B., Reiter, Riege ’17]

For 0 < 2h ≤ ε, q ∈ [2,∞), and u ∈ C ∩ H2 we have

|TPε,h(u)− TPε(u)| ≤ Cq

√
h

(
biL(u)

ε

)q+1

(‖u′′‖L2 + 1) ,

where integration domain of TPε is chosen to be Rε = Rε,h.

Proof. Show that f ∈ C 0,1/2 on Rε,h for

f (x , y) =
|u′(y) ∧ (u(x)− u(y))|q

|u(x)− u(y)|2q

• Linear convergence assuming higher regularity

• Related estimate for first variation
14



Discrete energy barrier

Discretized tangent-point functional

TPε,h(u) = 1
q

∑
i,j=0,...,M

|zi−zj |≥ε

hihjβiβj

∣∣u′(zi ) ∧ (u(zi )− u(zj )
)∣∣q∣∣u(zi )− u(zj )

∣∣2q

Consider discrete self-contact

|uh(z)− uh(z̃)| ∼ h

for non-neighboring nodes z and z̃ .

If u′h(z) and uh(z)− uh(z̃) are non-parallel then TPε,h(uh) ≥ ch2−q

• Exponent q = 2 insufficient to avoid self-intersections

• For discrete energy barrier choose % ≥ chq−2−σ with σ > 0;

allows for σ → 0 as h→ 0

• Need h sufficiently small to dominate initial total energy

15



Stability and isotopy preservation



Preasymptotic instability

Using an initial curve from the 52 isotopy class with length ≈ 39.9.

κ = 1
10 , % = 1, 400 nodes, τ = 1

5

√
hmax — note critical %/κ � 1

1 length 39.919092 2 length 47.526655 3 length 59.041003 4 length 61.777820

6 length 62.042947 8 length 62.151359 10 length 62.216288 16 length 62.312458
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Preasymptotic instability

Using an initial curve from the 52 isotopy class with length ≈ 39.9.

κ = 1
10 , % = 1, 400 nodes, τ = 1

5

√
hmax — note critical %/κ � 1

1 length 39.919092 2 length 47.526655 3 length 59.041003 4 length 61.777820

6 length 62.042947 8 length 62.151359 10 length 62.216288 16 length 62.312458
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Change of isotopy class

Same curve; κ = 1, % = 1
100 , 50 nodes, τ ≈ 1

5 — note critical 0 < %� 1

1 4 8 12

12 13 14 15 16

16 20 30 40

17



Change of isotopy class

Same curve; κ = 1, % = 1
100 , 50 nodes, τ ≈ 1

5 — note critical 0 < %� 1

1 4 8 12

12 13 14 15 16

16 20 30 40
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Observations

Numerical scheme is . . .

. . . energy stable if the time-step size τ satisfies τ ≤ F (κ, %)

• F (κ, %) = O(1) if κ � %

• F (κ, %)→ 0 as κ/%→ 0

• mesh dependence if %� κ, possibly related to

quadrature errors for TP

. . . preserving the isotopy class if energy stable and if for fixed κ > 0

the spacial mesh size h > 0 satisfies h ≤ G (e0, %)

• initial energy e0 = E (u0)

• G (e0, %)→ 0 as e0 →∞ or %→ 0

... i.e., bending term gives stability and self-avoidance potential

requires sufficient resolution
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Simulations



How do minimizers look like?

Expect points of self-intersection for %→ 0

• Extract a weakly converging subsequence of minimizers as %→ 0

• If the limit is embedded, there is a C 1 neighborhood of admissible

comparison curves

 limit curve is a local minimizer of the bending energy

Theorem [Langer & Singer ’85]

The circle is the only (local) minimizer of the bending energy in R3.

• the bending energy cannot be minimized within an

isotopy class except for the trivial class

• self-contact is present also in physical models
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Unknot class

A non-global minimizer in the unknot class, evolution gets stuck
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nodes: 376, hmax = 0.1255
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Trefoil evolution

Evolution towards a symmetric possibly unstable configuration
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nodes: 401, hmax = 0.1312
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Trefoil with perturbation

Avoid unstable symmetric configuration via perturbations
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nodes: 401, hmax = 0.1312
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Trefoil with and without perturbation

Comparison of energies for unperturbed and perturbed evolutions

Minimizer close to doubly covered circle [Gerlach, Reiter, von der Mosel ’17]
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Figure-eight – first experiment

Initial curve equivalent to figure-eight knot
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Figure-eight – second experiment

Different initial curve equivalent to figure-eight knot
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Figure-eight – comparison

Comparison of energies for different initial curves

Spherical [Gallotti & Pierre-Louis ’07 ; Gerlach et al. ’17] and

planar [Avvakumov & Sossinsky ’14] stationary configurations 26



Summary



Summary

• numerical scheme for self-avoiding inextensible curves

• stability result for the semi-discrete setting

• energy decay and arclength preservation (imply convergence)

• preservation of isotopy class (for sufficient resolution)

• fast, simple scheme (minutes to compute evolutions)

• future aspects

• include other physical quantities, e.g., twist

• extension to self-avoiding flat plates

• elastic knots always flat ?

Thank you!
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