

Approximating gradient flow evolutions of self-avoiding inextensible curves and elastic knots

Sören Bartels (U Freiburg) joint work with Philipp Reiter (U Georgia) Vienna, July 19, 2018

Motivation: Bilayer bending

Energy for large bending deformations of thin elastic sheets (e.g., paper):

$$I_{\text{bend}}(y) = \frac{1}{2} \int_{\Omega} |I|^2 \, \mathrm{d}x - \int_{\Omega} f \cdot y \, \mathrm{d}x, \quad I = \mathrm{id}$$

with fundamental forms $I, II : \Omega \to \mathbb{R}^{2 \times 2}$ associated with $y : \Omega \to \mathbb{R}^3$

- Flat isometries: angle/length relations preserved
- Nonlinear constraint implies linearity: $|I|^2 = |D^2y|^2$
- Kirchhoff's bending model derived by [Friesecke, James & Müller '02]

Nanotechnology application [B., Bonito & Nochetto '15]: bilayer bending

Challenge: Large deformations ok but injectivity not guaranteed

Overview

Energy as sum of bending and self-avoidance effects for arclength curves:

$$E(u) = \frac{\varkappa}{2} \int_{I} |u''(s)|^2 \,\mathrm{d}s + \varrho \,\mathrm{TP}(u), \quad |u'|^2 = 1$$

Reduce energy via gradient flow $\partial_t u = -\nabla_X E(u) + (\lambda u')'$, discretized:

$$(d_t u_h^k, v_h)_X + \varkappa([u_h^k]'', v_h'') = -\varrho \operatorname{TP}(u_h^{k-1}), \quad [d_t u_h^k]', [v_h]' \perp [u_h^{k-1}]'$$

(Loading Movie)

xternal Link

- Stability and convergence (energy law and consistency) ?
- Characterization of representatives (e.g., elastic knots always flat) ?

Modeling curves

Nonlinear bending

Aim: Detect low-energy configurations within isotopy class of u_0 , i.e., prevent curves from self-intersecting and pulling tight

Curvature of arc-length curve $u: \mathbb{R}/\mathbb{Z} \to \mathbb{R}^3$ given by k(s) = |u''(s)|

Bending energy [Bernoulli, 1738]

$$u\mapsto \frac{1}{2}\int_{\mathbb{R}/\mathbb{Z}}k(s)^2\,\mathrm{d}s$$

- Applications: cell filaments, DNA molecules, nanotechnology, ...
- Gradient flow [Dziuk, Kuwert, Schätzle; Barrett, Garcke, Nürnberg; Dall'Acqua, Lin, Pozzi; ...] – global constraints, no injectivity

Let $\mathscr{C} = \left\{ u \in H^2(\mathbb{R}/\mathbb{Z}, \mathbb{R}^3) \, \big| \, |u'| = 1, u \in \mathcal{K} \right\}$ for some isotopy class \mathcal{K}

Variational problem

$$E(u) = \frac{\varkappa}{2} \int_{\mathbb{R}/\mathbb{Z}} |u''(s)|^2 \, \mathrm{d}s + \varrho \operatorname{\mathsf{TP}}(u) \to \min! \qquad \text{on } \mathscr{C}$$

• $\varkappa > 0$, $\varrho \ge 0$, in particular $\varkappa \gg \varrho$ (physical knots)

- Tangent-point functional TP is potential that prevents curves from leaving the isotopy class
- Simple model ignoring twist
- Computational challenge: strong forces related to bending have to be compensated by repulsive forces to avoid self-intersections
- Existence of minimizers for $\varkappa > 0$

Tangent-point energies

Tangent-point energies

Modeling "thickness" by a smooth functional [Gonzalez & Maddocks '99] $TP(u) = \frac{1}{2^{q}q} \iint_{[\mathbb{R}/\mathbb{Z}]^{2}} \frac{dx \, dy}{r_{u}(x, y)^{q}}, \qquad q > 2,$

 $r_u(x, y)$ is radius of circle tangential at u(y) intersecting in u(x):

- TP is nonlocal and nonlinear with $rac{1}{r_u(x,y)} \xrightarrow{x o y} k(y)$
- Self-avoiding property [Strzelecki & von der Mosel '10]
- Characterization of energy spaces [Blatt '13] $\rightsquigarrow W^{2-1/q,q}$
- Smooth, two-dimensional domain, integrand of first variation in L^1

$$r_{u}(x,y) = \frac{|u(x) - u(y)|^{2}}{2\operatorname{dist}(u(x), \ell(y))} = \frac{|u(x) - u(y)|^{2}}{2|u'(y) \wedge (u(x) - u(y))|}$$

• Generalization to plates available

Bi-Lipschitz bounds

Bi-Lipschitz constant of embedded arclength parametrized curve u

$$\mathsf{biL}(u) = \sup_{x,y \in \mathbb{R}/\mathbb{Z}, x \neq y} \frac{|x-y|}{|u(x)-u(y)|} \qquad (\geq 1) \,.$$

Lemma (Uniform bi-Lipschitz estimate) [Blatt & Reiter '15] There is a uniform bound $C_{M,q} < \infty$ such that if $\mathsf{TP}(u) \leq M$ then $|x - y|_{\mathbb{R}/\mathbb{Z}} \leq C_{M,q} |u(x) - u(y)|$ for all $x, y \in \mathbb{R}/\mathbb{Z}$.

Note: Cannot expect to control TP(u) by Sobolev norms of u

Corollary (Self-avoidance)

Let $u_k \to u_\infty \in C^0(\mathbb{R}/\mathbb{Z}, \mathbb{R}^3)$ pointwise with self-intersection, i.e., $u_\infty(x) = u_\infty(y)$ for $x \neq y$. Then $\text{TP}(u_k) \to \infty$ as $k \to \infty$.

Proof. Assuming the contrary, we infer the existence of a constant $C < \infty$ with $0 < |x - y|_{\mathbb{R}/\mathbb{Z}} \le C |u_k(x) - u_k(y)| \xrightarrow{k \to \infty} 0$.

Fractional Sobolev spaces

TP finite for bi-Lipschitz curves $u \in W^{1+s,q}(\mathbb{R}/\mathbb{Z};\mathbb{R}^3)$ with s = 1 - 1/q:

$$q \operatorname{TP}(u) = \int_{\mathbb{R}/\mathbb{Z}} \int_{-1/2}^{1/2} \frac{|u'(y) \wedge (u(y+z) - u(y) - zu'(y))|^{q}}{|u(y+z) - u(y)|^{2q}} \, \mathrm{d}z \, \mathrm{d}y$$

$$\leq \operatorname{biL}(u)^{2q} \int_{\mathbb{R}/\mathbb{Z}} \int_{-1/2}^{1/2} \frac{\left| \int_{0}^{1} (u'(y+\vartheta z) - u'(y)) \, \mathrm{d}\vartheta \right|^{q} |z|^{q}}{|z|^{2q}} \, \mathrm{d}z \, \mathrm{d}y$$

$$\leq \operatorname{biL}(u)^{2q} \int_{\mathbb{R}/\mathbb{Z}} \int_{-1/2}^{1/2} \int_{0}^{1} \frac{|u'(y+\vartheta z) - u'(y)|^{q}}{|z|^{q}} \, \mathrm{d}\vartheta \, \mathrm{d}z \, \mathrm{d}y$$

$$\leq \operatorname{biL}(u)^{2q} \int_{0}^{1} \int_{\mathbb{R}/\mathbb{Z}} \int_{-\eta/2}^{\eta/2} \vartheta^{q-1} \frac{|u'(y+\tilde{z}) - u'(y)|^{q}}{|z|^{q}} \, \mathrm{d}\tilde{z} \, \mathrm{d}y \, \mathrm{d}\vartheta$$

$$\leq \operatorname{biL}(u)^{2q} \int_{\mathbb{R}/\mathbb{Z}} \int_{-\eta/2}^{1/2} \frac{|u'(y+z) - u'(y)|^{q}}{|z|^{q}} \, \mathrm{d}z \, \mathrm{d}y = \operatorname{biL}(u)^{2q} |u'|_{W^{s,q}}^{q}.$$

- Use of Sobolev-Slobodeckii seminorm
- Argument transfers to various other estimates

Bounds on variations of TP

Lemma (B)

There are $c_1, c_2, R > 0$ depending on $0 < \lambda \le \Lambda$, M > 0, n, and q such that any embedded and regular curve $u \in W^{2-1/q,q}(\mathbb{R}/\mathbb{Z}, \mathbb{R}^3)$ with

 $\lambda \leq |u'| \leq \Lambda$ and $\mathsf{TP}(u) \leq M$

satisfies

 $|\delta \operatorname{TP}(u)[w]| \le c_1 \|u'\|_{W^{1-1/q,q}}^q \|w'\|_{W^{1-1/q,q}}$

and, for any $z \in W^{2-1/q,q}$ with $||z'||_{W^{1-1/q,q}} \leq R$,

 $\left| \delta^2 \operatorname{TP}(u+z)[v,w] \right| \le c_2 \left(\|u'\|_{W^{1-1/q,q}}^{2q+2} + 1 \right) \|v'\|_{W^{1-1/q,q}} \|w'\|_{W^{1-1/q,q}}.$

- Use explicit formula for the second derivative of TP
- Employ uniform bi-Lipschitz estimate
- Extends results from [Blatt & Reiter '15]

The gradient flow

The H^2 flow

Recall energy functional

$$E(u) = \frac{\varkappa}{2} \int_{\mathbb{R}/\mathbb{Z}} |u''(s)|^2 \, \mathrm{d}s + \varrho \mathsf{TP}(u) \to \min! \qquad \text{on } \mathscr{C}$$

H^2 gradient flow in \mathscr{C}

Compute family $u: [0, T] \to H^2(\mathbb{R}/\mathbb{Z}; \mathbb{R}^3)$ with $u(0) = u_0$ and

$$(u_t,\phi)_{H^2} = -\varkappa(u'',\phi'') - \varrho\delta \operatorname{TP}(u)[\phi]$$

for all $\phi \in H^2$ subject to $\phi' \cdot u' = 0$ and $u'_t \cdot u' = 0$.

Semi-implicit discretization defined by linearly constrained system

$$(d_t u^k, \phi)_{H^2} + \varkappa ([u^k]'', \phi'') = -\varrho \delta \operatorname{TP}(u^{k-1})[\phi]$$

s.t. $[d_t u^k]' \cdot [u^{k-1}]' = 0, \quad \phi' \cdot [u^{k-1}]' = 0$

where $d_t u^k = (u^k - u^{k-1})/\tau$ is backward difference quotient.

• Explicit treatment of TP: parallelization of assembly, sparse matrices

Stability result [B., Reiter '18]

For $\varkappa > 0$, $\varrho \ge 0$, and $q \in (2, 4]$, let $(u^k)_{k=0,...,K} \subset H^2(\mathbb{R}/\mathbb{Z}, \mathbb{R}^3)$ be unique sequence defined for u^0 with $|[u^0]'|^2 = 1$ via

 $(d_t u^k, \phi)_{H^2} + \varkappa ([u^k]'', \phi'')_{L^2} = -\varrho \delta \operatorname{\mathsf{TP}}(u^{k-1})[\phi],$

subject to the linearized arclength conditions

 $[d_t u^k]' \cdot [u^{k-1}]' = 0, \qquad \phi' \cdot [u^{k-1}]' = 0.$

There exists $c' = c'(\varkappa, \varrho, e_0, q) > 0$ with $e_0 = E(u^0)$ which is independent of $\tau > 0$ such that if $\tau c' \leq 1$ then we have the energy stability property

$$E(u^L) + (1-c' au) au \sum_{\ell=1}^L \|d_t u^\ell\|_{H^2}^2 \leq E(u^0)$$

for all $0 \le L \le K$. Moreover, arclength parametrization is preserved:

$$\max_{k=0,...,L} \left\| |[u^k]'|^2 - 1 \right\|_{L^{\infty}} \le 4\tau c_{\infty}^2 e_0.$$

Proof of stability property

Want to obtain discrete energy law:

$$E(u^L) + (1 - c'\tau)\tau \sum_{\ell=1}^L \|d_t u^\ell\|_{H^2}^2 \le E(u^0)$$

- existence of iterates due to Lax–Milgram
- induction over $L = 1, \ldots, K$
- (*) choose $\phi = d_t u_k$ in $(d_t u^k, \phi)_{H^2} + \varkappa ([u^k]'', \phi'')_{L^2} = -\varrho \delta \operatorname{TP}(u^{k-1})[\phi]$
 - applying Lemma (B) and Poincaré inequalities yields

$$\|d_t u^k\|_{H^2}^2 + \varkappa d_t \|[u^k]''\|_{L^2}^2 \le c_a = c_a(\varkappa, \varrho, q, e_0)$$

• $\tau c_a \leq e_0$ gives $\tau \sum_{\ell=1}^k \|d_t u^\ell\|_{H^2}^2 + \varkappa \|[u^k]''\|_{L^2}^2 \leq e_0$

- $|[u^k]'|^2 = |[u^{k-1}]'|^2 + \tau^2 |[d_t u^k]'|^2 = \cdots = |[u^0]'|^2 + \tau^2 \sum_{\ell=1}^k |[d_t u^\ell]'|^2$ \rightsquigarrow arc-length preservation
- apply second part of Lemma (B) to expand the TP-term in (*)

 → (1 c_bτ) ||d_tu^k||²_{H²} + d_tE(u^k) ≤ 0 for τ ≪ 1

Spatial discretization

Choice of FE space

Subspaces $\mathbb{V}_h \subset H^2_{BC}(I, \mathbb{R}^3)$ subordinated to a partition \mathcal{T}_h of I = [0, 1] given by nodes $z_0 < z_1 < \cdots < z_M$

- $\mathbb{V}_h \subset S^{1,3}(\mathcal{T}_h, \mathbb{R}^3)$ cubic C^1 splines; dof's are positions and tangents
- given $\widetilde{u}_h \in \mathcal{S}^{1,3}(\mathcal{T}_h, \mathbb{R}^3)$ include linearized arc-length condition via

$$\mathbb{E}_h[\widetilde{u}_h] = \{ v_h \in \mathbb{V}_h \, | \, v_h'(z_i) \cdot \widetilde{u}_h'(z_i) = 0 \text{ for all } i = 0, \dots, M \}$$

• Start with initial curve $u_h^0 \in \mathbb{V}_h$ with $|(u_h^0)'(z_i)| = 1$ for $i = 0, \dots, M$

Algorithm. (i) Given $u_h^k \in \mathbb{V}_h$ compute velocity $v_h^k \in \mathbb{F}_h[u_h^k]$ such that

$$(\mathbf{v}_{h}^{k},\phi_{h})_{H^{2}} = -\varkappa([u_{h}^{k}+\tau\mathbf{v}_{h}^{k}]'',\phi_{h}'') - \varrho\,\delta\,\mathsf{TP}(u_{h}^{k})[\phi_{h}] \qquad \forall \phi_{h} \in \mathbb{F}_{h}[u_{h}^{k}]$$

(ii) Update $u_{h}^{k+1} = u_{h}^{k} + \tau\mathbf{v}_{h}^{k}$ and repeat.

Scheme requires solving linearly constrained quadratic problems

Removing the diagonal

If the integration domain in TP is replaced by $\mathcal{R}_{\varepsilon}$,

$$\mathsf{TP}_{\varepsilon}(u) = \frac{1}{q} \iint_{\mathcal{R}_{\varepsilon}} \frac{|u'(y) \wedge (u(x) - u(y))|^{q}}{|u(x) - u(y)|^{2q}} \, \mathsf{d}x \, \mathsf{d}y,$$

Here $\mathcal{R}_{\varepsilon}$ is any measurable set with

$$\widetilde{\mathcal{R}}_arepsilon = ig\{(x,y)\in \mathbb{R}/\mathbb{Z} imes \mathbb{R}/\mathbb{Z}: \left|x-y
ight|_{\mathbb{R}/\mathbb{Z}}\geq arepsilonig\}\subset \mathcal{R}_arepsilon\subset \widetilde{\mathcal{R}}_{arepsilon/2}.$$

Lemma [B., Reiter, Riege '17]

We have $\operatorname{TP}_{\varepsilon}(u) \nearrow \operatorname{TP}(u)$ as $\varepsilon \searrow 0$ for any $u \in \mathscr{C}$ and $q \in [2, \infty)$. If $u \in \mathscr{C} \cap H^2(\mathbb{R}/\mathbb{Z}, \mathbb{R}^3)$ and $q \in [2, 4)$ we have

$$|\mathsf{TP}_{\varepsilon}(u) - \mathsf{TP}(u)| \le C_{\delta,q} \varepsilon^{2-q/2-\delta} \operatorname{biL}(u)^{2q} \|u'\|_{H^1}^q.$$

• Linear convergence if $u \in \mathscr{C} \cap W^{3,q}(\mathbb{R}/\mathbb{Z},\mathbb{R}^3)$ and $q \in [2,\infty)$

Approximation result

Define Q_h via nodal averages on rectangles $I_i \times I_k \subset \mathcal{R}$

$$\mathsf{TP}_{\varepsilon,h}(u) = \frac{1}{q} \iint_{\mathcal{R}_{\varepsilon,h}} \mathcal{Q}_h \left[\frac{|u'(y) \wedge (u(x) - u(y))|^q}{|u(x) - u(y)|^{2q}} \right] dx dy,$$

Proposition [B., Reiter, Riege '17]

For $0 < 2h \le \varepsilon$, $q \in [2, \infty)$, and $u \in \mathscr{C} \cap H^2$ we have

$$|\mathsf{TP}_{\varepsilon,h}(u) - \mathsf{TP}_{\varepsilon}(u)| \le C_q \sqrt{h} \left(\frac{\mathsf{biL}(u)}{\varepsilon}\right)^{q+1} (||u''||_{L^2} + 1),$$

where integration domain of TP_{ε} is chosen to be $\mathcal{R}_{\varepsilon} = \mathcal{R}_{\varepsilon,h}$.

Proof. Show that $f \in C^{0,1/2}$ on $\mathcal{R}_{\varepsilon,h}$ for

$$f(x,y) = \frac{|u'(y) \wedge (u(x) - u(y))|^{q}}{|u(x) - u(y)|^{2q}}$$

- Linear convergence assuming higher regularity
- Related estimate for first variation

Discrete energy barrier

Discretized tangent-point functional

$$\mathsf{TP}_{\varepsilon,h}(u) = \frac{1}{q} \sum_{\substack{i,j=0,\dots,M\\|z_i-z_j| \ge \varepsilon}} h_i h_j \beta_i \beta_j \frac{|u'(z_i) \wedge (u(z_i) - u(z_j))|^q}{|u(z_i) - u(z_j)|^{2q}}$$

Consider discrete self-contact

$$|u_h(z) - u_h(\tilde{z})| \sim h$$

for non-neighboring nodes z and \tilde{z} .

If $u'_h(z)$ and $u_h(z) - u_h(\tilde{z})$ are non-parallel then $\mathsf{TP}_{\varepsilon,h}(u_h) \ge ch^{2-q}$

- Exponent q = 2 insufficient to avoid self-intersections
- For discrete energy barrier choose *ρ* ≥ *ch^{q-2-σ}* with *σ* > 0; allows for *σ* → 0 as *h* → 0
- Need h sufficiently small to dominate initial total energy

Stability and isotopy preservation

Preasymptotic instability

Using an initial curve from the 5_2 isotopy class with length ≈ 39.9 .

$$\varkappa = \frac{1}{10}$$
, $\varrho = 1$, 400 nodes, $\tau = \frac{1}{5}\sqrt{h_{\text{max}}}$ — note critical $\varrho/\varkappa \gg 1$

Preasymptotic instability

Using an initial curve from the 5_2 isotopy class with length ≈ 39.9 .

$$\varkappa = \frac{1}{10}$$
, $\varrho = 1$, 400 nodes, $\tau = \frac{1}{5}\sqrt{h_{\max}}$ — note critical $\varrho/\varkappa \gg 1$

16

Change of isotopy class

Same curve; $\varkappa = 1, \ \varrho = \frac{1}{100}, \ 50 \ {\rm nodes}, \ \tau \approx \frac{1}{5}$ — note critical $0 < \varrho \ll 1$

Change of isotopy class

Same curve; $\varkappa = 1$, $\varrho = \frac{1}{100}$, 50 nodes, $\tau \approx \frac{1}{5}$ — note critical $0 < \varrho \ll 1$

Numerical scheme is ...

...energy stable if the time-step size τ satisfies $\tau \leq F(\varkappa, \varrho)$

•
$$F(\varkappa, \varrho) = \mathcal{O}(1)$$
 if $\varkappa \gg \varrho$

•
$$F(arkappa, arrho)
ightarrow 0$$
 as $arkappa/arrho
ightarrow 0$

 mesh dependence if *ρ* ≫ *κ*, possibly related to quadrature errors for TP

... preserving the isotopy class if energy stable and if for fixed $\varkappa > 0$

the spacial mesh size h > 0 satisfies $h \leq G(e_0, \varrho)$

- initial energy $e_0 = E(u_0)$
- $G(e_0, \varrho) \rightarrow 0$ as $e_0 \rightarrow \infty$ or $\varrho \rightarrow 0$

... i.e., bending term gives stability and self-avoidance potential requires sufficient resolution

Simulations

Expect points of self-intersection for $\varrho \to 0$

- Extract a weakly converging subsequence of minimizers as $\varrho
 ightarrow 0$
- If the limit is embedded, there is a C¹ neighborhood of admissible comparison curves
- \rightsquigarrow limit curve is a local minimizer of the bending energy

Theorem [Langer & Singer '85]

The circle is the only (local) minimizer of the bending energy in \mathbb{R}^3 .

- the bending energy cannot be minimized within an isotopy class except for the trivial class
- self-contact is present also in physical models

Unknot class

A non-global minimizer in the unknot class, evolution gets stuck

(Loading Movie)

nodes: 376, $h_{\rm max} = 0.1255$

Trefoil evolution

Evolution towards a symmetric possibly unstable configuration

(Loading Movie)

nodes: 401, $h_{max} = 0.1312$

Trefoil with perturbation

Avoid unstable symmetric configuration via perturbations

(Loading Movie)

nodes: 401, $h_{max} = 0.1312$

Trefoil with and without perturbation

Comparison of energies for unperturbed and perturbed evolutions

Minimizer close to doubly covered circle [Gerlach, Reiter, von der Mosel '17]

Figure-eight – first experiment

Initial curve equivalent to figure-eight knot

(Loading Movie)

nodes 400, $h_{\rm max} = 0.1370$

Figure-eight – second experiment

Different initial curve equivalent to figure-eight knot

(Loading Movie)

nodes 415, $h_{\rm max} = 0.1306$

Figure-eight – comparison

Comparison of energies for different initial curves

Spherical [Gallotti & Pierre-Louis '07 ; Gerlach et al. '17] and planar [Avvakumov & Sossinsky '14] stationary configurations

Summary

Summary

- numerical scheme for self-avoiding inextensible curves
- stability result for the semi-discrete setting
 - energy decay and arclength preservation (imply convergence)
 - preservation of isotopy class (for sufficient resolution)
- fast, simple scheme (minutes to compute evolutions)
- future aspects
 - include other physical quantities, e.g., twist
 - extension to self-avoiding flat plates
 - elastic knots always flat ?

Thank you!