
Finite Element Approximation of Harmonic Maps

between Surfaces

Habilitationsschrift

zur Erlangung der Lehrbefähigung
für das Fach

Mathematik

vorgelegt dem Rat der Mathematisch-Naturwissenschaftlichen Fakultät II
der Humboldt-Universität zu Berlin

von
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Introduction

“Harmony and Harmonicity — If you fall in love

with harmonic functions your mathematician’s soul

will never come to rest unless you comprehend the

origin of their irresistible appeal and beauty. And if

you are bent on spaces, manifolds and maps you start

researching for the geometric habitat of harmonicity.”

– Misha Gromov, May 2000, Preface of [EF01]

Geometric partial differential equations and their analysis as well as numerical simulation have
recently attracted considerable attention among pure and applied mathematicians. Motivated by
interesting applications such as general relativity, micromagnetics, liquid crystal theory, biophysics,
and medical image processing, significant progress has been made in the mathematical understand-
ing of evolutionary and stationary partial differential equations from, into, and between surfaces
within the last two decades. While the properties of solutions of partial differential equations with
values into surfaces with symmetries such as the unit sphere are now relatively well understood,
only few results are available in the general case. This thesis aims at contributing to the devel-
opment and analysis of approximation schemes for such problems. In the remaining part of this
introduction, we present geometric partial differential equations as mathematical models of certain
physical processes, discuss analytical properties of solutions, indicate difficulties in the numerical
approximation, and summarize the main contributions of this work.

Mathematical models leading to geometric partial differential equations

Micromagnetics. A good understanding of magnetic material behavior at small scales is impor-
tant for the development of new storage media. The magnetization field of a ferromagnetic body
occupying the domain Ω ⊂ R

3 describes the orientation of the elementary magnets in an averaged
or statistical sense and is in a constant temperature scenario modeled as a unit length vector field
m : Ω → S2. Following the argumentation of Landau and Lifshitz [LL35], the actual magnetization
field minimizes the energy functional

ELL(m) = A

∫

Ω

∣∣∇m
∣∣2 dx+Ka

∫

Ω
ϕ(m) dx+

µ0

2

∫

R3

∣∣Hind

∣∣2 dx−
∫

Ω
Hext ·m dx

among all possible magnetizations. The factors A,Ka, µ0 are given constants, the function ϕ : S2 →
R is an anisotropy energy density that models preferred directions of the magnetization, and Hext

iii



represents an applied magnetic field. The induced magnetic field Hind generated by the magnetized
body Ω is given by Hind = −∇U where the scalar function U solves

−∆U = µ−1
0 divm

in the distributional sense in R
3. The micromagnetic energy ELL is capable of describing var-

ious fascinating phenomena such as thin film magnetization patterns observed in practice; the
article [DKMO05] surveys recent analytical developments in this direction. The computation of
stationary points of ELL is a difficult task owing to the non-convex side-constraint m(x) ∈ S2

for almost every x ∈ Ω. Popular numerical strategies penalize the constraint or employ projec-
tion methods to overcome this problem; we refer the reader to [Pro01, KP06] for an overview
of numerical methods in micromagnetics. Stationary points of ELL can also be detected through
the Landau-Lifshitz-Gilbert dynamics defined by the time-dependent, non-linear partial differential
equation

∂tm = −m×∇ELL(m) − γ m×
(
m×∇ELL(m)

)
,

with the Gâteaux differential ∇ELL of ELL, see [Vis85]. The precise mathematical properties of
solutions of this evolutionary geometric partial differential equation are not entirely understood,
see [Mel05, Ko05] for partial regularity results, and numerical simulations can provide valuable
insight [BKP07]. While the Landau-Lifshitz energy ELL is widely accepted as an appropriate
mathematical model of certain micromagnetic effects, more realistic models have to take tempera-
ture variations into account and then the unit sphere may not be the right target manifold.

Liquid crystals. Another interesting energy functional that acts on vector fields with values in
a surface arises in liquid crystal theory. In a mathematical modeling due to Oseen [Ose33] and
Frank [Fra58], see also [Vir94, dGP93], the vectorial quantity u : Ω → S2 models the orientation
of the rod-like molecules that constitute the liquid crystal which occupies the domain Ω ⊂ R

3. A
penalization of high energy states such as bend, splay, and twist configurations and consideration
of certain symmetries lead to the functional

EOF (u) =

∫

Ω
k1

∣∣div u
∣∣2 + k2

∣∣u · Curlu
∣∣2 + k3

∣∣u× Curlu
∣∣2 + (k2 + k4)

(∣∣∇u
∣∣2 − (div u)2

)
dx.

Low energy configurations are preferred and this naturally leads to searching for stationary points
of the energy functional EOF . The mathematical model captures important effects of liquid crystals
such as point singularities, but it cannot predict other important phenomena such as line singu-
larities. This latter deficiency can be overcome by replacing the target manifold S2 by the real
projective plane RP 2 which identifies opposite points on S2 and thereby respects the head to tail
symmetry of certain liquid crystals, see [Jos86, EL80, Bal07] for related analytical aspects.

Biomembranes. A much less understood energy functional associated to a geometric partial
differential equation, is the Willmore energy [Wil93] of surfaces, defined for a sufficiently smooth
submanifold S by

EW (S) =
1

2

∫

S
H2 ds

for the mean curvature H of S. We refer the reader to [KS02a, KS02b] and [DD06, Rus05, CDD+04]
for related analytical and numerical aspects. The Willmore functional gives the elastic bending
energy of the surface S which is the unknown in the model. Slightly more general models in
biophysics incorporate “spontaneous curvature” defined by a constant H0 in the model and then
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an optimal S models the shape of a membrane. A simple mathematical description of the shape of
a membrane and its interaction with the surfactants in the two lipid bilayers is due to [FG97] and
seeks stationary points of the functional

EFG
(
S,Q+, Q−

)
=

1

2

∫

S
κM (H −H0)

2 + 2κGK + αK :
(
Q+ −Q−

)
+ β

∣∣∇Q+
∣∣2 + β

∣∣∇Q−
∣∣2 ds.

In this model, Q± = n± ⊗ n± − I3×3 for n± ∈ S2 are the order parameters corresponding to the
director fields n± of the upper and lower sheet of the bilayer, K is the Gaussian curvature of S,
K a curvature tensor, and α, β are given constants. This energy generalizes mathematical models
from [Can70, Hel73, Sei97] by combining the Willmore functional with a simplified liquid crystal
energy and coupling the unknown quantities through the third term in the functional.

The first two described mathematical models defined through the functionals ELL and EOF

reveal that partial differential equations that define functions with values in a surface have important
applications and that the unit sphere as a target manifold may be too restrictive in some situations.
The Willmore functional is beyond the scope of this work but the coupled energy EFG motivates
to study energy functionals that are defined on surfaces.

Harmonic maps between surfaces and their properties

In the so-called equal-constant setting k1 = k2 = k3 = k4 in liquid crystal theory or in models
of ferromagnetic bodies of small diameter, the aforementioned energy functionals EOF and ELL

reduce to the Dirichlet energy

E(v) =
1

2

∫

M

∣∣∇Mv
∣∣2 ds. (1)

Here we replace the physical domain Ω by a submanifold M ⊂ R
m and introduce the tangential

gradient ∇M on M . Given another compact submanifold N ⊂ R
n without boundary which serves

as the target manifold, a weakly differentiable vector field u : M → N is called a harmonic map
into N if it is stationary for E with respect to compactly supported, tangential perturbations. This
is true if u is a weak solution of the non-linear partial differential equation

−∆Mu = AN (u)
[
∇Mu;∇Mu

]
(2)

with the second fundamental form AN on N ; see, e.g., [Str00, FMS98] for a derivation of (2).
The existence of global minimizers for (1) and hence of harmonic maps follows with the direct

method in the calculus of variations for non-empty sets of admissible vector fields. The related
problem for an open domain M ⊂ R

m and N = R leads to harmonic functions with all their
well-understood properties. When N has a boundary and its interior is non-empty then (1) can
be understood as a variational inequality for which existence, uniqueness, and regularity as well
as numerical approximation have been investigated intensively in the literature. We will focus
on the case that N is a surface, i.e., restrict to sufficiently smooth, compact submanifolds N
without boundary which excludes variational inequalities and harmonic functions. The simplest
choice of such a surface, namely N = Sn−1 ⊂ R

n, the (n − 1)-dimensional unit sphere in R
n,

already reveals a variety of intriguing phenomena captured by the mathematical model (1): If
M = B1(0) ⊂ R

m is the open unit ball in R
m and N = Sn−1 then harmonic maps are known to

be smooth if m = 2, see [Hél91, Mor66]. In higher dimensions the picture changes drastically. For
m ≥ 3 harmonic maps into the sphere are partially regular if they are energy minimizing or, more
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generally, stationary with respect to spatial variations [Eva91, Bet93a, Har97]. Those results are
sharp in the sense that (a) the function x 7→ x/|x| is an energy minimizing harmonic map into the
sphere if m ≥ 3 [Lin87, BCL86, JK83, SU82] and (b) there exist harmonic maps into Sn−1 which
are everywhere discontinuous if m,n ≥ 3 [Riv95]. For general, compact C2 target manifolds N
without boundary it is still known that harmonic maps into N are smooth if M is two-dimensional,
see [Hél91, Hél02, Riv07].

Of particular importance for this work are weak compactness results for harmonic maps. Given
a bounded sequence of harmonic maps into Sn−1, it is known and straightforward to show that every
accumulation point of the sequence is again a harmonic map into Sn−1, see [Sha88] for relevant
identities. For submanifolds N without symmetry this is only known if M is two-dimensional and
N is compact, C2 regular, and without boundary [Bet93b, FMS98, Riv07].

Most of the approximation schemes devised below are motivated and based on gradient flows of
harmonic maps. The L2 gradient flow of a harmonic map and its suitability of defining a topological
homotopy to smoothly deform a given surface into another one, have been studied intensively within
the last two decades. In general, topological changes have to be expected and finite-time blow-up of
weak solutions is known to occur even for two-dimensional domains M . The survey article [Str96]
provides an overview of related results.

We remark that harmonic maps between surfaces are also used to compute closed geodesics,
that they arise in Teichmüller theory and rigidity assertions for Kähler manifolds, and that they
have applications when looking for conformal or harmonic parameterizations of surfaces. For more
details and examples of other applications we refer the reader to [EL78, EL95, Jos84, Jos85, Hil85]
and references therein.

Difficulties in the approximation of harmonic maps

The properties of harmonic maps outlined above indicate that approximation schemes have to be
developed carefully in order to deal with the limited regularity. The three major difficulties in the
numerical approximation are that numerical schemes have to (i) cope with the critical nonlinearity
in the right-hand side of (2), (ii) satisfy the constraint u(x) ∈ N appropriately, and (iii) lead to
approximations of low energy.

The first issue (i) can be effectively solved by noting that AN assumes values in the normal
bundle of N and restricting to test functions that are tangential along the unknown u. This results
in the equivalent weak formulation of finding a weakly differentiable u : M → N such that

(
∇Mu;∇Mv

)
= 0

for all smooth vector fields v : M → R
n satisfying v(x) ∈ Tu(x)N for almost every x ∈ M and

where (·; ·) denotes the inner product in L2(M). The practical realization (ii) of the constraint
u(x) ∈ N is by no means a straightforward task. Even for the simplest case N = Sn−1 one easily
verifies that a continuous, piecewise polynomial function wh satisfies wh(x) ∈ Sn−1 for almost
every x ∈ M , i.e., |wh| = 1 almost everywhere in M , if and only if wh is constant. Therefore,
approximation schemes relax the constraint and finite element approximations are only required
to assume their nodal values in N . In this way, the constraint may be satisfied almost nowhere
but for a bounded sequence of such finite element functions every accumulation point satisfies the
constraint almost everywhere. Ginzburg-Landau approximations provide another way of imposing
the constraint in a relaxed, practical way. This, however, requires the introduction of a small
penalization parameter and the resulting regularized problem does usually not show the desired
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sharp topological effects. Moreover, error estimates for the approximation of Ginzburg-Landau
equations may depend exponentially on the inverse of the penalization parameter. Finally, the
problem (iii) of computing harmonic maps of low energy can be solved by discretizing gradient
flows of harmonic maps and choosing discretization parameters such that discrete energy laws are
satisfied.

So far we have not addressed the discretization of the possibly non-flat domain M . Following
the work of [Dzi88] this can be effectively done and analyzed by approximating M with a polyhedral
surface. The tangential gradient ∇Mh

along the approximate, Lipschitz-continuous surface Mh is
then defined only piecewise but can be shown to provide a good approximation of the continuous
tangential gradient ∇M by making use of lifting operators which associate to a given function
v : Mh → R a function ṽ : M → R.

Combining the ideas of employing test functions that assume their nodal values in the tangent
space of N and imposing the constraint u(x) ∈ N only at the nodes of a given triangulation Th of
Mh with vertices Nh and a subordinated lowest order finite element space S1(Th)n, we are led to
the following definition: The vector field uh ∈ S1(Th)n is called a discrete harmonic map into N
subject to the boundary data uD if uh|ΓD

= uD,h, uh(z) ∈ N for all z ∈ Nh, and

(
∇Mh

uh;∇Mh
vh

)
= 0

is satisfied for all vector fields vh ∈ S1(Th)n such that vh|ΓD
= 0 and vh(z) ∈ Tuh(z)N for all

z ∈ Nh. Here, (·; ·) denotes the L2 inner product on Mh and we included Dirichlet conditions on
the possibly empty subset ΓD ⊆ ∂M ; we always assume that M has either a polyhedral boundary
which is matched exactly by ∂Mh or M is a closed surface without boundary.

This formulation of the problem is still difficult to solve directly owing to the constraint on uh

and the fact that the nodewise restriction on the test functions is defined through the unknown
uh. The major goals of this work are to discuss how to reliably and efficiently compute discrete
harmonic maps into N and to investigate whether they accumulate at weak solutions of (2) as the
maximal mesh-size h of a sequence of regular triangulations

(
Th

)
h>0

tends to zero.

The approximation of harmonic maps into spheres started with the work [LL89] that studied
point relaxation methods. An energy decreasing iterative algorithm that linearizes the constraint
in each step has been introduced and shown to converge in a continuous setting in [Alo94, Alo97,
AG97]. Convergence of a finite element discretization of that algorithm on weakly acute triangu-
lations has been established in [Bar05a]. The authors of [VO02] discuss parametric approaches for
the approximation of p-harmonic maps into spheres that lead to unconstrained discrete problems
and successfully employ them to denoise color images. Convergence of projection and penalization
approaches to local strong solutions is proved in [Pro01] and a careful analysis of the dependence of
error estimates on penalization parameters in the approximation of Ginzburg-Landau type equa-
tions can be found in [FP03, Bar05a]. An interesting saddle-point formulation for the computation
of discrete harmonic maps into spheres that leads to a separately convex optimization problem has
been proposed in [CD03]. Various methods for the discretization of the harmonic map heat flow
into spheres have recently been developed and analyzed in [AJ06, BBFP07, BP07, Alo07]. For
numerical algorithms for the related problems of approximating minimal surfaces and conformal
structures of surfaces we refer the reader to [Dzi91, PP93, GY02, DH99, DH06] and references
therein.

Apart from the convergence result in [MSŠ97] of discrete harmonic maps on planar, regular
lattices to harmonic maps into compact C4 submanifolds N ⊂ R

n without boundary, the author
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is unaware of algorithms or approximation results for discrete harmonic maps into general target
manifolds.

Contributions of this work

Motivated by the definition of a discrete harmonic map into a given surface N and generalizing work
of [Alo97, Bar05b, BBFP07, BP07] for N = Sn−1, we employ the following iteration to compute

discrete harmonic maps of low energy. We denote by
◦
S 1(Th) the subspace of S1(Th) consisting

of functions that vanish on ΓD if this set is non-empty or have zero integral mean otherwise; πN

denotes the orthogonal or nearest-neighbor projection onto N which is well-defined in a small,
tubular neighborhood of N provided that N is C2.

Algorithm A. Input: triangulation Th, damping parameter κ > 0, stopping criterion ε > 0.

1. Choose u0
h ∈ S1(Th)n such that u0

h|ΓD
= uD,h and u0

h(z) ∈ N for all z ∈ Nh \ ΓD. Set
i := 0.

2. Compute wi
h ∈

◦
S1(Th)n such that wi

h(z) ∈ Tui
h(z)N for all z ∈ Nh and

(
∇Mh

wi
h;∇Mh

vh

)
= −

(
∇Mh

ui
h;∇Mh

vh

)

for all vh ∈
◦
S1(Th)n such that vh(z) ∈ Tui

h(z)N for all z ∈ Nh.

3. Stop if
∥∥∇Mh

wi
h

∥∥ ≤ ε.

4. Define ui+1
h ∈ S1(Th)n by setting

ui+1
h (z) := πN

(
ui

h(z) + κwi
h(z)

)

for all z ∈ Nh.

5. Set i := i+ 1 and go to (2).

Output: u∗h := ui
h.

Algorithm A can be derived by discretizing the H1 gradient flow of harmonic maps into N and
then κ is a time-step size while wi

h serves as an approximation of the time-derivative. Another
motivation of the iteration results from regarding wi

h as a correction of the given approximation ui
h

and a linearization of the condition ui
h(z) + κwi

h(z) ∈ N . In the latter derivation, κ is a damping
parameter rather than a time-step size. In both cases the steps of the algorithm can be summarized
by the loop:

linearize −→ update −→ project

The damping parameter κ is needed to guarantee that the nodal values of the update ui
h + κwi

h

belong to UδN
(N) so that the final step in the loop is well defined. The following theorem states that
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the iteration converges if κ = O(h). We always suppose that M is a smooth, compact, orientable
hypersurface in R

m which is either without boundary or a polyhedral subset of R
m−1 × {0}. For

brevity, we let d = m− 1 denote the dimension of M . The k-dimensional target manifold N ⊂ R
n

is assumed to be compact and without boundary but not necessarily orientable.

Theorem I. Suppose that d ≤ 4 and N is C3. There exist h-independent constants C ′, C ′′ > 0 such
that if κ ≤ C ′hmin and ε > 0 then Algorithm A is feasible and terminates within a finite number
of iterations. The output u∗h satisfies u∗h(z) ∈ N for all z ∈ Nh,

∥∥∇Mh
u∗h

∥∥ ≤ C ′′
∥∥∇Mh

u0
h

∥∥, and
(
∇Mh

uh;∇Mh
vh

)
= Resh(vh)

for all vh ∈ S1
D(Th)n such that vh(z) ∈ Tu∗

h(z)N for all z ∈ Nh and a bounded linear functional

Resh : S1
D(Th)n → R which satisfies

∣∣Resh(wh)
∣∣ ≤ ε

∥∥∇Mh
wh

∥∥ for all wh ∈ S1
D(Th)n.

The assumptions and assertion of Theorem A can be significantly improved if N = ∂C for a
bounded, open, convex set C ⊂ R

n and if Th is weakly acute, e.g., if d = 2, Th consists of triangles,
and sums of angles opposite to inner edges in Th are bounded by π whereas angles of triangles
opposite to boundary edges do not exceed π/2. In this case, using that πN : R

n \ C → N is non-
expanding, κ can be chosen of order one and we have C ′′ = 1. It is remarkable that Algorithm A
is globally convergent. While this guarantees that any choice of u0

h will lead to a discrete harmonic
map into N , it also explains that the iteration can be very slowly convergent. Nevertheless, once
a good approximation of a discrete harmonic map is available then local schemes such as Newton
iterations can be employed and we devise a scheme based on a combination of global and local
iterations which performs very efficiently in practice.

The proof of Theorem I exploits the fact that Algorithm A can be understood as a discretization
of the H1 gradient flow of harmonic maps and that πN is C2 with DπN (p)|TpN = id|TpN for all
p ∈ N . Proving convergence of a sequence of outputs of Algorithm A to a harmonic map into N
as h, ε → 0 is more involved and we provide a positive answer if M is two-dimensional and the
sequence of triangulations satisfies a restrictive angle condition:

(
Th

)
h>0

is said to be logarithmically
right-angled if for every ε > 0 there exists h0 > 0 such that for all 0 < h ≤ h0 and every triangle
K ∈ Th with inner angles αK,j ∈ [0, π], j = 1, 2, 3, we have minj=1,2,3 log h−1

min

∣∣ cosαK,j

∣∣ ≤ ε.
Sufficient for this is that for all h > 0 each K ∈ Th has a right angle. This notion of structured
triangulations permits us to prove the following result which guarantees that a bounded sequence
of outputs

(
u∗h

)
h>0

of Algorithm A accumulates at harmonic maps as h→ 0.

Theorem II. Suppose that d = 2 and N is C4. Let
(
Th

)
h>0

be a sequence of logarithmically right-

angled triangulations and for each h > 0 let uh ∈ S1(Th)n satisfy uh|ΓD
= uD,h and uh(z) ∈ N for

all z ∈ Nh. Assume that for each h > 0 there exists a linear functional Resh : S1
D(Th)n → R which

satisfies
∣∣Resh(wh)

∣∣ ≤ ε(h)
∥∥∇Mh

wh

∥∥ for all wh ∈ S1
D(Th)n and such that

(
∇Mh

uh;∇Mh
vh

)
= Resh(vh)

for all vh ∈ S1
D(Th)n satisfying vh(z) ∈ Tu∗

h(z)N for all z ∈ Nh. If
∥∥∇Mh

uh

∥∥ ≤ C, uD,h → uD in

L2(ΓD; Rn), and ε(h) → 0 as h → 0 then every weak accumulation point u ∈ W 1,2(M ; Rn) of the
lifted sequence

(
ũh

)
h>0

⊂W 1,2(M ; Rn) is a harmonic map into N satisfying u|ΓD
= uD.

The asymptotic right-angled condition allows the usage of highly graded, locally refined triangu-
lations but is restrictive in case of non-flat surfaces M . We show however that the condition is not
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necessary if the lifted sequence
(
ũh

)
h>0

is uniformly bounded in W 1,2+σ(M ; Rn) for some positive
σ. In view of this result, the angle condition appears to be a technical deficiency of the method
of proof rather than a necessary condition. If N = Sn−1 is the (n − 1)-dimensional unit sphere
then M does not have to be two-dimensional and any sequence of regular triangulations leads to
the assertion of Theorem II. We note that the existence of a harmonic map into N is implicitly
assumed by requiring that a sequence of lifted initial discrete vector fields

(
ũ0

h

)
h>0

is bounded in

W 1,2(M ; Rn).
The proof of Theorem II follows ideas from [FMS98, MSŠ97] and employs a discrete moving

frame to rewrite the discrete Euler-Lagrange equations as an equivalent Hodge system. A discrete
Coulomb gauge of the orthonormal frame leads to connection forms that are discrete divergence-free
if the underlying triangulation is right-angled. Therefore, on general triangulations a discrete Hodge
(or Helmholtz) decomposition of the connection forms that makes use of non-conforming finite
element spaces leads to non-vanishing gradient contributions. To show that corresponding terms in
the Hodge system vanish as h→ 0 we require the sequence of triangulations to be logarithmically
right-angled. The limit of the remaining part can be, owing to a Jacobian structure, identified with
weak concentration and compensation compactness principles based on results in [Lio85, Mül90,
CLMS93] together with the fact that the set of (discrete) harmonic fields on M is finite dimensional.
This non-trivial and critical limit passage implies the theorem.

We remark that a more direct weak compactness result recently given in [Riv07] may lead to a
sharper result than Theorem II since it avoids the use of a moving frame and only requires N to
be C2 regular. The repeated use of the product rule, however, makes it difficult to adapt the proof
to the finite element setting considered here.

Overview of the thesis

The outline of this work is as follows. In Chapter 1 we provide a variety of tools for the development
and analysis of numerical algorithms. Weak compactness results are the key towards proving con-
vergence of discrete harmonic maps and are discussed and appropriately adapted to finite element
settings in Chapter 2. Various local and global, fully practical iterative schemes that compute dis-
crete harmonic maps are devised and analysed in Chapter 3. Implementation issues together with
numerical experiments that study the efficiency as well as the reliability of the proposed algorithms
and investigate important effects such as finite-time blow-up and (discrete) geometric changes are
reported in Chapter 4. Short MATLAB realizations of some routines are displayed in Appendix A;
a summary of frequently used notation is provided in Appendix B.
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Chapter 1

Analytical and numerical tools

Finite element methods for the approximation of partial differential equations on surfaces have
become popular in recent years, cf., e.g., [Dzi88, BMN04, Car04, DR04, DDE05, BGN07]. In this
chapter we introduce Sobolev spaces on hypersurfaces and finite elements on discretized surfaces
and we develop various tools for their analysis such as weakly acute triangulations of surfaces and
Helmholtz decompositions of discrete tangential vector fields. In addition, we define orthogonal
projections onto surfaces which are not necessarily the boundaries of convex domains and we discuss
basic tools from differential geometry required in our analysis below. For readers familiar with these
techniques we provide a brief overview over the main results from the chapter in the first section
and refer to the corresponding parts of the chapter for references and details.

1.1 Overview of provided tools

Given a smooth, connected, compact, orientable hypersurface M ⊂ R
d+1 which is either flat or

has no boundary, the definition of Sobolev spaces on M is based on the concept of the tangential
gradient onM . For a smooth function φ : M → R and an extension φe of φ to an open neighborhood
of M , the tangential gradient is the column vector

∇Mφ := ∇φe −
(
∇φe · µ

)
µ

defined with the unit normal vector field µ on M . For a (not necessarily tangential) vector field
on M , its tangential gradient is the matrix whose rows coincide with the tangential gradients of its
components. For an approximation Mh of M consisting of d-simplices called elements contained
in a set Th, the discrete tangential gradient ∇Mh

φh is defined on each element separately. A
bijective transfer operator Ph : Mh → M allows to introduce a lifting operator that associates
to a given function φh on Mh a function φ̃h on M and stability of this operator holds in various
norms. The space S1(Th) consists of all Th-elementwise affine, globally continuous functions on Mh

and L0(Th) denotes the set of all Th-elementwise constant functions. The finite element stiffness
matrix corresponding to the Laplace-Beltrami operator on Mh is defined through the nodal basis(
ϕz : z ∈ Nh

)
of S1(Th) by

Kz,z′ :=

∫

Mh

∇Mh
ϕz · ∇Mh

ϕz′ dsh

for all pairs of nodes z, z′ ∈ Nh. If d = 2 then the off-diagonal entries in the matrix
(
Kz,z′

)
z,z′∈Nh

are non-positive if the sum of every pair of angles opposite to an inner edge E ∈ Eh does not exceed
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π and if all angles opposite to boundary edges are bounded by π/2. We say that the triangulation
Th is weakly acute if Kz,z′ ≤ 0 for all distinct pairs z, z′ ∈ Nh.

Important for the analysis of our numerical schemes is also a discrete product rule which asserts
that given two functions vh, wh ∈ S1(Th) and the nodal interpolant Ih

[
vhwh

]
of their product, it

holds that

∇Mh

[
vhwh

]
= A

(
vh

)
∇Mh

wh + A
(
wh

)
∇Mh

vh

with a matrix A(vh) ∈ R
d+1,d+1 that approaches vhI as the maximal mesh-size h tends to zero.

The matrix A(wh) is symmetric for d = 2 if and only if every triangle in Th has a right-angle.
Well-known inverse estimates also hold for finite elements on surfaces and the most important ones
are ∥∥∇Mh

vh

∥∥
Lp(Mh)

≤ Ch−1
min‖vh‖Lp(Mh), ‖ψh‖Lr(Mh) ≤ Ch

−d(1/p−1/r)
min ‖ψh‖Lp(Mh)

for all vh ∈ S1(Th), piecewise polynomial functions ψh ∈ L∞(Mh) (with uniformly bounded poly-
nomial degree), the minimal mesh-size hmin, and 1 ≤ p ≤ r ≤ ∞. For two-dimensional surfaces
Mh, a Helmholtz decomposition of discrete tangential vector fields in L0(Th)3, i.e., of mappings
ωh ∈ L0(Th)3 such that ωh · µh = 0 almost everywhere on Mh with a unit normal vector field µh

on Mh, is required as a technical tool and guarantees that there exist ah ∈ S1,NC(Th), bh ∈ S1(Th),
and Hh ∈ L0(Th)3 such that

ωh = ∇Mh
ah + CurlMh

bh +Hh.

Here, S1,NC(Th) is the non-conforming finite element space containing all Th-elementwise affine
functions on Mh that are continuous at midpoints of interelement boundaries in Th. The vector
field Hh belongs to a subset of L0(Th)3 whose dimension is bounded h-independently and is called
the set of discrete harmonic fields on Mh. Results on the well-posedness of the nearest-neighbor
projection

πN : UδN
(N) → N

in a tubular neighborhood UδN
(N) of a submanifold N ⊂ R

n generalize the well-known fact that
for boundaries N = ∂C of convex sets C the orthogonal projection πN : R

n \ C → N is well-
defined and non-expanding, i.e., Lipschitz-continuous with Lipschitz constant 1. We also discuss
the concept of parallelizable manifolds N , which guarantee existence of continuous orthonormal
bases of the tangent bundle TN . Parallelizability can always be assumed for C4 surfaces N and
leads to another equivalent characterization of harmonic maps. We also analyze weak accumulation
points of continuous, discrete vector fields assuming their nodal values in a surface N and show
that the limiting object has values in N almost everywhere. Finally, we prove two auxiliary results
from measure theory, which essentially state that the set of linear combinations of Dirac measures
is a closed subset of C(M)∗ with respect to the strong topology.

1.2 Sobolev spaces on hypersurfaces

Differential operators and Sobolev spaces on Riemannian manifolds and hypersurfaces have been
introduced and analyzed in [Heb96, Aub82, HK03, GT01]. Here, we assume that M ⊂ R

m is a
compact, smooth, orientable, (m − 1)-dimensional submanifold in R

m and provide the definitions
necessary for our purposes. For brevity, we set d := m−1. In order to avoid technical difficulties in
the definition of traces of functions on curved surfaces we assume that either M has no boundary
or M is a compact subset of R

d×{0} with Lipschitz continuous boundary. The adjective “smooth”
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stands for C∞ and this property of the submanifold M is assumed for simplicity. We note however
that all results discussed below can be established for C3 submanifolds M or for sufficiently regular
curved submanifolds with regular boundary as well.

We say that φ ∈ C(M) is differentiable along M if for every smooth local parametrization
f of M the function φ ◦ f is differentiable. Given a smooth, i.e., C∞, function φ : M → R we
let φe denote a differentiable extension of φ to an open neighborhood of M (e.g., by extending φ
constantly in normal direction) and define the surface gradient or tangential gradient ∇Mφ of φ
along M as the projection of the gradient of φe onto the tangent space of M by

∇Mφ := ∇φe −
(
∇φe · µ

)
µ.

Here ∇φe denotes the usual full m-dimensional gradient of φe and µ is a unit normal to M . For a
vector field ψ : M → R

ℓ, ∇M is applied to each component of ψ and then ∇Mψ denotes the matrix
whose rows coincide with the transpose of the surface gradients of the components of ψ. One easily
verifies that this definition is independent of the employed extension φe and we remark that in
coordinates the surface gradient can be computed without an extension of φ and is given by

∇Mφ =
d∑

i,j=1

gij∂j

(
φ ◦ f

)
∂if,

where f : Ω̂ → M for Ω̂ ⊂ R
d is a local C1 parametrization of M and gij are the entries of the

inverse of the matrix with entries gij := ∂if · ∂jf for 1 ≤ i, j ≤ d.
Throughout, we let ds denote the surface area element on M and (·; ·) the scalar product

in L2(M ; Rn), the space of all square integrable, vector valued Lebesgue functions on M with
corresponding norm ‖ · ‖. For a real number p ≥ 1 we let W 1,p(M) denote the completion of
C∞(M) under the norm

||φ||W 1,p(M) :=
(
‖φ‖p

Lp(M) +
∥∥∇Mφ

∥∥p

Lp(M)

)1/p
.

We denote by W 1,p
0 (M) the closure of C∞

c (M), defined as the set of all functions in C∞(M)
which have compact support in M , under the norm ‖ · ‖W 1,p(M). If ∂M = ∅ then we clearly have

W 1,p(M) = W 1,p
0 (M). As a consequence of the compactness of M , we notice that classical Sobolev

embeddings are valid.

Theorem 1.2.1. [Heb96, Proposition 2.4, Theorems 3.5, 3.6; p. 10–24] (i) For p > 1 the space
W 1,p(M) is reflexive.
(ii) For any 1 ≤ q < d such that 1/p = 1/q − 1/d and all φ ∈W 1,q(M) we have

||φ||Lp(M) ≤ Cd−1p(d− 1)||φ||W 1,q(M),

in particular, for p = dq/(d − q) we have p(d− 1)/d ≤ d2/(d − q).
(iii) For 1 ≤ q < d and 1/p > 1/q − 1/d the embedding W 1,q(M) →֒ Lp(M) is compact.

As in the Euclidean situation, the following Sobolev-Poincaré estimate is valid.

Theorem 1.2.2. [Heb96, Proposition 3.9, p. 26] For p, q such that 1 ≤ q < d and 1/p = 1/q− 1/d
there exists a constant C > 0 such that

‖φ− φ‖Lp(M) ≤ C
∥∥∇Mφ

∥∥
Lq(M)

for all φ ∈W 1,q(M) with integral mean φ = 1
Hd(M)

∫
M φds.
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The theorem implies ‖φ−φ‖L2(M) ≤ C
∥∥∇Mφ

∥∥
L2(M)

for all φ ∈W 1,2(M) owing to compactness

of M . If ∂M 6= ∅ then, by assumption, M is flat and we have that ‖φ‖L2(M) ≤ C
∥∥∇Mφ

∥∥
L2(M)

for all φ ∈ W 1,2
0 (M), cf., e.g., [Ada75]. If M is flat and we are given a closed subset ΓD ⊆ ∂M

of positive surface measure then we denote by W 1,p
D (M) the set of all functions in W 1,p(M) whose

traces vanish on ΓD.
The following lemma shows that the components of the surface gradient of a product of two

functions behave as if they were independent. This is not surprising since ∇M coincides with the
outer derivative for scalar valued functions.

Lemma 1.2.3. For a ∈ H1(M) let D1a,D2a, ...,Dma denote the entries of the vector field ∇Ma,
i.e.,

∇Ma =
[
D1a,D2a, ...,Dma

]T
.

For a, b ∈ H1(M) ∩ L∞(M) we have ab ∈ H1(M) ∩ L∞(M) and, for γ = 1, 2, ...,m,

Dγ(ab) = aDγb+ bDγa

almost everywhere on M .

Proof. Let ae, be be differentiable extensions of a and b to an open neighborhood of M . Then, by
definition of the surface gradient, we have

[
D1(ab),D2(ab), ...,Dm(ab)]T = ∇M (ab)

= ∇(aebe) −
(
µ⊗ µ

)
∇(aebe)

= a∇be + b∇ae − b
(
µ⊗ µ

)
∇ae − a

(
µ⊗ µ

)
∇be

= a∇Mb+ b∇Ma

= a
[
D1b,D2b, ...,Dmb

]T
+ b

[
D1a,D2b, ...,Dmb

]T

almost everywhere on M , which proves the asserted identity.

1.3 Triangulations of hypersurfaces

Given the hypersurface M as in the previous section, we consider a polyhedral hypersurface defined
through a set of non-degenerate d-simplices Th such that Mh := ∪K∈Th

K is a compact, orientable, d-
dimensional, Lipschitz continuous submanifold in R

m. We require that Mh has either no boundary
or is a subset of R

d×{0} with polyhedral boundary. In the latter case we assume that M = Mh. We
suppose that Th is a regular triangulation of Mh, i.e., K∩K ′ is either empty or an entire subsimplex
of K and K ′ for all distinct K,K ′ ∈ Th. We also suppose that the set of nodes Nh, which consists
of all vertices of elements in Th, is contained in M . Hence, Mh serves as an approximation of M .
In fact, by employing local parametrizations of M we verify that

dist(Mh,M) := sup
x∈Mh

dist(x,M) ≤ Ch2.

Here h := maxK∈Th
hK with hK := diam(K) for all K ∈ Th, is the maximal diameter of elements in

Th. We assume that Th satisfies a minimum angle condition and that each K ∈ Th is the image of
the scaled reference element

K̂ := hK conv
{
ẑ0, ẑ1, ..., ẑd

}
,
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under an affine bijection FK : K̂ → K. The vertices ẑ0, ẑ1, ..., ẑd ∈ R
d of K̂ are assumed to satisfy

ẑ0 = 0 and
(
ẑi

)
i=1,2,...,d

coincide with the canonical basis vectors in R
d. The following assumption

provides a tool to establish relations between M and Mh and we will always assume its validity.

Assumption (T). There exists a continuous bijection Ph : Mh → M such that Ph|K ∈ C2(K) is
a diffeomorphism between each K ∈ Th and K̃ := Ph(K) (i.e., Ph and P−1

h admits twice and once

continuously differentiable extensions to open neighborhoods of K and K̃, respectively) with

‖DPh‖L∞(K), ‖D2Ph‖L∞(K), ‖DP−1
h ‖

L∞( eK)
≤ C.

For smooth surfaces without boundary and for sufficiently small h we may use the orthogonal
(or nearest-neighbor) projection onto M to define Ph.

Remark 1.3.1. There exists a tubular neighborhood UδM
(M) of M such that the orthogonal pro-

jection
πM : UδM

(M) →M

is well-defined and smooth. If Mh ⊂ UδM
(M) and if h is sufficiently small, Ph := πM |Mh

satisfies
the requirements of Assumption (T), cf. Section 1.6 and [Dzi88, DD07] for details.

We remark that
(
K̃ : K ∈ Th

)
defines a partition of M and each K̃ is parametrized by the

mapping XK := Ph ◦ FK : K̂ → K̃. The operator Ph provided by Assumption (T) allows to lift
functions defined on Mh onto M .

Ph

−1X

F
K

K

K

K
K

Figure 1.1: Transformations between K̂, K, and K̃.

Definition 1.3.2. The lifting ṽ : M → R of v ∈ L1(Mh) is defined by

ṽ := v ◦ P−1
h .

We let dsh denote the surface area element on Mh and for functions f, g : Mh → R
ℓ we set

(f ; g) :=

∫

Mh

f · g dsh and ‖f‖ := (f ; f)1/2.

Lemma 1.3.3. Given v ∈ L1(Mh) and K ∈ Th we have
∫

K
v dsh =

∫

eK
ṽ

(
(Qh/Q) ◦ X−1

K

)
ds,

where Q2
h := detgh and Q2 := detg for gh :=

(
DFK

)T
DFK and g :=

(
DXK

)T
DXK , respectively.

5



Proof. Given v ∈ L1(Mh) and w ∈ L1(M) we have

∫

K
v dsh =

∫

bK
v ◦ FK Qh dx̂,

∫

eK
w ds =

∫

bK
w ◦ XK Qdx̂.

For w := ṽ
(
(Qh/Q) ◦ X−1

K

)
the second identity yields that

∫

eK
ṽ

(
(Qh/Q) ◦ X−1

K

)
ds =

∫

bK

(
ṽ ◦ XK

)
(Qh/Q)Qdx̂ =

∫

bK
v ◦ FK Qh dx̂

and this implies the assertion.

The limited regularity ofMh motivates the elementwise definition of the discrete surface gradient
on Mh.

Definition 1.3.4. Given φ ∈ C(Mh) such that φ|K ∈ C1(K) for all K ∈ Th we set

∇Mh
φ|K := ∇Mh

φe|K −
(
∇Mh

φe|K · µh|K
)
µh|K ,

for all K ∈ Th, where µh|K is a unit normal to K ⊂ Mh, and φe a differentiable extension of φ to
an open neighborhood of K.

The following lemma is taken from [Mek05]; similar results can be found in [Dzi88, DD07]. We
include the proof since some of the estimates therein will be useful in the sequel.

Lemma 1.3.5 ([Mek05]). Let v,w : Mh → R be Th-elementwise differentiable and globally contin-
uous functions with their liftings ṽ, w̃ : M → R from Definition 1.3.2. Then

∫

Mh

∇Mh
v · ∇Mh

w dsh −
∫

M
∇M ṽ · ∇M w̃ ds =

∫

M

(
Fh∇M ṽ

)
· ∇M w̃ ds

with Fh ∈ L∞(M ; Rd+1×d+1) independent of v,w and

sup
x∈M

|Fh(x)| ≤ ChK .

Proof. Let K ∈ Th and define v̂ : K̂ → R through v̂ := v ◦ FK . Set Gh := DFK and use that the
column vectors of Gh are tangent vectors to K, i.e., GT

h

(
µh ◦ F(x̂)

)
= 0. Then

∇̂v̂ = GT
h

(
(∇ve) ◦ FK

)
= GT

h

[(
∇ve − (∇ve · µh)µh

)
◦ FK

]
= GT

h

[
(∇Mh

v) ◦ FK

]
.

To keep notation short we omit the transformations and simply write

∇̂v̂ = GT
h∇Mh

v

for the previous identity. The matrix Ge
h ∈ R

(d+1)×(d+1) is defined by appending the unit normal
µh as an additional column to Gh, i.e.,

Ge
h :=

[
Gh µh

]
.
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Since FK is a regular parametrization of K, the matrix Gh has full rank and its columns are tangent
vectors to K. Thus, the matrix Ge

h is invertible and we set De
h := (Ge

h)−1. The matrix Dh is then
obtained by deleting the last row of De

h. We thereby obtain the identities

∇Mh
v =

(
Ge

hD
e
h

)T∇Mh
v = De T

h

[
∇̂v̂
0

]
= DT

h ∇̂v̂.

Set G := DXK , Ge :=
[
G µ

]
, De := (Ge)−1, and define D by deleting the last row of De. Then, in

fact, DeT =
[
DT µ

]
. Arguing as above, we infer that

∇̂v̂ = GT∇Mv and ∇M ṽ = DT∇̂v̂.

A combination of the previous identities reveals that

∇Mh
v =

(
GDh

)T∇M ṽ

and, upon incorporating Lemma 1.3.3,
∫

K
∇Mh

v · ∇Mh
w dsh =

∫

eK

((
GDh

)(
GDh

)T∇M ṽ
)
· ∇M w̃ (Qh/Q) ds

=

∫

eK
∇M ṽ · ∇M w̃ ds+

∫

eK

(
(Qh/Q)GDhD

T
h GT − I(d+1)×(d+1)

)
∇M ṽ · ∇M w̃ ds.

(3.1)

Since

I(d+1)×(d+1) =
(
Ge

)−1
Ge =

[
D
µT

]
[G µ] =

[
DG Dµ
µTG 1

]

and

I(d+1)×(d+1) = Ge
(
Ge

)−1
= [G µ]

[
D
µT

]
= GD + µ⊗ µ

we have that DG = Id×d, GD = I(d+1)×(d+1) − µ⊗ µ, and GD is symmetric. Therefore

GDDTGT = GD
(
GD

)T
= G

(
DG

)
D = GD = I(d+1)×(d+1) − µ⊗ µ.

Employing this identity in (3.1) and using that
(
µ⊗ µ

)
∇Mw = 0 we observe that

∫

K
∇Mh

v · ∇Mh
w dsh =

∫

eK
∇M ṽ · ∇M w̃ ds+

∫

eK

1

Q
GT

(
QhDhD

T
h −QDDT

)T
G∇M ṽ · ∇Mw ds.

Setting

Fh :=
1

Q
GT

(
QhDhD

T
h −QDDT

)
G

it only remains to prove the bound for Fh in order to complete the proof of the lemma. With the
identities proved above, one verifies that g−1 = (GTG)−1 = DDT and g−1

h = (GT
h Gh)−1 = DhD

T
h .

Therefore,

QhDhD
T
h −QDDT = Qhg

−1
h −Qg−1 = (Qh −Q)g−1

h +Qg−1
h (g − gh)g−1.

Uniform bounds for Gh and (through the assumptions on Ph also) for G imply

|g − gh| = |GTG −GT
h Gh| = |GT(G −Gh) + (G − Gh)TGh| ≤ C|G− Gh|.
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Since

Q−Qh =
Q2 −Q2

h

Q+Qh
=

detg − detgh

Q+Qh
, (3.2)

since the determinant is continuously differentiable, and since the fact that FK is the nodal inter-
polant of XK implies

sup
bx∈ bK

|Gh − G| = sup
bx∈ bK

|∇XK −∇FK | ≤ Ch
∥∥D2X

∥∥
L∞( bK)

,

we verify the asserted estimate.

Remark 1.3.6. Owing to the minimum angle condition guaranteed by the assumed regularity of
the triangulations and Assumption (T), the matrices D and Dh are uniformly bounded.

The following lemma provides stability estimates for the lifting operator in various norms,
cf. [Dzi88] for similar results.

Lemma 1.3.7. For 1 ≤ p ≤ ∞ and v ∈ Lp(Mh) we have

C−1‖v‖Lp(Mh) ≤
∥∥ṽ

∥∥
Lp(M)

≤ C‖v‖Lp(Mh),

and, if v|K ∈ C1(K) for all K ∈ Th, then

C−1
∥∥∇Mh

v
∥∥

Lp(Mh)
≤

∥∥∇M ṽ
∥∥

Lp(M)
≤ C

∥∥∇Mh
v
∥∥

Lp(Mh)
.

If K ∈ Th and v|K ∈ C2(K) then
∥∥D2

Mh
v
∥∥

L2(K)
≤ C

(∥∥D2
Mh
ṽ
∥∥

L2( eK)
+

∥∥∇M ṽ
∥∥

L2( eK)

)
,

where D2
Mh
v :=

(
Dh,γDh,δv

)
γ,δ=1,2,...,d+1

and D2
Mv :=

(
DγDδv

)
γ,δ=1,2,...,d+1

with Dh,γ and Dγ de-
noting the components of ∇Mh

and ∇M , respectively.

Proof. The first estimate follows directly from Lemma 1.3.3 by replacing v by |v|p with 1 ≤ p <∞.
For p = ∞ the estimate is an immediate consequence of the definition of ṽ. For K ∈ Th and v such
that v|K ∈ C1(K) we have, as in the proof of Lemma 1.3.5,

∇Mh
v =

(
GDh

)T∇M ṽ and ∇M ṽ =
(
GhD

)T∇Mh
v. (3.3)

Uniform bounds for G, Gh, D, and Dh imply the second estimate of the lemma. The identities
in (3.3) also imply that

Dh
γv =

d+1∑

j=1

(
GDh

)T
γδ
Dδ ṽ.

With Lemma 1.2.3 we thus verify that

∇Mh
Dh

γv =
(
GDh

)T∇M

[
Dh

γv
]

=

d+1∑

δ=1

(
GDh

)T∇M

[(
GDh

)T
γδ
Dγ ṽ

]

=
d+1∑

δ=1

(
GDh

)T[
Dδ ṽ∇M

(
GDh

)T
γδ

+
(
GDh

)T
γδ
Dδ∇M ṽ

]
.

Using that G, Dh, and ∇MGij are uniformly bounded we verify the assertion.
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Remark 1.3.8. For the particular choice Ph = πM |Mh
the third estimate of the previous lemma

can be improved in the sense that a factor h can introduced in front of the L2 norm of the gradient,
cf. [Dzi88].

1.4 Finite elements on triangulated surfaces

Given a regular triangulation Th that defines an approximation Mh of the hypersurface M as in
the previous section, we let Nh ⊂M denote the set of all nodes in Th (vertices of elements) and Eh

the set of all (d− 1)–dimensional subsimplices of elements in Th, i.e., edges of triangles if d = 2 or
faces of tetrahedra if d = 3. We define hK := diam(K) for all K ∈ Th and set h := maxK∈Th

hK .
Analogously, we write hE := diam(E) for all E ∈ Eh. The lowest order C0-conforming finite element
space S1(Th) subordinate to the triangulation Th consists of all globally continuous, Th-elementwise
affine functions and the space L0(Th) is the set of Th–elementwise constant functions on Mh, i.e.,

S1(Th) :=
{
φh ∈ C(Mh) : φh|K affine for all K ∈ Th

}
,

L0(Th) :=
{
vh ∈ L∞(Mh) : vh|K constant for all K ∈ Th

}
.

The nodal basis
(
ϕz : z ∈ Nh) of S1(Th) consists of the hat functions ϕz ∈ S1(Th) which satisfy

ϕz(z) = 1 and ϕz(z
′) = 0 for all distinct z, z′ ∈ Nh. We set ωz := suppϕz and hz := diam(ωz) for

all z ∈ Nh.

For a function φ ∈ C
(
Mh

)
its nodal interpolant Ihφ ∈ S1(Th) is defined by

Ihφ :=
∑

z∈Nh

φ(z)ϕz .

We also define an interpolation operator acting on continuous vector fields on Mh by applying
Ih to each component of the vector field. A routine application of the Bramble-Hilbert Lemma
[Cia02, BS02] shows that there exists a constant C > 0 such that for every φ ∈ C

(
Mh

)
with

φ|K ∈ C2(K) for all K ∈ Th the interpolation error satisfies for each K ∈ Th

h−2
K

∥∥φ− Ihφ
∥∥

L2(K)
+ h−1

K

∥∥∇Mh

(
φ− Ihφ

)∥∥
L2(K)

≤ C
∥∥D2

Mh
φ‖L2(K). (4.4)

In the following subsections we provide important tools used below.

1.4.1 Weakly acute triangulations

Some triangulations enable discrete monotonicity arguments. The following lemma defines such a
class known as weakly acute triangulations [Cia02] introduced here on two-dimensional surfaces.

Lemma 1.4.1. Suppose that d = 2 so that Th consists of triangles. Assume that for all K,K ′ ∈ Th

such that K ∩K ′ = E ∈ Eh that the sum of the inner angles α and α′ of K and K ′ opposite to E
satisfy α + α′ ≤ π. Assume that for all E ∈ Eh and K ∈ Th such that E = K ∩ ∂Mh the inner
angle α of K opposite to E satisfies α ≤ π/2. Then for all distinct z, z′ ∈ Nh we have

Kz,z′ :=

∫

Mh

∇Mh
ϕz · ∇Mh

ϕz′ dsh ≤ 0. (4.5)
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Proof. Since the intersection of the support of ϕz and ϕz′ is non-trivial if and only if z, z′ ∈ E for
some E ∈ Eh we may restrict to this case. Assume first that E = K ∩ K ′ for distinct K,K ′ ∈
Th. After appropriate translation, rotation, and dilation we may assume that z = A, z′ = B,
K = conv{A,B,C}, and K ′ = conv{A,B,D} with A = (0, 0, 0), B = (1, 0, 0), C = (ξ,−η, 0), and
D = (a, b, c) for ξ, η, a, b, c ∈ R such that ξ > 0 and if c = 0 then b > 0, cf. Figure 1.2.

B

A

D

K

K’

E

C

D’

α

’α

Figure 1.2: Two elements K,K ′ ∈ Th sharing an inner edge E = conv{z, z′} ∈
Eh where z = A and z′ = B.

One directly verifies that

∇Mh
ϕz |K =

[
−1 (1 − ξ)/η 0

]T
, ∇Mh

ϕz′ |K =
[
1 ξ/η 0

]T
, H2(K) = η/2.

To compute the surface gradients on K ′, assume that b 6= 0 (the case b = 0 is actually simpler, since
then ∇Mh

=
[
∂1 0 ∂3

]
, but leads to the same formula given below), set D′ := (a, b, 0), and define

the tetrahedron K̃ ′ := conv{A,B,D,D′}. Then, extending ϕz and ϕz′ in such a way to functions
ϕe

z and ϕe
z′ that they are affine on K̃ ′ and vanish at D′, we infer

∇ϕe
z| eK ′

=
[
−1 (a− 1)/b 0

]T
, ∇ϕe

z′ | eK ′
=

[
1 − a/b 0

]T
.

Since the unit normal to K ′ is (up to a sign) given by µh|K ′ =
[
0 −c b

]T
/δ, where δ2 := b2 + c2,

the definition of the surface gradient shows

∇Mh
ϕz|K ′ =

(
I3×3 − µh ⊗ µh

)
∇ϕe

z =
1

δ2



δ2 0 0
0 b2 bc
0 bc c2







−1
(a− 1)/b

0


 =

1

δ2




−δ2
b(a− 1)
c(a− 1)




and a similar calculation shows ∇Mh
ϕz′ |K ′ = 1

δ2

[
δ2 −ab −ac

]T
. Noting also that H2(K ′) = δ/2 we

find

H2(K)∇Mh
ϕz |K · ∇Mh

ϕz′ |K =
1

2
η
(
− 1 + ξ(1 − ξ)/η2

)
,

H2(K ′)∇Mh
ϕz|K ′ · ∇Mh

ϕz′ |K ′ =
1

2
δ
(
− 1 + a(1 − a)/δ2

)
.

The trigonometric identity cotα = cot(α1 + α2) = (cotα1 cotα2 − 1)/(cot α1 + cotα2) implies

cotα = η
(
1 − ξ(1 − ξ)/η2

)
, cotα′ = δ

(
1 − a(1 − a)/δ2

)
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so that we verify, upon combining the previous identities,
∫

K∪K ′

∇Mh
ϕz · ∇Mh

ϕz′ dsh = −1

2

(
cotα+ cotα′

)
.

Employing that cotα+cotα′ = sin(α+α′)/(sinα sinα′) proves the assertion for pairs of nodes that
are connected by an inner edge. The case of a boundary edge E ⊂ ∂Mh follows from the above
calculations.

The previous lemma motivates the following definition.

Definition 1.4.2. We say that a regular triangulation Th is weakly acute if Kz,z′ ≤ 0 for all
distinct z, z′ ∈ Nh.

Remarks 1.4.3. (i) By Lemma 1.4.1 a triangulation of a two-dimensional surface is weakly acute
if every sum of angles opposite to an inner edge is bounded by π and every angle opposite to an edge
on the boundary is bounded by π/2. The proof of Lemma 1.4.1 shows that this characterization is
sharp. For three-dimensional triangulations this is more involved, cf. [KK01, KK03]. A sufficient
condition is that all angles between faces of tetrahedra are bounded by π/2.
(ii) A regular triangulation Th consisting of triangles can always be refined in such a way that the re-
sulting triangulation is weakly acute either by “edge-flipping” or performing a Delauney refinement,
see [She02].

Lemma 1.4.4. Let vh ∈ S1(Th). Then, with Kz,z′ as in the previous lemma (where z = z′ ∈ Nh is
allowed in (4.5)) we have

∥∥∇Mh
vh

∥∥2
= −1

2

∑

z,z′∈Nh

Kz,z′ |vh(z) − vh(z′)|2.

Proof. Notice that Kz,z′ = Kz′,z and
∑

z′∈Nh
Kz,z′ = 0 owing to

∑
z′∈Nh

ϕz′ ≡ 1. Hence,

∥∥∇Mh
vh

∥∥2
=

∑

z,z′∈Nh

Kz,z′vh(z)vh(z′)

=
∑

z,z′∈Nh

Kz,z′vh(z)
(
vh(z′) − vh(z)

)

=
1

2

∑

z,z′∈Nh

Kz,z′vh(z)
(
vh(z′) − vh(z)

)
+

1

2

∑

z,z′∈Nh

Kz,z′vh(z′)
(
vh(z) − vh(z′)

)

= −1

2

∑

z,z′∈Nh

Kz,z′
(
vh(z′) − vh(z)

)2
.

This proves the statement.

Remark 1.4.5. More generally, the proof of the lemma shows that we have

(
∇Mh

vh;∇Mh
wh

)
= −1

2

∑

z,z′∈Nh

Kz,z′
(
vh(z) − vh(z′)

)(
wh(z) − wh(z′)

)

for vh, wh ∈ S1(Th).

11



1.4.2 Discrete product rule

Below we will need the following discrete product rule for finite elements. We generalize the
argumentation of [BN04] to finite elements on non–flat surfaces.

Lemma 1.4.6. There exists a linear operator A : S1(Th) → L0(Th)(d+1)×(d+1) such that for all
vh, wh ∈ S1(Th) the identity

∇Mh
Ih

[
vhwh

]
= A

(
vh

)
∇Mh

wh + A
(
wh

)
∇Mh

vh

holds almost everywhere on Mh. For all K ∈ Th we have

∥∥A(vh) − vhI(d+1)×(d+1)

∥∥
L∞(K)

≤ ChK

∥∥∇vh

∥∥
L∞(K)

.

Proof. Let K ∈ Th and set v̂h := vh ◦ FK , ŵh := wh ◦ FK , and Îh

[
v̂hŵh

]
:= Ih

[
vhwh

]
◦ FK . Then,

for γ = 1, 2, ..., d, the choice of K̂ (cf. Section 1.3) implies

∂̂γ Îh

[
v̂hŵh

]
=

(
v̂h(ẑγ)ŵh(ẑγ) − v̂h(ẑ0)ŵh(ẑ0)

)
/hK

=
1

2

(
v̂h(ẑ0) + v̂h(ẑγ)

)(
ŵh(ẑγ) − ŵh(ẑ0)

)
/hK +

1

2

(
ŵh(ẑγ) + ŵh(ẑ0)

)(
v̂h(ẑγ) − v̂h(ẑ0)

)
/hK

=: Âγγ
(
v̂h

)
∂̂γŵh + Âγγ

(
ŵh

)
∂̂γ v̂h.

Here we used that K̂ = hK conv{ẑ0, ẑ1, ..., ẑd}, ẑ0 = 0, and that the vectors ẑ1, ..., ẑd coincide with
the canonical basis of R

d. Since

∇Mh
φh = DT

h ∇̂φ̂h and ∇̂φ̂h = GT
h∇Mh

φh

(cf. the proof of Lemma 1.3.5) for all φh ∈ S1(Th) and φ̂h = φh ◦ FK , the asserted identity follows
from

A(vh) := DT
h Â(v̂h)GT

h + vh(µh ⊗ µh)

for the diagonal matrix Â(v̂h) ∈ R
d×d with entries given by

(
v̂h(ẑ0) + v̂h(ẑγ)

)
/2 for γ = 1, 2, ..., d

and for a unit normal µh of K. Arguing as in the proof of Lemma 1.3.5 we infer that

I(d+1)×(d+1) − µh ⊗ µh = GhDh =
(
GhDh

)T
= DT

h GT
h .

Therefore, we have

∥∥A(vh) − vhI(d+1)×(d+1)

∥∥
L∞(K)

=
∥∥A(vh) − vhD

T
h GT

h − vh(µh ⊗ µh)
∥∥

L∞(K)

=
∥∥DT

h

(
Â(v̂h) − vhId×d

)
GT

h

∥∥
L∞(K)

.

For γ = 1, 2, ..., d the function

x̂ 7→ Âγγ
(
v̂h

)
− v̂(x̂)

vanishes at x̂ = 1
2

(
ẑγ + ẑ0

)
. A discrete Poincaré estimate and a transformation argument thus

imply the asserted estimate since |Gh|, |Dh| ≤ C uniformly in h.
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Lemma 1.4.7. Suppose that d = 2 and let A : S1(Th) → L0(Th)3×3 be as in the previous lemma.
Then, for vh ∈ S1(Th) and K ∈ Th we have

∥∥A
(
vh

)
−AT

(
vh

)∥∥
L∞(K)

≤ C min
γ=1,2,3

| cosαK,γ | ‖vh‖L∞(K),

where αK,γ, γ = 1, 2, ..., d + 1 are the interior angles of the triangle K. In particular, A(vh)|K is
symmetric if K has a right angle.

Proof. For K = conv{z0, z1, z2} we can scale K̂ so that the transformation FK : K̂ → K is given
by FK(x̂) = z0 + Ghx̂ for x̂ ∈ K̂ and the matrix Gh ∈ R

3×2 is given by

Gh =
[
h−1

E1

(
z1 − z0

)
h−1

E2

(
z2 − z0

)]
,

where hEγ :=
∣∣zγ − z0

∣∣. Then, if as in the proof of Lemma 1.3.5, µh is a unit normal to K,

De
h =

[
Gh µh

]−1
, and Dh is obtained by deleting the last row of De

h, we have with

A
(
vh

)
= DT

h Â
(
v̂h

)
GT

h + vhµh ⊗ µh

that

A
(
vh

)
− AT

(
vh

)
= DT

h Â
(
v̂h

)
GT

h − GhÂ
(
v̂h

)
Dh

=
(
DT

h − Gh

)
Â

(
v̂h

)
GT

h + GhÂ
(
v̂h

)(
GT

h − Dh

)
.

We then notice, using the definition of De
h and realizing that it is uniformly bounded, that

∣∣Dh − GT
h

∣∣ ≤ C
∣∣De

h −
[
Gh µh

]T∣∣

= C
∣∣De

h

(
I(d+1)×(d+1) −

[
Gh µh

][
Gh µh

]T)∣∣

≤ C
∣∣I(d+1)×(d+1) −

[
Gh µh

][
Gh µh

]T∣∣.

From the definition of Gh and the fact that µh is orthogonal to K we find

[
Gh µh

][
Gh µh

]T
=




1 cosαK 0
cosαK 1 0

0 0 1




where αK is the inner angle of K between the vectors z1 − z0 and z2 − z0. Since we can interchange
the role of the nodes we verify the assertion.

Definition 1.4.8. A sequence of triangulations
(
Th

)
h>0

consisting of triangles is called logarith-
mically right-angled if

lim
h→0

log h−1
min sup

K∈Th

inf
γ=1,2,3

| cosαK,γ | = 0,

where αK,γ, γ = 1, 2, 3, are the interior angles of the triangle K ∈ Th.
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1.4.3 Inverse inequalities and reduced integration

We will frequently employ the following inverse inequalities.

Lemma 1.4.9. Suppose that d ≥ 2 and hmin ≤ 1. For vh ∈ S1(Th), a Th–elementwise polynomial
function ψh ∈ Lp(Mh), and 1 ≤ p ≤ r ≤ ∞ we have

∥∥∇Mh
vh

∥∥
Lp(K)

≤ Ch−1
K ‖vh‖Lp(K)

and

‖ψh‖Lr(Mh) ≤ Ch
−d(1/p−1/r)
min ‖ψh‖Lp(Mh)

and

‖vh‖L∞(Mh) ≤ Ch
1−d/2
min log h−1

min

∥∥∇Mh
vh

∥∥
L2(Mh)

,

where C depends on the polynomial degree of ψh.

Proof. The first estimate follows directly from a compactness and a scaling argument. For the
proof of the second estimate we also employ a local scaling argument and the fact that ‖ψh‖Lp(K) ≤
‖ψh‖Lp(Mh) for K ⊂Mh to verify that if r <∞ we have

‖ψh‖r
Lr(Mh) =

∑

K∈Th

‖ψh‖r
Lr(K) ≤ C

∑

K∈Th

h
−rd(1/p−1/r)
K ‖ψh‖r

Lp(K)

≤ Ch
−rd(1/p−1/r)
min max

K∈Th

‖ψh‖r−p
Lp(K)

∑

K∈Th

‖ψh‖p
Lp(K) ≤ Ch

−rd(1/p−1/r)
min ‖ψh‖r

Lp(Mh).

The case r = ∞ follows from obvious modifications. The Sobolev estimate of Theorem 1.2.1
guarantees that for 1 ≤ q < d and p = dq/(d − q) we have

‖vh‖Lp(Mh) ≤ C‖ṽh‖Lp(M) ≤ C(d− q)−1‖∇M ṽh‖Lq(M) ≤ C(d− q)−1‖∇Mh
vh‖Ld(Mh)

where we also used stability properties of the lifting operator provided by Lemma 1.3.7. For
q = d −

∣∣ log hmin

∣∣−1
we have p = | log hmin|dq and by the second estimate of the lemma with

r = ∞
‖vh‖L∞(Mh) ≤ Ch

−(| log hmin|q)−1

min ‖vh‖Lp(Mh) ≤ Ch
−| log hmin|−1

min ‖vh‖Lp(Mh),

where we used q ≥ 1 in the last inequality. We notice that if hmin ≤ 1 then log hmin = −| log hmin|
and hence

h
−| log hmin|−1

min = exp
(
| log hmin|−1| log hmin|

)
= exp(1).

The combination of the previous estimates with the inverse estimate

∥∥∇Mh
vh

∥∥
Ld(Mh)

≤ Ch
1−d/2
min

∥∥∇Mh
vh

∥∥
L2(Mh)

as above proves the third estimate and completes the proof of the lemma.

The following definition introduces reduced or numerical integration which enables control over
nodal values of finite element functions.
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Definition 1.4.10. For functions or vector fields φ,ψ ∈ C
(
Mh; Rℓ

)
, ℓ ∈ N, we define the discrete

inner product on Th by setting

(
φ;ψ

)
h
:=

∫

Mh

Ih

[
φ · ψ

]
dsh =

∑

z∈Nh

βzφ(z) · ψ(z),

where βz :=
∫
Mh

ϕz dsh. We also define

‖φ‖h :=
(
φ;φ

)1/2

h
.

One directly shows that the estimates

‖φh‖ ≤ ‖φh‖h ≤ C‖φh‖

are satisfied for all φh ∈ S1(Th). Results on nodal interpolation imply that
∣∣(φh;ψh

)
h
−

(
φh;ψh

)∣∣ ≤ Ch ‖φh‖
∥∥∇Mh

ψh

∥∥

for all φh, ψh ∈ S1(Th)ℓ. We remark that owing to the assumed minimum angle condition we have
for φh ∈ S1(Th)ℓ and 1 ≤ p <∞ that

C−1‖φh‖p
Lp(Mh) ≤

∑

z∈Nh

hd
z |φh(z)|p ≤ C‖φh‖p

Lp(Mh). (4.6)

For proofs of the estimates we refer to [CT85, GR92].

Remark 1.4.11. Reduced integration has a stabilizing effect immediately illustrated in one space
dimension [BCPP04]: For a partition of the interval (0, 1) into intervals Kj = [zj−1, zj ] of length
hj := zj − zj−1 for j = 1, ..., J and 0 = z0 < z1 < ... < zJ = 1 we have

(
vh;wh

)
h

=
(
vh;wh

)
+

1

6

∫

(0,1)
h2
Th
v′hw

′
h dx,

for all vh, wh ∈ S1(Th) where hTh
|Kj = hj.

1.5 Decomposition of discrete tangential vector fields

As a technical tool we will need to decompose discrete tangential vector fields on surfaces into
a (discrete) divergence-free and a rotation-free part. This requires the use of non-standard, non-
conforming finite element spaces. Related results are given in [AFW97] but since the author is
unaware of a reference for the assertions in a periodic or non-flat setting required here, short proofs
of the results are included.

1.5.1 Discrete Helmholtz decomposition on the two-dimensional torus

We assume that d = 2 and consider a flat, periodic setting first, i.e., we let

M = Mh = T
2 = R

2/Z2. (5.7)

In this case we write ∇M = ∇ =
(

∂
∂x1

, ∂
∂x2

)
= (∂1, ∂2) and we use ∇Mh

to denote the elementwise

application of ∇ to an elementwise differentiable function. Moreover, we will consider [0, 1]2 as the
fundamental domain of T

2.
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Definition 1.5.1. A triangulation Th of T
2 is a regular triangulation of [0, 1]2 such that for each

node z ∈ [0, 1] × {0} ∪ {0} × [0, 1] there exists a node z′ ∈ [0, 1] ×{1} ∪ {1} × [0, 1] satisfying either
z = z′ + (1, 0) or z = z′ + (0, 1). Such two nodes are identified and we set

S1
#(Th) :=

{
vh ∈ S1(Th) : vh|(0,1)×{0} = vh|(0,1)×{1} and vh|{0}×(0,1) = vh|{1}×(0,1)

}
.

Two edges E,E′ ∈ Eh such that E = E′ + (1, 0) or E = E′ + (0, 1) are identified and all edges
E ∈ Eh are called interior edges.
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Figure 1.3: Example of an admissible triangulation of T
2. Nodes and edges

along the shaded sides can be eliminated via identification with nodes and
edges on the opposite sides.

In the following we assume that Th is a regular triangulation of T
2 in the sense of the previous

definition.

Definition 1.5.2. (i) For v ∈ C1(T2; R) the vectorial curl of v, denoted Curl v, is defined by

Curl v :=
(
− ∂2v, ∂1v

)T
=

[
0 −1
1 0

]
∇v.

(ii) For ψ =
(
ψ1, ψ2

)
∈ C1(T2; R2) the scalar curl of ψ, denoted curlψ, is defined by

curlψ := ∂1ψ2 − ∂2ψ1 = div

[
0 −1
1 0

]T

ψ.

(iii) For w ∈ L1(T2; R) such that w|K ∈ C1(K) for all K ∈ Th the Th-elementwise vectorial curl of
w, denoted CurlTh

w, is defined by elementwise application of Curl, i.e., for each K ∈ Th we have

(
CurlTh

w
)
|K := Curlw|K .

The finite element space introduced in the following definition is known as the (non-conforming)
Crouzeix-Raviart finite element space, cf. [CR73].

Definition 1.5.3. For each edge E ∈ Eh let zE denote the midpoint of E. Then, define

S1,NC
# (Th) :=

{
vh ∈ L∞(T2) : vh|K is affine for all K ∈ Th

and vh is continuous at zE for all E ∈ Eh

}
.
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Lemma 1.5.4. Given ah ∈ S1
#(Th) and bh ∈ S1,NC

# (Th) we have

(
∇ah; CurlTh

bh
)

= 0.

Proof. A Th-elementwise application of Stokes’ theorem, the identity curl∇ah ≡ 0, and the fact
that the tangential component of ∇ah is continuous across E for each E ∈ Eh show

(
∇ah; CurlTh

bh
)

=
∑

K∈Th

{ ∫

K

(
curl∇ah

)
bh dx+

∫

∂K

(
∇ah · τK

)
bh dt

}

=
∑

E∈Eh

∫

E

(
∇ah · τE

)[
bh

]
dt,

where τK , τE are unit tangent vectors to ∂K for K ∈ Th and to E ∈ Eh, respectively, and
[
bh

]

denotes the jump of bh across an edge E ∈ Eh. Since bh is continuous at zE we have
∫
E

[
bh

]
dt = 0

for each E ∈ Eh. Upon noting that ∇ah · τE is constant on each edge E ∈ Eh we verify the assertion
of the lemma.

Definition 1.5.5. The space of discrete harmonic fields is defined by

H#(Th; R2) :=
{
Hh ∈ L0(Th)2 :

(
Hh; CurlTh

wh

)
= 0 for all wh ∈ S1,NC

# (Th)

and
(
Hh;∇vh

)
= 0 for all vh ∈ S1

#(Th)
}
.

Lemma 1.5.6. It holds dimH#(Th; R2) = 2.

Proof. In this proof we do not identify edges or nodes that could be eliminated through periodicity.
Obviously, the dimension of L0(Th)2 equals 2 card Th. We let Eh,# and Nh,# be the sets containing
the edges and nodes on the sides [0, 1]×{0} and {0}× [0, 1] that can be eliminated via identification
with edges and nodes on the opposite side of (0, 1)2 according to periodicity. Since each edge belongs
to two nodes we have that

card Eh,# = cardNh,# − 1.

Moreover, we have
dimS1

#(Th) = cardNh − cardNh,#

and
dimS1,NC

# (Th) = card Eh − card Eh,#.

The condition that (
Hh;∇vh

)
= 0

is satisfied for all vh ∈ S1
#(Th) imposes dimS1

#(Th)−1 linearly independent conditions on a function

Hh ∈ L0(Th)2. Indeed, suppose for a contradiction that there exists v∗h ∈ S1
#(Th) with

(
ψh;∇v∗h

)
= 0

for all ψh ∈ L0(Th)2. In particular, for ψh = ∇v∗h it follows
∥∥∇v∗h

∥∥ = 0, which implies that v∗h is
constant and thus the assertion on the number of linearly independent conditions. Similarly, using
that CurlTh

wh ∈ L0(Th)2 for all wh ∈ S1,NC
# (Th), we find that the condition

(
Hh; CurlTh

wh

)
= 0

17



for all wh ∈ S1,NC
# (Th) imposes dimS1,NC

# (Th) − 1 linearly independent conditions. It remains to
show that the two conditions are mutually linearly independent. If the second condition depends
on the first one then there exists w∗

h ∈ S1,NC
# (Th) such that

(
ψh; CurlTh

w∗
h

)
= 0

is satisfied for all ψh ∈ L0(Th)2 with
(
ψh;∇vh

)
= 0 for all vh ∈ S1

#(Th). Since CurlTh
w∗

h satisfies(
CurlTh

w∗
h;∇vh

)
= 0 for all vh ∈ S1

#(Th) we deduce that w∗
h is constant and this implies the linear

independence. The converse statement is analogous.
On combining the above identities and using Euler’s identity

cardNh − card Eh + card Th = 1

we find that

dimH#(Th; R2) = 2 card Th −
(
dimS1

#(Th) − 1
)
−

(
dimS1,NC

# (Th) − 1
)

= 2card Th − cardNh + cardNh,# − card Eh + card Eh,# + 2

= 2 card Th − cardNh − card Eh + 2card Eh,# + 3

= 3 card Th − 2 card Eh + 2card Eh,# + 2

= 2.

Here we used
3 card Th −

(
card Eh − card Eh,#

)
= card Eh − card Eh,#

in the last identity. For a proof of the latter equation notice that both sides equal the dimension
of S1,NC

# (Th).

With the preparations of the previous lemmas we are able to provide the following orthogonal
decomposition of two-dimensional, Th-elementwise constant, periodic vector fields.

Proposition 1.5.7. Let ωh ∈ L0(Th)2. Then there exist uniquely defined ah ∈ S1
#(Th), bh ∈

S1,NC
# (Th), and Hh ∈ H#(Th; R2) such that

∫
Mh

ah dx = 0,
∫
Mh

bh dx = 0, and

ωh = ∇ah + CurlTh
bh +Hh.

Moreover,
‖ωh‖2 =

∥∥∇ah

∥∥2
+

∥∥CurlTh
bh

∥∥2
+

∥∥Hh

∥∥2

and (
ωh;∇vh

)
=

(
∇ah;∇vh

)

for all vh ∈ S1
#(Th).

Proof. Let ah ∈ S1
#(Th) be the uniquely defined function that satisfies

∫
Mh

ah dx = 0 and

(
∇ah;∇vh

)
=

(
ωh;∇vh

)

for all vh ∈ S1
#(Th). Let bh be the uniquely defined function in S1,NC

# (Th) such that
∫
Mh

bh dx = 0
and (

CurlTh
bh; CurlTh

wh

)
=

(
ωh; CurlTh

wh

)

18



for all wh ∈ S1,NC
# (Th). Define Hh := ωh − ∇ah − CurlTh

bh. Then, using Lemma 1.5.4 and the
definition of bh we find

(
Hh; CurlTh

wh

)
=

(
ωh − CurlTh

bh; CurlTh
wh

)
−

(
∇ah; CurlTh

wh

)
= 0

for all wh ∈ S1,NC
# (Th). Similarly, we deduce that

(
Hh;∇vh

)
=

(
ωh −∇ah;∇vh

)
−

(
CurlTh

bh;∇vh

)
= 0

for all vh ∈ S1
#(Th). This proves that Hh ∈ H#(Th; R2). With the above identities we verify that

‖ωh‖2 =
(
ωh;∇ah

)
+

(
ωh; CurlTh

bh
)

+
(
ωh;Hh

)

=
∥∥∇ah

∥∥2
+

∥∥CurlTh
bh

∥∥2
+

∥∥Hh

∥∥2
,

which finishes the proof of the lemma.

A so-called averaging or recovery operator Ah : L1(T2) → S1
#(Th) is defined in the following

lemma and allows to approximate a discontinuous function ̺h ∈ L1(T2) by a continuous function
Ah̺h ∈ S1

#(Th). We refer to [Car99, CB02] for related assertions and estimates.

Lemma 1.5.8. Given f ∈ L1(T2) define Ahf ∈ S1
#(Th) by

Ahf :=
∑

z∈Nh

fzϕz, fz := H2(ωz)
−1

∫

ωz

f dx.

There exists C > 0 such that for all wh ∈ S1,NC
# (Th) we have

∥∥wh −Ahwh

∥∥
L2(ωz)

≤ Chz

∥∥∇Mh
wh

∥∥
L2(bωz)

for all z ∈ Nh and ω̂z := ∪y∈Nh∩ωzωy, and

∥∥h−1
Th

(
wh −Ahwh

)∥∥ ≤ C
∥∥∇Mh

wh

∥∥,

where hTh
∈ L∞(Mh) satisfies hTh

|K = hK for all K ∈ Th. Here, ∇Mh
wh is defined elementwise.

Proof. The first estimate follows from a compactness argument: Let z ∈ Nh and suppose that
wh ∈ S1,NC

# (Th) is such that ∇Mh
wh|bωz

= 0. Then wh is constant on ω̂z. By definition of ω̂z we
deduce that Ahwh is constant on the smaller set ωz and in particular

∥∥wh −Ahwh

∥∥
L2(ωz)

= 0.

A compactness and a scaling argument then provide the first estimate. The second estimate is
an immediate consequence of the first one upon noting that the coverings

(
ωz : z ∈ Nh

)
and(

ω̂z : z ∈ Nh

)
have finite overlaps and that C−1hK ≤ hz ≤ ChK for K ∈ Th and z ∈ Nh such that

K ⊂ ωz.
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1.5.2 Decomposition of tangential vector fields on triangulated two-dimensional

hypersurfaces

We briefly indicate necessary changes in the above discussion to define a discrete Helmholtz decom-
position on triangulated hypersurfaces without boundary. Throughout this subsection Th denotes a
triangulation that defines the hypersurfaceMh which serves as an approximation of the submanifold
M as in Section 1.3.

Definition 1.5.9. For each edge E ∈ Eh let zE denote the midpoint of E and define

S1,NC(Th) :=
{
vh ∈ L∞(Mh) : vh|K is affine for all K ∈ Th

and vh is continuous at zE for all E ∈ Eh

}
.

For wh ∈ S1,NC(Th) we define the Th–elementwise constant, tangential vector field CurlMh
wh on

Mh by
CurlMh

wh|K := µh|K ×∇Mh
wh|K ,

for each K ∈ Th and where µh is a unit normal to Mh defined on each K ∈ Th. Moreover, we
define the set of discrete harmonic fields on Mh by

H(Th; R3) :=
{
Hh ∈ L0(Th)3 : Hh · µh = 0 almost everywhere on Mh,

(
Hh; CurlMh

wh

)
= 0 for all wh ∈ S1,NC(Th),

(
Hh;∇Mh

vh

)
= 0 for all vh ∈ S1(Th)

}
.

As in the flat situation we have the following orthogonality.

Lemma 1.5.10. For ah ∈ S1(Th) and bh ∈ S1,NC(Th) we have
(
∇Mh

ah; CurlMh
bh

)
= 0.

Proof. The identity follows from a Th-elementwise integration by parts on Mh; we refer the reader
to [DDE05, CDD+04, GT01] for details on integration by parts on surfaces with boundary. Using
that ∇Mh

ah and CurlMh
bh are tangential vector fields and that the derivative of ah along an edge

E ∈ Eh is continuous we have
(
∇Mh

ah; CurlMh
bh

)
= −

(
µh ×∇Mh

ah;∇Mh
bh

)

=
∑

K∈Th

∫

K
divMh

(
µh ×∇Mh

ah

)
bh dsh −

∑

K∈Th

∫

∂K

(
µh ×∇Mh

ah

)
· µco

h bh dt

=
∑

K∈Th

∫

∂K

(
∇Mh

ah ·
(
µh × µco

h

))
bh dt

=
∑

K∈Th

∫

∂K

(
∇Mh

ah · τK
)
bh dt

=
∑

E∈Eh

∫

E

(
∇Mh

ah · τE
)[
bh

]
dt,

where µco
h = τK × µh|K denotes the co-normal to K on ∂K and

[
bh

]
the jump of bh across an edge

E ∈ Eh. Since
[
bh

]
has vanishing integral mean we verify the assertion.
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The dimension of the discrete harmonic fields on Mh depends on the topology of Mh through
the Euler characteristic of Mh. In the following proof it is important to notice that

∥∥∇Mh
ah

∥∥ = 0
and

∥∥CurlMh
bh

∥∥ = 0 for ah ∈ S1(Th) and bh ∈ S1,NC(Th) imply that ah and bh are constant on
Mh.

Lemma 1.5.11. Suppose that M and Mh are topologically equivalent in the sense that their Euler
characteristics XM and XMh

coincide. Then, the dimension of H(Th; R3) equals 2 −XM .

Proof. The proof follows the lines of the proof of Lemma 1.5.6 with the difference that

dimS1(Th) = cardNh and dimS1,NC(Th) = card Eh

and that Euler’s identity reads [Sta86]

cardNh − card Eh + card Th = XMh
= XM

Therefore,

dimH(Th; R2) = 2 card Th −
(
dimS1(Th) − 1

)
−

(
dimS1,NC(Th) − 1

)

= 2card Th − cardNh − card Eh + 2

= 3 card Th − 2 card Eh + 2 −XM

= 2 −XM .

For the last identity we used that the identity

3 card Th − card Eh = card Eh.

holds since both sides of the equation equal the number of degrees of freedom in S1,NC(Th).

Remark 1.5.12. For the two-dimensional sphere we have XM = 2 while for a two-dimensional
torus we have XM = 0.

The following proposition then follows as Proposition 1.5.7.

Proposition 1.5.13. Let ωh ∈ L0(Th)3 such that ωh ·µh = 0 almost everywhere on Mh. Then there
exist uniquely defined ah ∈ S1(Th), bh ∈ S1,NC(Th), and Hh ∈ H(Th; R3) such that

∫
Mh

ah dx = 0,∫
Mh

bh dx = 0, and
ωh = ∇Mh

ah + CurlMh
bh +Hh.

Moreover,
‖ωh‖2 =

∥∥∇Mh
ah

∥∥2
+

∥∥CurlMh
bh

∥∥2
+

∥∥Hh

∥∥2

and (
ωh;∇Mh

vh

)
=

(
∇Mh

ah;∇Mh
vh

)

for all vh ∈ S1(Th).

Proof. The proof follows the lines of the proof of Proposition 1.5.7.

Remark 1.5.14. We remark that other discrete decompositions of tangential vector fields are
possible, e.g., if ωh belongs to the lowest order Raviart-Thomas finite element space then ωh can be
decomposed into the discrete gradient of a Th-elementwise constant function, the vectorial Curl of
function in S1(Th), and a remainder which belongs to a finite dimensional set, cf. [AFW98].
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As in the flat, periodic case we can define a recovery operator.

Lemma 1.5.15. Given f ∈ L1(Mh) define Ahf ∈ S1(Th) by

Ahf :=
∑

z∈Nh

fzϕz, fz := H2(ωz)
−1

∫

ωz

f dx.

There exists C > 0 such that for all wh ∈ S1,NC(Th) we have

∥∥wh −Ahwh

∥∥
L2(ωz)

≤ Chz

∥∥∇Mh
wh

∥∥
L2(bωz)

for all z ∈ Nh and ω̂z := ∪y∈Nh∩ωzωy, and

∥∥h−1
Th

(
wh −Ahwh

)∥∥ ≤ C
∥∥∇Mh

wh

∥∥,

where hTh
∈ L∞(Mh) satisfies hTh

|K = hK for all K ∈ Th.

Proof. The proof follows the lines of the proof of Lemma 1.5.8.

1.6 Projections onto surfaces and elementary differential geome-

try

For a convex set C ⊂ R
n it is well known that the orthogonal projection onto C is well-defined in

the entire space R
n and Lipschitz continuous with constant less than or equal to 1. In particular,

if N = ∂C then the projection defines an operator πN : R
n \ C → N . If N is not the boundary of

a convex set then it is still possible to define an orthogonal (or nearest-neighbor) projection in a
small tubular neighborhood of N provided that N is sufficiently regular. We include a proof for
a compact, k–dimensional Cℓ submanifold without boundary, ℓ ≥ 2, in R

n which guarantees that
the projection πN is Cℓ−1.

Theorem 1.6.1. Let ℓ ≥ 2 and suppose that N ⊂ R
n is a compact, k-dimensional Cℓ submanifold

in R
n without boundary. There exists δN > 0 such that for all u ∈ UδN

(N) := {q ∈ R
n : dist(q,N) <

δN} there exists a uniquely defined element πN (u) ∈ N such that

|u− πN (u)| = dist(u,N).

The mapping πN : Uδ(N) → N is Cℓ−1 regular, satisfies DπN (p)|TpN = idTpN for all p ∈ N , and
DπN (p)ν = 0 for ν ∈ R

n such that ν ⊥ TpN .

Proof. By compactness and continuity of N there exists for every u0 ∈ R
n a p0 ∈ N such that

|u0 − p0| = dist(u0, N). We aim at deriving conditions that ensure that p0 is uniquely defined and
depends in a differntiable way on u0. For a local parametrization f : Ω̂ → N such that f(ξ0) = p0

for some ξ0 ∈ Ω̂ we then have that ξ0 solves the minimization problem

min
ξ∈bΩ

1

2
|u0 − f(ξ)|2

and the functions
Fj(u0, ξ) := −

(
u0 − f(ξ)

)
· ∂jf(ξ)
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vanish for j = 1, 2, ..., k. If, in addition, the Hessian of G(ξ) := 1
2 |u0−f(ξ)|2, given for i, j = 1, 2, ..., k

by
∂iFj(u, ξ) = ∂if(ξ) · ∂jf(ξ) −

(
u− f(ξ)) · ∂i∂jf(ξ),

is positive definite, then ξ0 is unique and the projection onto N is well-defined. Fix ξ0 ∈ Ω̂, set
p0 := f(ξ0), and let ν0 denote a unit normal to N at p. Then, for s ∈ R and u0 := p0 + sν0 we have
Fj(u0, ξ0) = 0. Moreover,

∂iFj(u0, ξ0) = ∂if(ξ0) · ∂jf(ξ0) − sν0 · ∂i∂jf(ξ0)

and the first term on the right-hand side is (an entry of) the first fundamental form which is
positive definite while the second term on the right-hand side is the second fundamental form
which is uniformly bounded by some κN > 0. Therefore, we have

∂iFj(u0, ξ0) ≥ (C − sκN )δij

in the sense of bilinear forms and where κ is the largest absolute eigenvalue of the second fundamen-
tal form. Hence, the matrix

(
∂iFj(u0, ξ0)

)
i,j=1,2,...,k

is positive definite for s sufficiently small, i.e.,

s ≤ δN = C/κN . The implicit function theorem guarantees that the function g : u0 7→ ξ0 satisfies
g ∈ Cℓ−1. The projection πN is then defined by πN := f ◦ g. Since g(p) = p for all p ∈ N we imme-
diately observe that DπN (p)|TpN = idTpN for all p ∈ N . Moreover, since u− f(g(u)) is orthogonal
to Tf(g(u))N , we find that DπN (p)ν = 0 for ν ∈ R

n such that ν ⊥ TpN . Finally, to guarantee global
well-posedness of the projection, it may be necessary to decrease δN appropriately, depending on
the ratio of the geodesic and the Euclidean distances, cf. the left plot of Figure 1.4.

Remark 1.6.2. The proof of the theorem shows that δN is given (up to constants depending on the

global geometry of N) by δN =
(
maxi=1,2,...,k maxp∈N |κi(p)|

)−1
, where κi(p), i = 1, 2, ..., k, denote

the principal curvatures of N at p. This estimate is optimal in the sense that πN (0) is not defined
if N =

{
p ∈ R

2 : |p| = 1} is the unit circle in R
2, cf. the right plot of Figure 1.4.

p

q

N

q
N

Figure 1.4: Small Euclidean but large geodesic distance between points p, q ∈ N
(left) and undefined projection onto N at q (right).

Remark 1.6.3. The proof of the theorem shows that if the distance function dist(·, N) is known
explicitly then the operator πN can be evaluated through the identity

πN (u) = u− dist(u,N)∇dist(u,N)

for all u ∈ UδN
(N).
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Figure 1.5: Choice of the damping parameter ωN in Lemma 1.6.4.

Lemma 1.6.4. Let N and δN be as in Theorem 1.6.1. There exists ωN > 0 such that for all p ∈ N
and all τ ∈ TpN , s ∈ R with |τ | ≤ 1 and |s| ≤ ωN we have p + sτ ∈ UδN

(N). If N = ∂C for a
convex set C ⊂ R

n then πN

(
p+ sτ

)
is well-defined for all s ∈ R and we set ωN := ∞ in this case.

Proof. The proof follows from a Taylor expansion of a local parametrization f : Ω̂ → N . For ξ0 ∈ Ω̂
such that f(ξ0) = p and e ∈ R

k such that Df(ξ0)e = τ we have |e| ≤ C and

f(ξ0 + se) = f(ξ0) + sDf(ξ0)e+ O(s2).

Since f(ξ0 + se) ∈ N we verify that

dist
(
f(ξ0) + sDf(ξ0)e,N

)
≤

∣∣f(ξ0) + sDf(ξ0)e− f(ξ0 + se)
∣∣ = Cs2.

Hence, for s sufficiently small we verify the first part of the lemma. The statement for N = ∂C is
obvious.

Remark 1.6.5. A careful inspection of the proof of Lemma 1.6.4 shows that a maximal ωN is up
to generic constants given by ωN ≈ δN ≈

(
maxi=1,2,...,k maxp∈N |κi(p)|

)−1
.

The following definition guarantees that there exist continuous, unit vector fields that define an
orthonormal basis of TpN for all points p on the submanifold N .

Definition 1.6.6. We say that the compact, k-dimensional Cℓ submanifold N ⊂ R
n, ℓ ≥ 2, is

parallelizable if there exist continuously differentiable unit vector fields e1, e2, ..., ek : N → R
n such

that for all p ∈ N the vectors
(
e1(p), e2(p), ..., ek(p)

)
form an orthonormal basis for TpN .

Remark 1.6.7. Not every compact, C2 submanifold N is parallelizable, e.g., the two-dimensional
unit sphere S2 is not parallelizable. A construction in [Hél02] shows however that every compact C4

submanifold N without boundary can be isometrically embedded into a parallelizable C3 submanifold
N̂ .

Lemma 1.6.8. (i) Let N be as in Theorem 1.6.1 and suppose that N is parallelizable. Then there
exist compactly supported, continuously differentiable vector fields e1, e2, ..., ek : R

n → R
n such that

ei(p) = ei(p) for all p ∈ N , 1 ≤ i ≤ k, and ei as in Definition 1.6.6.
(ii) If N is also orientable then there exist compactly supported, continuously differentiable vector
fields νk+1, ..., νn : R

n → R
n such that the vectors

e1(p), e2(p), ..., ek(p), νk+1(p), ..., νn(p)

form an orthonormal basis for R
n.
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Proof. Owing to the assumptions in (i) on N there exist vector fields e1, e2, ..., ek : N → R
n so that

the desired properties are satisfied in an open neighborhood of N . Choose p0 ∈ N and define the
non-smooth extension π̃N : R

n → N of the projection πN : Uδ0 → N by setting π̃N (u) := p0 for
u ∈ R

n \Uδ0 . Then, let χ : R≥0 → [0, 1] be a continuously differentiable function such that χ(s) = 1
for s ≤ δ0/2 and χ(s) = 0 for s ≥ 3δ0/4, and define

ej(u) := χ
(
dist(u,N)

)
ej

(
π̃N (u)

)
.

This function is continuously differentiable in R
n and has compact support. We proceed analogously

for the functions νℓ, ℓ = k+1, ..., n, in the second statement to complete the proof of the lemma.

Lemma 1.6.9. Suppose that N is C2. There exists a constant C > 0 such that for all p, q ∈ N
and ν ∈ R

n satisfying ν ⊥ TpN and |ν| = 1 we have

(p− q) · ν ≤ C|p− q|2.

Proof. We may suppose that p, q belong to a parametrized neighborhood in N , since otherwise
they have a positive distance greater than some ε0 in which case the statement is immediate with
C = ε−1

0 . For a local parametrization f : Ω̂ → N and ξ0, ξ1 ∈ Ω̂ such that f(ξ0) = p and f(ξ1) = q,
a Taylor expansion provides

q = f(ξ1)

= f(ξ0) +Df(ξ0)(ξ1 − ξ0) + O(|ξ1 − ξ0|2)
= p+Df(ξ0)(ξ1 − ξ0) + O(|ξ1 − ξ0|2).

Notice that Df(ξ0)(ξ1 − ξ0) ∈ TpN and hence the result follows upon testing the identity with ν
and noting that |ξ1 − ξ0| = |f−1(p) − f−1(q)| ≤ C|p− q|.

1.7 Equivalent characterizations of harmonic maps

We recall the definition of a harmonic map into a submanifold N and discuss equivalent weak
formulations. For questions concerning existence of harmonic maps we refer the reader to [Hél02,
Jos84, EL95, EF01].

Definition 1.7.1. A vector field u ∈ W 1,2(M ; Rn) is called a (weakly) harmonic map into N if
u(x) ∈ N for almost every x ∈M and if it is stationary for the functional E : W 1,2(M ; Rn) → R,

v 7→ 1

2

∫

M
|∇Mv|2 ds,

with respect to perturbations of the form πN (u+φ) for vector fields φ ∈ L∞(M ; Rn)∩W 1,2(M ; Rn)
that are compactly supported in M .

We include the following proposition from [FMS98] which is adopted to harmonic maps on
hypersurfaces.

25



Proposition 1.7.2. Suppose that N is a compact, parallelizable, k-dimensional C2 submanifold in
R

n without boundary. A vector field u ∈W 1,2(M ; Rn) such that u(x) ∈ N for almost every x ∈M
is a harmonic map into N if and only if one of the following equivalent conditions is satisfied:
(i) for all v ∈W 1,2

0 (M ; Rn) such that v(x) ∈ Tu(x)N for almost every x ∈M we have

(
∇Mu;∇Mv

)
= 0;

(ii) if
(
ei

)
i=1,2,...,k

⊂ W 1,2(M ; Rn) are such that the vectors e1(x), e2(x), ..., ek(x) form an or-

thonormal basis for Tu(x)N for almost every x ∈ M and if ϑi :=
∑n

α=1 e
i,α∇Mu

α and ωij :=∑n
α=1 e

j,α∇Me
i,a then we have

(
ϑi;∇Mη

)
+

k∑

j=1

(
ωij · ϑj; η

)
= 0

for all η ∈W 1,2
0 (M) ∩ L∞(M) and i = 1, 2, ..., k;

(iii) for all w ∈W 1,2
0 (M ; Rn) ∩ L∞(M ; Rn) we have

(
∇Mu;∇Mw

)
=

(
AN (u)

[
∇Mu;∇Mu

]
;w

)
,

where AN denotes the second fundamental form on N given by

AN (u)[∇Mu;∇Mu] =

n∑

ℓ=k+1

m∑

γ=1

AN,ℓ(Dγu;Dγu
)
νℓ ◦ u

with AN,ℓ(X,Y ) = X ·DY ν
ℓ and νℓ, ℓ = k + 1, ..., n as in Lemma 1.6.8.

Proof. Suppose that u is a harmonic map into N . Then, considering perturbations ut := πN (u+tφ)
for φ ∈ C∞

c (M ; Rn) with t sufficiently small it follows that

0 =
d

dt

∣∣∣
t=0

(
∇Mu;∇MπN (u+ tφ)

)

=
d

dt

∣∣∣
t=0

{(
∇Mu;∇Mu

)
+ t

(
∇Mu;∇M

[
DπN(u)φ

])
+ o(t)

}

=
(
∇Mu;∇M

[
DπN (u)φ

])
,

where we used that πN (u+ tφ) = u+ tDπN (u)φ + o(t). If φ(x) ∈ Tu(x)N then DπN (u)φ = φ and
the identity in (i) follows from a density argument as in [FMS98]. The implication that if (i) is
satisfied then u is a harmonic map follows from the same identity since DπN

(
u(x)

)
φ(x) ∈ Tu(x)N

for almost every x ∈M .
Equivalence of (i) and (ii) can be seen as follows: for v = ηei with η ∈W 1,2

0 (M)∩L∞(M) we have,
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using Dγu(x) ∈ Tu(x)N for almost every x ∈M and employing Lemma 1.2.3,

(
∇Mu;∇Mv

)
=

m∑

γ=1

(
Dγu;Dγv

)
=

m∑

γ=1

k∑

j=1

(
(ej ·Dγu)e

j ;Dγv
)

=

m∑

γ=1

k∑

j=1

(
ej ·Dγu; e

j ·Dγv
)

=

m∑

γ=1

k∑

j=1

n∑

α,β=1

(
ej,αDγu

α; ej,βDγv
β
)

=
k∑

j=1

n∑

α,β=1

(
ej,α∇Mu

α; ej,β∇Mv
β
)

=
k∑

j=1

n∑

α,β=1

(
ej,α∇Mu

α; ej,β∇M (ηei,β)
)

=

k∑

j=1

n∑

α,β=1

(
ej,α∇Mu

α; ηej,β∇Me
i,β

)
+

k∑

j=1

n∑

α,β=1

(
ej,α∇Mu

α; ej,βei,β∇Mη
)

=

k∑

j=1

(
ϑj; ηωij

)
+

(
ϑi;∇Mη

)
.

To establish equivalence of (i) and (iii), choose w ∈ W 1,2
0 (M ; Rn) ∩ L∞(M ; Rn) and let ηj and µℓ

be such that

w =
k∑

j=1

ηje
j +

n∑

ℓ=k+1

µℓν
ℓ,

where ν̂ℓ = νℓ ◦ u. Writing w|| :=
∑k

j=1 ηje
j we have, using Dγu · ν̂ℓ = 0, that

(
∇Mu;∇Mw

)
=

(
∇Mu;∇Mw

||
)

+
n∑

ℓ=k+1

m∑

γ=1

(
Dγu;Dγ

[
µℓν̂

ℓ
])

=
(
∇Mu;∇Mw

||
)

+

n∑

ℓ=k+1

m∑

γ=1

(
Dγu;µℓDγ ν̂

ℓ
)

=
(
∇Mu;∇Mw

||
)

+

n∑

ℓ=k+1

m∑

γ=1

(
Dγu;µℓDν

ℓ ·Dγu
)

=
(
∇Mu;∇Mw

||
)

+

n∑

ℓ=k+1

m∑

γ=1

(
AN,ℓ

[
Dγu;Dγu

]
;µℓ

)

=
(
∇Mu;∇Mw

||
)

+
(
AN (u)

[
∇Mu;∇Mu

]
;w

)
,

where we used that ei · ej = δij almost everywhere on M . If (i) is satisfied then the first term on
the right-hand side vanishes which establishes (ii). Conversely, if (ii) holds true then the identity
reduces to

(
∇Mu;∇Mw

||
)

= 0 which is the statement given in (i).

Remark 1.7.3. The condition of item (ii) in the proposition is satisfied if N is parallelizable. As
noted in Remark 1.6.7 if N is C4 then there exists an isometric isomorphism J : N → N̂ with a
parallelizable C3 submanifold N̂ . It is proved in [Hél02, Lemma 4.1.2] that u : M → N is weakly
harmonic if and only if J ◦ u : M → N̂ is weakly harmonic, see also [Hél91, CTZ93]. Therefore,
we may assume that N is parallelizable provided it is C4.
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1.8 Weak limits of discrete vector fields into surfaces

The following lemma shows that if a given sequence of finite element functions
(
uh

)
h>0

attains its

nodal values in a surface and if the sequence converges weakly in W 1,2 then also the weak limit
attains its values in the surface almost everywhere. We let M and Mh be as in Section 1.3 and
adapt arguments from [MSŠ97] to the current setting.

Lemma 1.8.1. Let N ⊂ R
n be a compact, continuous submanifold. Suppose that

(
ũh

)
h>0

is a

bounded sequence in W 1,2(M ; Rn) such that for each h > 0 the function ũh is the lifting of a
function uh ∈ S1(Th)n which satisfies uh(z) ∈ N for all z ∈ Nh. Then, every weak accumulation
point u ∈W 1,2(M ; Rn) of the sequence satisfies u(x) ∈ N for almost every x ∈M .

Proof. For h > 0 and K ∈ Th fix zK ∈ Nh such that zK ∈ K. Given δ > 0 define

Σh,δ :=
{
K ∈ Th : ‖uh − uh(zK)‖L∞(K) ≥ δ

}
.

Then, the inclusion

Ah,δ :=
{
x ∈Mh : dist

(
uh(x), N

)
≥ δ

}
⊆

⋃

K∈Σh,δ

K

implies

Hd(Ah,δ) ≤
∑

K∈Σh,δ

Hd(K).

Using the Poincaré estimate ||vh||L∞(K) ≤ ChK ||∇vh||L∞(K), which holds for all vh ∈ S1(Th) such
that vh(zK) = 0, we verify that

∑

K∈Σh,δ

Hd(K) ≤
∑

K∈Th

Hd(K)δ−2||uh − uh(zK)||2L∞(K)

≤ C
∑

K∈Th

δ−2h2
K

∥∥∇Mh
uh

∥∥2

L2(K)

≤ Ch2δ−2
∥∥∇Mh

uh

∥∥2

L2(Mh)
.

Hence, as h→ 0 we have that Hd(Ah,δ) → 0. Let

Ãh,δ :=
{
x ∈M : dist

(
ũh(x), N

)
≥ δ

}
.

Then, by Lemma 1.3.3 we have

Hd(Ah,δ) =

∫

Mh

χ{x∈Mh:dist(uh(x),N)≥δ} dsh =

∫

M
χ{x∈Mh:dist(uh(x),N)≥δ} ◦ P−1

h QhQ
−1 ds

=

∫

M
χ{x∈M :dist(euh(x),N)≥δ}QhQ

−1 ds ≥ Hd(Ãh,δ) min
x∈M

QhQ
−1

and for h sufficiently small we have QhQ
−1 ≥ 1

2 , cf. the proof of Lemma 1.3.5. This implies that
also

Hd(Ãh,δ) → 0
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as h → 0. In other words, the non-negative function fh(x) := dist
(
ũh(x), N

)
, x ∈ M , converges to

0 in measure. This implies, see, e.g., [Rou05, Prop. 1.13], that there exists a subsequence (which is
not relabeled) such that for almost every x ∈M we have

fh(x) = dist
(
ũh(x), N

)
→ 0.

Since a subsequence of
(
ũh

)
converges weakly in W 1,2(M ; Rn), hence strongly in L2(M ; Rn), and

in particular pointwise almost everywhere we have by continuity of the distance function that

dist
(
ũh(x), N

)
→ dist

(
u(x), N

)

for almost every x ∈M . This shows that u(x) ∈ N for almost every x ∈M .

Remark 1.8.2. If N = Sn−1 then the assertion of the previous lemma follows from the nodal
interpolation estimate

∥∥ |uh|2 − 1
∥∥ =

∥∥ |uh|2 − Ih

[
|uh|2

]∥∥ ≤ Ch
∥∥∇Mh

|uh|2
∥∥ ≤ 2Ch

∥∥∇Mh
uh

∥∥.

A similar estimate can be derived if N is given as the zero level set of a function F ∈W 1,∞(Rn; Rn−k).

The following lemma shows that if uh ∈ S1(Th)n satisfies uh(z) ∈ N for all z ∈ Nh then the
partial derivatives of uh are almost tangent vectors to N provided that N is C2.

Lemma 1.8.3. Suppose that N is a compact C2 submanifold in R
n and let uh ∈ S1(Th)n be such

that uh(z) ∈ N for all z ∈ Nh. Let z ∈ Nh and K ∈ Th such that z ∈ K. For ν ∈ R
n such that

ν ⊥ Tuh(z)N and |ν| = 1 we have

ν ·Dh,γuh ≤ ChK

∣∣∇Mh
uh

∣∣2

on K for γ = 1, 2, ..., d + 1 with a constant C > 0 that only depends on N and the geometry of Th

but not on hK or uh.

Proof. For K = FK(K̂) set ûh := uh ◦ FK . We may and will assume that FK(ẑ0) = z0. With the
notation of the proof of Lemma 1.3.5 we have for α = 1, 2, ..., n

∇Mh
uα

h = DT
h ∇̂ûα

h

and, if eγ ∈ R
m denotes the γ-th canonical basis vector in R

m,

Dh,γu
α
h = ∇Mh

uα
h · eγ =

(
Dheγ

)T∇̂ûα
h .

This yields that

Dh,γuh · ν =

n∑

α=1

Dh,γu
α
h ν

α =
(
Dheγ

)T
n∑

α=1

∇̂ûα
h ν

α.

Now, for each component ∂̂δû
α
h of ∇̂ûα

h for δ = 1, 2, ..., d we deduce

n∑

α=1

∂̂δû
α
hν

α =

n∑

α=1

h−1
K

(
ûα

h(ẑδ) − ûα
h(ẑ0)

)
να = h−1

K

(
ûh(ẑδ) − ûh(ẑ0)

)
· ν.
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Lemma 1.6.9 guarantees that (p − q) · ν ≤ C|p − q|2 for p, q ∈ N and ν ∈ R
n satisfying ν ⊥ TpN

and |ν| = 1. Since ν ⊥ Tbuh(bz0)N we thus infer that

h−1
K

(
ûh(ẑδ) − ûh(ẑ0)

)
· ν ≤ Ch−1

K

∣∣ûh(ẑδ) − ûh(ẑ0)
∣∣2 = ChK

∣∣∂̂δûh

∣∣2 ≤ ChK

∣∣∇̂ûh

∣∣2.

On combining the previous estimates, using that Dh is bounded h-independently, and incorporating
the identity ∇̂ûh = GT

h∇Mh
uh with a uniformly bounded matrix Gh, we verify that

Dh,γuh · ν ≤ ChK

∣∣∇Mh
uh

∣∣2

which finishes the proof.

Occasionally we will impose boundary conditions. The following lemma is a consequence of the
fact that every bounded linear operator is weakly continuous.

Lemma 1.8.4. Suppose that M ⊂ R
d×{0} is a bounded Lipschitz domain with polyhedral boundary,

let ΓD ⊆ ∂M be closed with Hd−1(ΓD) > 0, and let uD ∈ C(ΓD; Rn). Suppose that
(
Th

)
h>0

is a
sequence of triangulations such that ΓD is matched exactly by edges in Eh ∩ ΓD for each h > 0.
Assume that uD,h ∈ S1(Th)n is such that uD,h := uD,h|ΓD

and satisfies

uD,h → uD in L2
(
ΓD; Rn

)

as h → 0. If wh ∈ S1(Th)n satisfies wh|ΓD
= uD,h and the sequence

(
wh

)
h>0

is bounded in

W 1,2(M ; Rn) then every accumulation point w ∈W 1,2(M ; Rn) satisfies w|ΓD
= uD.

Proof. Since the trace operator T : W 1,2(M ; Rn) → L2(∂M ; Rn) composed with the restriction to
ΓD is bounded and linear, it is weakly continuous and hence we have

uD = lim
h′→0

uD,h = lim
h′→0

T (wh)|ΓD
= T (w)|ΓD

,

where (h′) is a subsequence such that wh′ ⇀ w in W 1,2(M ; Rn).

1.9 Auxiliary results from measure theory

We conclude the chapter with two elementary results from measure theory. The first result states
that the space of linear combinations of Dirac measures is a closed subset of C(M)∗ with respect
to the strong topology while the second one allows to identify the supports of the limits of certain
sequences in C(M)∗.

Lemma 1.9.1. Let M ⊂ R
d be compact and let

(
Fℓ

)
ℓ∈N

be a bounded sequence in C(M)∗. If for

each ℓ ∈ N the support of Fℓ is finite, i.e., Fℓ =
∑Lℓ

j=1 a
ℓ
jδxℓ

j
for Lℓ ∈ N and aℓ

j ∈ R, xℓ
j ∈ M ,

j = 1, 2, ..., Lℓ, and if Fℓ → F strongly as ℓ→ ∞ for some F ∈ C(K)∗, i.e.,

sup
η∈C(M) : ‖η‖L∞(M)≤1

〈Fℓ − F, η〉 → 0

as ℓ → ∞, then there exist
(
aj

)
j∈N

⊂ R and
(
xj

)
j∈N

⊂ M such that F =
∑∞

j=1 ajδxj . If
∑Lℓ

j=1 |aℓ
j |s ≤ C1 for some s > 0 and all ℓ ∈ N then

∑∞
j=1 |aj |s ≤ C1.
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Proof. Riesz’ representation theorem, see, e.g., [Rud87, Theorem 6.19] for details, provides an
isometric isomorphism between C(M)∗ and the set of regular Borel measures on M such that for
every G ∈ C(M)∗ we have

sup
η∈C(M) : ‖η‖L∞(M)≤1

〈G, η〉 = sup
{Ek : k∈N}∈P(M)

∞∑

k=1

∣∣G
(
Ek

)∣∣, (9.8)

where we identified G with the measure provided by the isomorphism and where P(M) denotes the
set of all countable, measurable partitions of M . The set

Γ:=
⋃

ℓ∈N

{
xℓ

1, x
ℓ
2, ..., x

ℓ
Lℓ

}

is countable and we enumerate its elements as Γ =
{
x1, x2, x3, ...

}
. We set aj := F

(
{xj}

)
for j ∈ N

and define F ′ :=
∑∞

j=1 ajδxj ∈ C(K)∗. To finish the proof of the first statement it suffices to show
that F is supported on Γ since this implies F ′ = F . Each Fℓ is supported on Γ and thus for every
measurable set A ⊂M \ Γ we have by considering the partition {A,M \ A} in (9.8) that

∣∣F (A)
∣∣ =

∣∣F (A) − Fℓ(A)
∣∣ ≤ sup

η∈C(M) : ‖η‖L∞(M)≤1
〈Fℓ − F, η〉

and the right-hand side can be made arbitrarily small, i.e., F (A) = 0. To prove the second part of
the lemma we first notice that for every x ∈M we have

∣∣Fℓ

(
{x}

)
− F

(
{x}

)∣∣ → 0

as h→ 0. With Fatou’s lemma we then deduce that

C1 ≥ lim inf
ℓ→∞

Lℓ∑

j=1

|aℓ
j|s = lim inf

ℓ→∞

∞∑

j=1

∣∣Fℓ

(
{xj}

)∣∣s

≥
∞∑

j=1

lim inf
ℓ→∞

∣∣Fℓ

(
{xj}

)∣∣s =
∞∑

j=1

∣∣F
(
{xj}

)∣∣s =
∞∑

j=1

|aj |s

which finishes the proof of the lemma.

Remarks 1.9.2. (i) Strong convergence in C(K)∗ is a selective notion of convergence as, e.g., the
sequence of functionals δ1/N does not converge to δ0 strongly in C([0, 1])∗.
(ii) The statement of the lemma is still true if the support of Fℓ is countable for every ℓ ∈ N.

Lemma 1.9.3. Let M ⊂ R
d be compact and let

(
Fh

)
h>0

be a bounded sequence in C(M)∗. Suppose

that there exist C > 0 and L ∈ N such that for each h > 0 and all η ∈ C1(M) we have

∣∣Fh(η)
∣∣ ≤ Ch‖∇η‖ +

L∑

j=1

̺h
j

∣∣η(xh
j

)∣∣

for ̺h
j ∈ R and xh

j ∈ M for j = 1, 2, ..., L. Then there exist L′ ≤ L and ̺j ∈ R, yj ∈ M ,
j = 1, 2, ..., L′ such that for a subsequence which is not relabeled we have

Fh ⇀
∗

L′∑

j=1

̺jδyj

as h→ 0. If s ∈ (0, 1] and
∑L

j=1 |σh
j |s ≤ C1 for all h > 0 then

∑L′

j=1 |̺j |s ≤ C1.
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Proof. Since Fh is a bounded sequence in C(M)∗ there exists a weak limit F ∈ C(M)∗ of a
subsequence which we do not relabel in the following. Passing to another subsequence we may
assume that the L-tupels

(
xh

1 , ..., x
h
L

)
converge strongly to

(
x1, ..., xL

)
∈ ML as h → 0. For

η ∈ C1(M) with suppη ⊂M \
{
x1, ..., xL

}
we have, owing to the assumptions on Fh, that

∣∣F (η)
∣∣ ≤

∣∣F (η) − Fh(η)
∣∣ +

∣∣Fh(η)
∣∣

≤
∣∣F (η) − Fh(η)

∣∣ + Ch‖∇η‖ +

L∑

j=1

̺h
j

∣∣η(xh
j

)∣∣.

The right-hand side vanishes as h→ 0 owing to Fh ⇀
∗ F , convergence of

(
xh

1 , ..., x
h
L

)
to

(
x1, ..., xL

)
,

and the fact that η vanishes in an open neighborhood of
{
x1, ..., xL

}
. Therefore, we deduce that F

is supported on
{
x1, ..., xL

}
, i.e.,

F =
L′∑

j=1

̺jδyj ,

for appropriate L′ ≤ L, ̺j ∈ R, j = 1, 2, ..., L′, and
{
y1, ..., yL′

}
⊆

{
x1, ..., xL

}
. We set ε :=

mini,j=1,...,L′ |yi − yj|/2. For i ∈ {1, ..., L′} we choose ηi ∈ C1(M) such that
∣∣ηi(x)

∣∣ ≤ 1 for all
x ∈ M , ηi(yi) = 1 and ηi(yj) = 0 for j 6= i, supp ηi ⊆ Bε(yi) ∩M , and

∥∥∇ηi

∥∥ ≤ Cε−1. Then, for
each h > 0 we have

|̺i| = |F (ηi)| ≤
∣∣F (ηi) − Fh(ηi)

∣∣ +
∣∣Fh(ηi)

∣∣ ≤
∣∣F (ηi) − Fh(ηi)

∣∣ + Chε−1 +
∑

j=1,...,L, |yi−xh
j |≤ε

̺h
j

≤
(∣∣F (ηi) − Fh(ηi)

∣∣s +
(
Chε−1

)s
+

∑

j=1,...,L : |yi−xh
j |≤ε

∣∣̺h
j

∣∣s
)1/s

,

where we used [z]ℓ1 ≤ [z]ℓs for
(
zj

)
j∈N

⊂ R and [z]ℓs :=
( ∑

j∈N
|zj |s

)1/s
. For each xh

j there is at

most one i such that xh
j ∈ Bε(yi). Therefore, we deduce that

L′∑

i=1

|̺i|s ≤
L′∑

i=1

∣∣F (ηi) − Fh(ηi)
∣∣s + L′

(
Chε−1

)s
+

L∑

j=1

∣∣̺h
j

∣∣s.

Since the first two terms on the right-hand side vanish as h → 0 and the third one is bounded by
C1 we verify the assertion of the lemma.

32



Chapter 2

Convergence of discrete harmonic

maps

Stability of solutions of nonlinear partial differential equations is often expressed in terms of weak
compactness results: Given a bounded sequence of vector fields that satisfy the equation up to
a compact perturbation the question is whether weak accumulation points are exact solutions
of the problem under consideration. Such results are naturally linked to convergence of numerical
approximations but owing to the limited choice of discrete test functions, the results are usually not
directly applicable. In this chapter we prove weak convergence of sequences of (almost) discrete
harmonic maps into a given surface N when certain discretization parameters tend to zero by
appropriately modifying existing weak compactness results for harmonic maps. While this task is
relatively straightforward for harmonic maps into spheres it is essentially more involved when less
symmetry is available. In fact, convergence for a large class of target manifolds will only be shown
in two space dimensions.

2.1 Weak compactness results for harmonic maps

We briefly describe in this section weak compactness results on a continuous level which will be
adapted for the analysis of numerical approximations in the subsequent sections. For ease of
presentation we restrict in this section to the case that M ⊂ R

d × {0} and write ∇ instead of ∇M ,
omitting the trivial last component.

2.1.1 Harmonic maps into spheres

Suppose that
(
uℓ

)
ℓ∈N

⊂ W 1,2(M ; Rn) is a bounded sequence of harmonic maps into Sn−1 ⊂ R
n,

the (n− 1)-dimensional unit sphere. Then, owing to Proposition 1.7.2 we have
(
∇uℓ;∇v

)
= 0

for all v ∈ W 1,2
0 (M ; Rn) such that v(x) ∈ Tuℓ(x)S

n−1 for almost every x ∈ M . We assume for the
time being that n = 3. Then, it is well known that for almost every x ∈M we have v(x) ·uℓ(x) = 0,
i.e., v(x) ∈ Tuℓ(x)S

2, if and only if there exists w(x) such that v(x) = w(x)× uℓ(x) and this defines

a vector field w ∈W 1,2
0 (M ; R3), provided that v is essentially bounded. For γ = 1, 2, ..., d we have

∂γ

[
uℓ × w

]
=

(
∂γuℓ

)
× w + uℓ ×

(
∂γw

)
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almost everywhere in M and the properties of the cross product imply

∂γuℓ · ∂γ

[
uℓ × w

]
= ∂γuℓ ·

[
uℓ × ∂γw

]
= −

[
uℓ × ∂γuℓ

]
· ∂γw.

We thus deduce that the identity

d∑

γ=1

(
uℓ × ∂γuℓ; ∂γw

)
= 0

is satisfied for all w ∈ W 1,2
0 (M ; R3) and this equation provides an equivalent characterization

of harmonic maps into the two-dimensional sphere. Now, owing to the compact embedding of
W 1,2(M ; R3) into L2(M ; R3), one can perform a limit passage ℓ′ → ∞ in the previous identity,
namely, we verify that

d∑

γ=1

(
u× ∂γu; ∂γw

)
= 0

holds for all w ∈ W 1,2
0 (M ; R3) if u ∈ W 1,2(M ; R3) is the weak limit of a subsequence

(
uℓ′

)
ℓ′∈N

.
Reversing the above argumentation with the cross product we find

(
∇u;∇v

)
= −

d∑

γ=1

(
u× ∂γu; ∂γw

)
= 0.

Pointwise convergence almost everywhere in M of
(
uℓ′

)
shows that u(x) ∈ S2 for almost every

x ∈M and hence u is a harmonic map into S2.
To understand the less symmetric situation for n 6= 3 we notice that b · a = 0 for a, b ∈ R

n with
|a| = 1 is satisfied if and only if b = Xa holds with a skew-symmetric matrix X ∈ so(n). For a
proof of this fact, let a, b ∈ R

n be two such vectors and choose O ∈ SO(n) such that Oa = e1 is
the first canonical basis vector in R

n, set b′ := Ob, and notice that owing to OTO = In×n we have
b′ · e1 = 0, i.e., the first component of b′ is zero. Let X′ be the matrix whose first column coincides
with b′, whose first row equals −b′T, and which has vanishing entries otherwise. Then, X′ ∈ so(n)
and b′ = X′e1. Setting X := OTX′O we verify

b = OTb′ = OTX′e1 = OTX′Oa = Xa

and XT =
(
OTX′O

)T
= OTX′TO = −OTX′O = −X, i.e., X ∈ so(n), which finishes the proof.

Therefore, if v ∈W 1,2
0 (M ; Rn)∩L∞(M ; Rn) satisfies v(x) ∈ Tuℓ(x)S

n−1 for almost every x ∈M
then

v(x) =

n(n−1)/2∑

s=1

ηs(x)Xsuℓ(x)

for ηs ∈ W 1,2
0 (M) ∩ L∞(M), s = 1, 2, ..., n(n − 1)/2, and a basis

(
Xs : s = 1, 2, ..., n(n − 1)/2

)
of

so(n). Noting that ∂γuℓ ·
(
Xs∂γuℓ

)
= 0 almost everywhere in M we deduce that

0 =

d∑

γ=1

(
∂γuℓ; ∂γv

)
=

d∑

γ=1

n(n−1)/2∑

s=1

(
∂γuℓ;Xsuℓ∂γηs

)
.
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The passage to a limit in this equation is possible since no products of partial derivatives of uℓ

occur. Arguing as above, we deduce that every weak accumulation point of the sequence
(
uℓ

)
ℓ∈N

is a harmonic map into Sn−1.
We remark that in the language of differential forms the existence of X ∈ so(n) such that

b = Xa is equivalent to the existence of c ∈ Λ2(Rn), the space of alternating bilinear forms on
R

n × R
n, such that

b = ∗−1
(
∗c ∧ a

)
,

where ∗ and ∧ denote the Hodge duality operator and the wedge product, respectively. Employing
the facts that a ·b = a∧∗b for a, b ∈ Λ1(Rn) and that a∧(∗c∧a) = −

(
a∧a

)
∧∗c = 0 for a ∈ Λ1(Rn)

and c ∈ Λ2(Rn), an equivalent characterization of harmonic maps into spheres is the validity of the
identity

d∑

γ=1

(
∂γu; ∂γ

[
φ ∧ u

])
=

d∑

γ=1

(
u ∧ ∂γu; ∂γφ

)
= 0

for all φ ∈W 1,2
0

(
M ; Λ2(Rn)

)
, where we omitted the Hodge duality operator.

The discussion shows that weak compactness results for harmonic maps into spheres are conse-
quences of the identity

u ∧ ∆u = 0

or, equivalently, of the conservation law

div
(
u ∧∇u

)
= 0. (1.1)

Such identities have been employed in [RSK89], [Che89], and [Sha88] for the analysis of harmonic
map heat flow into spheres and wave map equations. The important fact about the identity (1.1)
is that derivatives of u enter linearly and not quadratically in the equation. The main reason for
validity of (1.1) is the symmetry of the target manifold Sn−1 and Noether’s theorem provides an
interesting generalization of (1.1) to targets with certain symmetries: If X is a Lipschitz continuous
tangent vector field on N which is an infinitesimal symmetry of ∆M and u : M → N is critical for
the Dirichlet energy on M among such vector fields then

div
(
X(u)T∇u

)
= 0.

We remark that X is an infinitesimal symmetry for ∆M if it is a Killing vector field, i.e., LXh = 0,
where h denotes the metric on N and LX the Lie-derivative defined byX; we refer to [Hél02, Raw84]
for details. In case of the unit sphere such vector fields are given by X : Sn−1 → TSn−1, p 7→ Ap
for A ∈ so(n). The skew-symmetric matrices generate SO(n) which is a symmetry for ∆M in the
sense that ∆MRu = R∆Mu for R ∈ SO(n) and u ∈ W 1,2(M ; Rn) such that u ∈ Sn−1 almost
everywhere on M .

2.1.2 Harmonic maps into general targets

We next discuss the weak compactness result of [FMS98] for Lipschitz domains M ⊂ R
2 × {0}

and k-dimensional target manifolds N ⊂ R
n that are smooth, compact, and without boundary

but not necessarily orientable. This will serve as a guideline for the generalization of the weak
convergence result in [MSŠ97] for a finite difference method to finite element schemes for harmonic
maps introduced below. As above, suppose that

(
uℓ

)
ℓ∈N

⊂ W 1,2(M ; Rn) is a bounded sequence
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of harmonic maps into N . Thus, for each ℓ ∈ N we have uℓ(x) ∈ N for almost every x ∈ M ,∥∥∇uℓ

∥∥ ≤ C, and (
∇uℓ;∇v

)
= 0

for all v ∈W 1,2
0 (M ; Rn) such that v(x) ∈ Tuℓ(x)N for almost every x ∈M . By restricting to a cube

Q ⊂ M and reflecting u across the sides of Q we may and will assume that each uℓ is periodic,
see [FMS98] and Section 2.3 for details about this argumentation. We choose an orthonormal frame(
eiℓ

)
i=1,2,...,k

⊂W 1,2(M ; Rn) for u−1
ℓ TN , i.e., we select vector fields eiℓ ∈W 1,2(M ; Rn), i = 1, 2, ..., k

such that for almost every x ∈ M the family
(
eiℓ(x)

)
i=1,2,...,k

is an orthonormal basis for Tuℓ(x)N .

This is possible if N is parallelizable which can always be assumed by a construction in [Hél02,
Lemma 4.1.2] if N is C4, see also [Hél91, CTZ93] and Remark 1.7.3. We then employ v = ηeiℓ,
expand the rows of ∇u in the basis

(
eiℓ

)
i=1,2,...,k

, and argue as in the proof of Proposition 1.7.2 to

deduce that for ωij
ℓ := ej,Tℓ ∇eiℓ and ϑj

ℓ := ej,Tℓ ∇uℓ the identity

k∑

j=1

(
ωij

ℓ · ϑj
ℓ; η

)
+

(
ϑi

ℓ;∇η
)

= 0 (1.2)

is satisfied for all η ∈ C∞
c (M) and each ℓ ∈ N. With a good choice of the frame

(
eiℓ

)
(i.e., using

“Coulomb gauge”, see Lemma 2.2.3 below) we have divωij
ℓ = 0 so that ωij

ℓ = Curl bijℓ +H ij
ℓ with

periodic functions bijℓ ∈ W 1,2(M) and harmonic fields H ij
ℓ ∈ L2(M ; R2) satisfying

∥∥Curl bijℓ
∥∥2

+∥∥H ij
ℓ

∥∥2
=

∥∥ωij
ℓ

∥∥2
. Then, (1.2) can be written as

k∑

j=1

{(
Curl bijℓ · ϑj

ℓ ; η
)

+
(
H ij

ℓ · ϑj
ℓ; η

)}
+

(
ϑi

ℓ;∇η
)

= 0. (1.3)

Let u ∈W 1,2(M ; Rn) be a weak accumulation point of the sequence
(
uℓ

)
so that for a subsequence,

which we do not relabel in the following, we have uℓ ⇀ u in W 1,2(M ; Rn). By the compact
embedding of W 1,2(M ; Rn) into L2(M ; Rn) we deduce uℓ → u in L2(M ; Rn) and in particular
that pointwise convergence holds almost everywhere in M . Therefore, we have u(x) ∈ N for
almost every x ∈ M since N is continuous. Since

(
eiℓ

)
ℓ∈N

is bounded in W 1,2(M ; Rn) we have, if

necessary after extraction of another subsequence, eiℓ ⇀ ei in W 1,2(M ; Rn) for i = 1, 2, ..., k and
using pointwise convergence almost everywhere as above we verify that the family

(
ei

)
i=1,2,...,k

is an

orthonormal frame for u−1TN . As another consequence of the compact embedding of W 1,2(M ; Rn)
into L2(M ; Rn) and the fact that u, ei ∈ L∞(M ; Rn) we deduce that, as ℓ→ ∞,

ωij
ℓ ⇀ ωij = ei,T∇ej in L2(M ; R2), ϑj

ℓ ⇀ ϑj = ej,T∇u in L2(M ; R2).

We also have that

bijℓ ⇀ bij in W 1,2(M), H ij
ℓ → H ij in L2(M ; R2),

where strong convergence of the sequence of harmonic fields
(
H ij

ℓ

)
ℓ∈N

follows from the fact that it

belongs to a finite-dimensional subspace of L2(M ; Rn). Therefore, we deduce that

ωij = Curl bij +H ij .
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We want to pass to the limit in (1.3) as ℓ→ ∞ to show that u is a harmonic map into N . This is
straightforward for the second and third term on the left-hand side of (1.3). To identify the limit
of the first term, we notice that by definition of ϑij

ℓ , we have

Curl bijℓ · ϑj
ℓ =

n∑

α=1

ej,αCurl bijℓ · ∇uα
ℓ

and the right-hand side has a Jacobian structure so that a result from concentration and compen-
sation compactness, see [Lio85], based on Wente’s inequality in a periodic setting implies that

Curl bijℓ · ϑj
ℓ → Curl bij · ϑj +

∑

ι∈N

sιδxι

in the sense of distributions; we refer the reader to [FMS98] for a detailed discussion. Here,(
xι

)
ι∈N

⊂M and
(
sι

)
ι∈N

⊆ R satisfies
∑

ι∈N
|sι| <∞. A combination of the limits identified above

implies that
k∑

j=1

(
ωij · ϑj ; η

)
+

(
ϑj;∇η

)
=

∑

ι∈N

sιη(xι) (1.4)

for all η ∈ C∞
c (M). Since the left-hand side of (1.4) belongs to L1(M) +H−1(M) which does not

contain Dirac measures, one can show that the right-hand side of (1.4) has to vanish identically,
i.e., sι = 0 for all ι ∈ N. Again we refer the reader to [FMS98] for details. Proposition 1.7.2 implies
that u is a harmonic map into N and concludes this outline of the compactness result into general
targets due to [FMS98].

The moving frame technique employed in the weak compactness proof is an elegant tool for
the analysis of harmonic maps into a large class of targets but seems restricted to two-dimensional
submanifolds M and is rather indirect. A new compactness result has recently been established
in [Riv07] and avoids the choice of a moving frame. Assuming here that for ease of presentation,
N is of codimension one with unit normal ν, the result uses the fact that u ∈ W 1,2(M ; Rn) is a
harmonic map into the hypersurface N if and only if u(x) ∈ N for almost every x ∈M and

−∆ui =

n∑

j=1

Ωij∇uj (1.5)

with Ωij ∈ R
2 given for i, j = 1, 2, ..., n and ν̂ := ν ◦ u by

Ωij = ν̂i∇ν̂j − ν̂j∇ν̂i.

The vectors Ωij are skew-symmetric in the sense that Ωij = −Ωji. This skew-symmetry is the
key to proving regularity and weak compactness results for harmonic maps from two-dimensional
submanifolds into compact C2 submanifolds N ⊂ R

n without boundary. This is an improvement
since the result by [FMS98] summarized above generally requires C4 regularity of the target man-
ifold. It is interesting to note that the regularity result of [Riv07] based on the skew-symmetry of
Ωij is optimal in the sense that weak solutions of (1.5) with symmetric Ωij can have singularities,
see [Fre73] for an explicit example.

Though weak compactness results for harmonic maps into general targets are only known for
two-dimensional domains M and C2 targets N , no counterexamples for failure of weak compactness
of harmonic maps are known.
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2.2 Weak accumulation of periodic discrete harmonic maps in 2D

We aim at adapting the weak convergence result for harmonic maps into general targets outlined in
Section 2.1 to a finite element setting following ideas in [MSŠ97] for the analysis of a finite difference
scheme on planar lattices. We assume in this section that

M = Mh = T
2

is the two-dimensional torus with fundamental domain [0, 1]2. This assumption allows to employ
Wente’s inequality [Wen69] which is needed for a critical limit passage. A reduction of the general
case M ⊂ R

2 × {0} to the periodic setting will be investigated below in Section 2.3; validity of the
result on two-dimensional curved surfaces is discussed in Section 2.4. We recall that the subscript
# indicates periodicity of discrete functions.

2.2.1 Discrete Hodge system

We begin with an equivalent characterization of discrete harmonic maps similar to the one given
in Proposition 1.7.2.

Definition 2.2.1. Let uh ∈ S1
#(Th)n be such that uh(z) ∈ N for all z ∈ Nh. Suppose that(

eih
)
i=1,2,...,k

⊂ S1
#(Th)n is an orthonormal frame for

u−1
h TN :=

{
wh ∈ S1

#(Th)n : wh(z) ∈ Tuh(z)N for all z ∈ Nh

}
,

i.e., for all z ∈ Nh the vectors eih(z), i = 1, 2, ..., k, form an orthonormal basis for Tuh(z)N . For

i, j = 1, 2, ..., k define ωij
h , ω

ij
h , ϑ

i
h, ϑ

i
h ∈ L2(M ; R2) by

ωij
h :=

n∑

α=1

AT
(
ej,αh

)
∇ei,αh , ωij

h :=

n∑

α=1

ej,αh ∇ei,αh ,

and

ϑi
h :=

n∑

α=1

AT
(
ei,αh

)
∇uα

h , ϑ
i
h :=

n∑

α=1

ei,αh ∇uα
h ,

where A is as in Lemma 1.4.6.

Up to error terms, the characterization of harmonic maps given in Proposition 1.7.2 holds also
in the discrete setting. Notice that we do not assume that N is orientable in the following lemma;
continuous unit normals are only required to exist locally.

Lemma 2.2.2. Suppose that uh ∈ S1
#(Th)n satisfies uh(z) ∈ N for all z ∈ Nh and let

(
eih

)
i=1,2,...,k

⊂
S1

#(Th)n be an orthonormal frame for u−1
h TN . Then, for i = 1, 2, ..., k and all ηh ∈ S1

#(Th) we have

(
∇uh;∇Ih

[
ηhe

i
h

])

=

k∑

j=1

(
ϑ

j
h · ωij

h ; ηh

)
+

(
ϑi

h;∇ηh

)
+ Λ1

(
uh, e

i
h, ηh

)
+ Λ2

(
uh, e

i
h, ηh

)
+ Λ3

(
uh, e

i
h, ηh

)
,
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where the error terms Λ1,Λ2,Λ3 are defined by

Λ1

(
uh, e

i
h, ηh

)
:=

n∑

α=1

(
∇uα

h ;
[
A(ηh) − ηhI

]
∇ei,αh

)
,

Λ2

(
uh, e

i
h, ηh

)
:=

2∑

γ=1

k∑

j=1

([
Ih

(
ejh ⊗ ejh

)
− ejh ⊗ ejh

]
∂γuh; ηh∂γe

i
h

)
,

Λ3

(
uh, e

i
h, ηh

)
:=

2∑

γ=1

n∑

ℓ=k+1

(
Ih

(
νℓ

h ⊗ νℓ
h

)
∂γuh; ηh∂γe

i
h

)
,

and where
(
νℓ

h

)
ℓ=k+1,...,n

⊂ S1
#(Th)n is such that for all z ∈ Nh the vectors

e1h(z), ..., ekh(z), νk+1
h (z), ..., νn

h (z)

form an orthonormal basis of R
n.

Proof. Fix 1 ≤ i ≤ k. Owing to Lemma 1.4.6 we have for α = 1, 2, ..., n that

∇Ih

[
ηhe

i,α
h

]
= A(ηh)∇ei,αh + A

(
ei,αh

)
∇ηh.

Hence, it follows that

(
∇uh;∇Ih

[
ηhe

i
h

])
=

n∑

α=1

(
∇uα

h ;∇Ih

[
ηhe

i,α
h

])

=
n∑

α=1

(
∇uα

h ; ηh∇ei,αh

)
+

n∑

α=1

(
∇uα

h ;
[
A(ηh) − ηhI

]
∇ei,αh

)
+

n∑

α=1

(
∇uα

h ;A(ei,αh )∇ηh

)

=

n∑

α=1

(
∇uα

h ; ηh∇ei,αh

)
+ Λ1

(
uh, e

i
h, ηh

)
+

(
ϑi

h;∇ηh

)
.

The choice of the vector fields
(
eih

)
i=1,2,...,k

and
(
νℓ

h

)
ℓ=k+1,...,n

and properties of nodal interpolation
yield that

∂γuh =

k∑

j=1

Ih

[
ejh ⊗ ejh

]
∂γuh +

n∑

ℓ=k+1

Ih

[
νℓ

h ⊗ νℓ
h

]
∂γuh

almost everywhere in M . Thus, we deduce that almost everywhere in M we have

∂γuh · ∂γe
i
h =

k∑

j=1

(
Ih

[
ejh ⊗ ejh

]
∂γuh

)
· ∂γe

i
h +

n∑

ℓ=k+1

(
Ih

[
νℓ

h ⊗ νℓ
h

]
∂γuh

)
· ∂γe

i
h.

For each j = 1, 2, ..., k we rewrite the corresponding contribution to the first sum on the right-hand
side of the last equation as

(
Ih

[
ejh ⊗ ejh

]
∂γuh

)
· ∂γe

i
h =

([
ejh ⊗ ejh

]
∂γuh

)
· ∂γe

i
h +

({
Ih

[
ejh ⊗ ejh

]
− ejh ⊗ ejh

}
∂γuh

)
· ∂γe

i
h

=
(
∂γuh · ejh

)(
∂γe

i
h · ejh

)
+

({
Ih

[
ejh ⊗ ejh

]
− ejh ⊗ ejh

}
∂γuh

)
· ∂γe

i
h.
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This implies that

n∑

α=1

(
∇uα

h ; ηh∇ei,αh

)
=

2∑

γ=1

(
∂γuh; ηh∂γe

i
h

)

=
k∑

j=1

2∑

γ=1

(
∂γuh · ejh; ηh∂γe

i
h · ejh

)
+ Λ2

(
uh, e

i
h, ηh

)
+ Λ3

(
uh, e

i
h, ηh

)

=

k∑

j=1

(
ej,Th ∇uh; ηhe

j,T
h ∇eih

)
+ Λ2

(
uh, e

i
h, ηh

)
+ Λ3

(
uh, e

i
h, ηh

)

=

k∑

j=1

(
ϑ

j
h · ωij

h ; ηh

)
+ Λ2

(
uh, e

i
h, ηh

)
+ Λ3

(
uh, e

i
h, ηh

)

and proves the lemma.

2.2.2 Coulomb gauge for the orthonormal frame

The next lemma shows that an optimal choice of the frame
(
eih

)
i=1,2,...,k

guarantees that ωij
h is

discrete divergence-free for 1 ≤ i, j ≤ k up to perturbations. These perturbations vanish identically
if each K ∈ Th has a right-angle, cf. Lemma 1.4.7.

Lemma 2.2.3. Let
(
eih

)
i=1,2,...,k

be minimal for

(
êih

)
i=1,2,...,k

7→ 1

2

k∑

i=1

∫

T2

∣∣∇ẽih
∣∣2 dx

among all orthonormal frames
(
êih

)
i=1,2,...,k

for u−1
h TN . Then,

max
i=1,2,...,k

∥∥∇eih
∥∥ ≤ C

∥∥∇uh

∥∥.

and if ωij
h from Definition 2.2.1 is defined with such an optimal orthonormal frame we have for all

φh ∈ S1
#(Th) that

(
ωij

h ;∇φh

)
= Λ4

(
eih, e

j
h, φh

)
+ Λ5

(
eih, e

j
h, φh

)
,

where

Λ4

(
eih, e

j
h, φh

)
:=

1

4

n∑

α=1

{(
∇ei,αh ;

[
A(φh) − AT(φh)

]
∇ej,αh

)
−

(
∇ej,αh ;

[
A(φh) − AT(φh)

]
∇ei,αh

)}
,

and

Λ5

(
eih, e

j
h, φh

)
:=

1

2

n∑

α=1

{([
AT

(
ei,αh

)
− A

(
ei,αh

)]
∇ej,αh ;∇φh

)
+

([
AT

(
ej,αh

)
−A

(
ej,αh

)]
∇ei,αh ;∇φh

)}
.
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Proof. For the continuously differentiable vector fields
(
ei

)
i=1,2,...,k

from Lemma 1.6.8 the family(
Ih

[
ei ◦ uh

])
i=1,2,...,k

is an orthonormal frame for u−1
h TN satisfying

∥∥∇Ih

[
ei ◦ uh

]∥∥ ≤ C
∥∥∇

[
ei ◦ uh

]∥∥ ≤ C
∥∥∇uh

∥∥∥∥Dei
∥∥

L∞(Rn)
≤ C

∥∥∇uh

∥∥.

Since the optimal frame is minimal among all possible frames, we verify that
∥∥∇eih

∥∥ ≤ C
∥∥∇uh

∥∥ for
1 ≤ i ≤ k. Given any Sh ∈ S1

#(Th)k×k satisfying Sh(z) ∈ SO(k), the family
(
ẽih

)
i=1,2,...,k

defined

by ẽih := Ih

[∑k
j=1 Sij

h e
j
h

]
is again an orthonormal frame for u−1

h TN . Hence, since
(
eih

)
i=1,2,...,k

is

minimal, the constant mapping Ik×k ∈ S1
#(Th)k×k is minimal for

Sh 7→ 1

2

k∑

i=1

∫

Ω

∣∣∣∇Ih

[ k∑

j=1

Sij
h ẽ

j
h

]∣∣∣
2
dx (2.6)

among all Sh ∈ S1
#(Th)k×k satisfying Sh(z) ∈ SO(k) for all z ∈ Nh. Noting that TIk×k

SO(k) =

so(k) = {r ∈ R
k×k : rij = −rij for i, j = 1, 2, ..., k}, we have for all rh ∈ S1

#(Th)k×k satisfying
rh(z) ∈ so(k) for all z ∈ Nh that

0 =
d

dε

∣∣∣∣
ε=0

1

2

k∑

i=1

∫

M

∣∣∣∇Ih

[ k∑

j=1

(
Iij
k×k + εrij

h

)
ejh

]∣∣∣
2
dx

=
k∑

i=1

(
∇eih;∇Ih

[ k∑

j=1

rij
h e

j
h

])

=
k∑

i,j=1

n∑

α=1

(
∇ei,αh ;∇Ih

[
rij
h e

j,α
h

])

=
k∑

i,j=1

n∑

α=1

{(
∇ei,αh ;A

(
rij
h

)
∇ej,αh

)
+

(
∇ei,αh ;A

(
ej,αh

)
∇rij

h

)}

=

k∑

i,j=1

n∑

α=1

{(
∇ei,αh ;Asym

(
rij
h

)
∇ej,αh

)

+
1

2

(
∇ei,αh ;

[
A

(
rij
h

)
− AT

(
rij
h

)]
∇ej,αh

)
+

(
AT

(
ej,αh

)
∇ei,αh ;∇rij

h

)}
,

where Asym
(
rij
h

)
:=

{
A

(
rij
h

)
+ AT(rij

h

)}
/2. Upon noting that rh is skew-symmetric almost every-

where in M and that A
(
rij
h

)
depends linearly on rij

h , we infer that

k∑

i,j=1

n∑

α=1

(
∇ei,αh ;Asym

(
rij
h

)
∇ej,αh

)
= 0.

Recalling the definition of ωij
h we thus deduce that

k∑

i,j=1

{(
ωij

h ;∇rij
h

)
+

1

2

n∑

α=1

(
∇ei,αh ;

[
A

(
rij
h

)
−AT

(
rij
h

)]
∇ej,αh

)}
= 0. (2.7)
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Given φh ∈ S1
#(Th) and 1 ≤ i, j ≤ k, we define rh ∈ S1

#(Th)k×k by setting rij
h := φh, rji

h := −φh,

and ri′j′

h := 0 for (i′, j′) 6∈ {(i, j), (j, i)}. Then, rh(z) ∈ so(k) for all z ∈ Nh and (2.7) yields that

(
ωij

h ;∇φh

)
−

(
ωji

h ;∇φh

)
+ 2Λ4

(
eih, e

j
h, φh

)
= 0,

or equivalently,
(
ωij

h ;∇φh

)
= Λ4

(
eih, e

j
h, φh

)
+

1

2

(
ωji

h + ωji
h ;∇φh

)
.

Notice that almost everywhere in M we have that

0 = ∇Ih

[
eih · ejh

]
= ∇

n∑

α=1

Ih

[
ei,αh ej,αh

]

=

n∑

α=1

{
A

(
ei,αh

)
∇ej,αh + A

(
ej,αh

)
∇ei,αh

}

=

n∑

α=1

{
AT

(
ei,αh

)
∇ej,αh + AT

(
ej,αh

)
∇ei,αh

}

+

n∑

α=1

{[
A

(
ei,αh

)
− AT

(
ei,αh

)]
∇ej,αh +

[
A

(
ej,αh

)
− AT

(
ej,αh

)]
∇ei,αh

}

= ωji
h + ωij

h −
n∑

α=1

{[
AT

(
ei,αh

)
− A

(
ei,αh

)]
∇ej,αh +

[
AT

(
ej,αh

)
− A

(
ej,αh

)]
∇ei,αh

}
.

The combination of the last two identities implies the lemma.

2.2.3 Bounds on the error terms

We next incorporate discrete Hodge decompositions of the connection forms ωij
h in Coulomb gauge

and provide bounds on various error terms.

Lemma 2.2.4. For 1 ≤ i, j ≤ k let aij
h ∈ S1

#(Th), bijh ∈ S1,NC
# (Th), and H ij

h ∈ H#(Th; R2) be the

components of the discrete Helmholtz decomposition of ωij
h according to Proposition 1.5.7. Define

b̂ijh := Ahb
ij
h ∈ S1

#(Th). Then, for all ηh ∈ S1
#(Th) we have

(
∇uh;∇Ih

[
ηhe

i
h

])
=

k∑

j=1

{(
Curl b̂ijh · ϑj

h; ηh

)
+

(
H ij

h · ϑj
h; ηh

)}
+

(
ϑi

h;∇ηh

)

+ Λ1,2,3

(
uh, e

i
h, ηh

)
+

k∑

j=1

Λ4,5

(
eih, e

j
h, ψ

j
h

)
+

k∑

j=1

{
Θ1

(
uh, e

i
h, e

j
h, ηh

)
+ Θ2

(
uh, e

i
h, e

j
h, ηh

)}

where ψj
h := Gh

[
ηhϑ

j
h

]
∈ S1

#(Th)n satisfies
∫

T2 ψ
j
h dx = 0 and

(
∇ψh;∇vh

)
=

(
ϑj

hηh;∇vh

)
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for all vh ∈ S1
#(Th)n. We abbreviated Λ1,2,3 := Λ1 + Λ2 + Λ3 and Λ4,5 := Λ4 + Λ5 with the error

terms from Lemma 2.2.2 and Lemma 2.2.3, respectively, and the additional terms Θ1 and Θ2 are
given by

Θ1

(
uh, e

i
h, e

j
h, ηh

)
:=

([
ωij

h − ωij
h

]
· ϑj

h; ηh

)

Θ2

(
uh, e

i
h, e

j
h, ηh

)
:=

([
CurlTh

bijh − Curl b̂ijh
]
· ϑj

h; ηh

)
.

Proof. Owing to the definition of aij
h and ψj

h we have

(
∇aij

h · ϑj
h; ηh

)
=

(
∇aij

h ;∇ψj
h

)
=

(
ωij

h ;∇ψj
h

)
= Λ4,5

(
eih, e

j
h, ψ

j
h

)
.

According to Lemma 2.2.2 we thus have

(
∇uh;∇Ih

[
ηhe

i
h

])
=

k∑

j=1

(
ωij

h · ϑj
h; ηh

)
+

(
ϑi

h;∇ηh

)
+ Λ1,2,3

(
uh, e

i
h, ηh

)

=
k∑

j=1

(
ωij

h · ϑj
h; ηh

)
+

(
ϑi

h;∇ηh

)
+ Λ1,2,3

(
uh, e

i
h, ηh

)
+

k∑

j=1

Θ1

(
uh, e

i
h, e

j
h, ηh

)

=
k∑

j=1

{(
Curl b̂ijh · ϑj

h; ηh

)
+

(
H ij

h · ϑj
h; ηh

)}
+

(
ϑi

h;∇ηh

)

+ Λ1,2,3

(
uh, e

i
h, ηh

)
+ Λ4,5

(
eih, e

j
h, ψ

j
h

)

+

k∑

j=1

{
Θ1

(
uh, e

i
h, e

j
h, ηh

)
+ Θ2

(
uh, e

i
h, e

j
h, ηh

)}
,

which proves the assertion.

Lemma 2.2.5. Suppose that there exists C > 0 such that for all h > 0 we have ||∇uh|| ≤ C and
maxi=1,2,...,k ||∇eih|| ≤ C. For 1 ≤ i ≤ k there exists f i

h ∈ S1
#(Th) such that for all ηh ∈ S1

#(Th) we
have

(
f i

h; ηh

)
h

= Λ1,2,3

(
uh, e

i
h, ηh

)
+

k∑

j=1

{
Θ1

(
uh, e

i
h, e

j
h, ηh

)
+ Θ2

(
uh, e

i
h, e

j
h, ηh

)}
(2.8)

and (
f i

h; ηh

)
h
≤ C‖ηh‖L∞(T2). (2.9)

Moreover, for all ηh ∈ S1
#(Th) we have

(
f i

h; ηh

)
h
≤ Ch

∥∥∇ηh

∥∥
L∞(T2)

+ C
∑

z∈Nh

hz max
j=1,2,...,k

∥∥∇eih
∥∥

L∞(ωz)
γ2

h,z |ηh(z)|, (2.10)

where for each z ∈ Nh

γh,z := max
{∥∥∇uh

∥∥
L2(ωz)

,
∥∥∇e1h

∥∥
L2(ωz)

, ...,
∥∥∇ekh

∥∥
L2(ωz)

,
∥∥CurlTh

bijh
∥∥

L2(bωz)

}
.
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Proof. One directly verifies that the right-hand side of (2.8) defines a linear functional on S1
#(Th)

(in ηh). Hence there exists f i
h ∈ S1

#(Th) such that (2.8) holds for all ηh ∈ S1
#(Th). To prove the

asserted bounds for f i
h we estimate each contribution to the right-hand side of (2.8) separately.

Without further notice we will use the assumed bound for
∥∥∇uh

∥∥ and
∥∥∇eih

∥∥.
(i) According to the definition and properties of the matrix A

(
ηh

)
discussed in Lemma 1.4.6 we

have
Λ1(uh, e

i
h, ηh) ≤ C‖ηh‖L∞(T2),

as well as
Λ1(uh, e

i
h, ηh) ≤ Ch

∥∥∇ηh

∥∥
L∞(T2)

.

(ii) Since |ejh| ≤ 1 almost everywhere in T
2 we have

Λ2(uh, e
i
h, ηh) ≤ C‖ηh‖L∞(T2).

The interpolation estimate
∥∥Ih

(
ejh ⊗ ejh

)
− ejh ⊗ ejh

∥∥
L2(ωz)

≤ Chz‖ejh‖L∞(ωz)

∥∥∇ejh
∥∥

L2(ωz)
yields that

Λ2(uh, e
i
h, ηh) =

∑

z∈Nh

ηh(z)
2∑

γ=1

k∑

j=1

([
Ih

(
ejh ⊗ ejh

)
− ejh ⊗ ejh

]
∂γuh;ϕz∂γe

i
h

)

≤ C
∑

z∈Nh

hz

∥∥∇eih
∥∥

L∞(ωz)
γ2

h,z |ηh(z)|.

(iii) Since |νℓ
h| ≤ 1 almost everywhere in T

2 we have

Λ3(uh, e
i
h, ηh) ≤ C‖ηh‖L∞(T2).

Lemma 1.6.9 implies that
∣∣νℓ

h · ∂γuh

∣∣ ≤ ChK

∣∣∇uh

∣∣2 on each K ∈ Th so that

Λ3(uh, e
i
h, ηh) ≤ C

∑

z∈Nh

hz

∥∥∇eih
∥∥

L∞(ωz)
γ2

h,z |ηh(z)|.

(iv) With the definitions of ωij
h , ωij

h , and ϑ
j
h and Lemma 1.4.6 we verify that

Θ1

(
uh, e

i
h, e

j
h, ηh

)
=

(
ωij

h − ωij
h ; ηhϑ

j
h

)

=
n∑

α=1

(
ei,αh ∇ej,αh −AT

(
ei,αh

)
∇ej,αh ; ηhϑ

j
h

)

≤ C‖ηh‖L∞(T2).

Incorporating the estimate of Lemma 1.4.6 we find that

Θ1

(
uh, e

i
h,e

j
h, ηh

)
=

∑

z∈Nh

ηh(z)
(
ωij

h − ωij
h ;ϕzϑ

j
h

)

≤ C
∑

z∈Nh

max
α=1,2,...,n

‖A
(
ei,αh

)
− ei,αh I‖L∞(ωz)

∥∥∇ejh
∥∥

L2(ωz)
‖ejh‖L∞(ωz)

∥∥∇uh

∥∥
L2(ωz)

|ηh(z)|

≤ C
∑

z∈Nh

hz

∥∥∇eih
∥∥

L∞(ωz)
γ2

h,z |ηh(z)|.
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(v) Owing to inverse estimates, Lemma 1.5.8, and the definition of bijh we have that

∥∥CurlTh
bijh − Curl b̂ijh

∥∥ ≤ C
∥∥CurlTh

bijh ‖ ≤ C‖ωij
h ‖ ≤ C.

Therefore, we deduce that

Θ2

(
uh, e

i
h, e

j
h, ηh

)
=

(
CurlTh

bijh − Curl b̂ijh ; ηhϑ
j
h

)
≤ C||ηh||L∞(T2).

Using that

curl
(
ηhϑ

j
h

)
=

n∑

α=1

{
Curl ηh ·

[
ej,αh ∇uα

h

]
+ ηh

[
Curl ej,αh

]
· ∇uα

h

}

we infer with a Th-elementwise integration by parts that

Θ2

(
uh, e

i
h,e

j
h, ηh

)
=

(
CurlTh

bijh − Curl b̂ijh ; ηhϑ
j
h

)

= −
n∑

α=1

{(
bijh − b̂ijh ; Curl ηh ·

[
ej,αh ∇uα

h

])
+

(
bijh − b̂ijh ; ηh

[
Curl ej,αh

]
· ∇uα

h

)}

+
∑

K∈Th

∫

∂K

(
bijh − b̂ijh

)(
ηhϑ

j
h

)
· τK dt,

(2.11)

where τK is a unit tangent to ∂K for each K ∈ Th. For the first term on the right-hand side
of (2.11) we have by Lemma 1.5.8 and with

∥∥Curl ηh

∥∥
L∞(T2)

=
∥∥∇ηh

∥∥
L∞(T2)

that

n∑

α=1

(
bijh − b̂ijh ; Curl ηh ·

[
ej,αh ∇uα

h

])
≤ Ch

∥∥h−1
Th

(
bijh − b̂ijh

)∥∥∥∥∇ηh

∥∥
L∞(T2)

∥∥ejh
∥∥

L∞(T2)

∥∥∇uh

∥∥

≤ Ch
∥∥∇ηh

∥∥
L∞(T2)

.

The second term on the right-hand side of (2.11) is estimated by

n∑

α=1

(
bijh − b̂ijh ; ηh

[
Curl ej,αh

]
· ∇uα

h

)
=

∑

z∈Nh

n∑

α=1

ηh(z)
(
bijh − b̂ijh ;ϕz

[
Curl ej,αh

]
· ∇uα

h

)

≤ C
∑

z∈Nh

|ηh(z)|
∥∥bijh − b̂ijh

∥∥
L2(ωz)

∥∥∇ejh
∥∥

L∞(ωz)

∥∥∇uh

∥∥
L2(ωz)

≤ C
∑

z∈Nh

|ηh(z)|hz

∥∥CurlTh
bijh

∥∥
L2(bωz)

∥∥∇ejh
∥∥

L∞(ωz)

∥∥∇uh

∥∥
L2(ωz)

.

Notice that the vector field ηhϑ
j
h = ηh

∑n
α=1 e

j,α
h ∇uα

h has continuous tangential components across

interelement boundaries and b̂ijh is continuous so that the boundary contributions to the right-hand
side of (2.11) can be recast as

∑

K∈Th

∫

∂K

(
bijh − b̂ijh

)(
ηhϑ

j
h

)
· τK dt =

∑

E∈Eh

∫

E

[
bijh

](
ηhϑ

j
h

)
· τE dt.

Since bijh ∈ S1,NC
# (Th), the jump

[
bijh

]
|E across E is affine and vanishes at the midpoint of E where

bijh is continuous so that
∫
E

[
bijh

]
dt = 0. This enables us to subtract an arbitrary constant cE ∈ R

2
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from the second factor and to employ a Poincaré inequality on E and discrete trace inequalities to
estimate a typical contribution to the right-hand side as

∫

E

[
bijh

](
ηhϑ

j
h

)
· τE dt =

∫

E

[
bijh

](
ηhϑ

j
h − cE

)
· τE dt

≤ ChE

∥∥∂
[
bijh

]
/∂t

∥∥
L2(E)

h
−1/2
E

∥∥ηhϑ
j
h − cE

∥∥
L2(KE)

≤ Ch
1/2
E

∥∥CurlTh
bijh

∥∥
L2(KE)

h
1/2
E

∥∥∇
(
ηhϑ

j
h

)∥∥
L2(KE)

(2.12)

with KE ∈ Th such that E ⊂ ∂KE . Noting that
∣∣∇

(
ηhϑ

j
h

)∣∣ ≤
∣∣∇ηh

∣∣ ∣∣ϑj
h

∣∣+ |ηh|
∣∣∇ejh

∣∣ ∣∣∇uh

∣∣ we verify
with the above estimates that

∑

K∈Th

∫

∂K

(
bijh − b̂ijh

)(
ηhϑ

j
h

)
· τK dt

≤ Ch
∥∥∇ηh

∥∥
L∞(T2)

+ C
∑

z∈Nh

hz

∥∥∇ejh
∥∥

L∞(ωz)

∥∥CurlTh
bijh

∥∥
L2(bωz)

∥∥∇eih
∥∥

L2(ωz)
|ηh(z)|.

A combination of the estimates derived in (i)-(v) proves the statement.

2.2.4 Convergence as h → 0

With the preparations of the previous lemmas, we can investigate convergence behaviour of the
different quantities as the maximal mesh-size decays to zero.

Lemma 2.2.6. Let
(
Th

)
h>0

be a sequence of logarithmically right-angled triangulations. Let Φ ∈
L2(T2; R2) and let ψh := GhΦ ∈ S1

#(Th) satisfy
∫

T2 ψh dx = 0 and

(
∇ψh;∇vh

)
=

(
Φ;∇vh

)

for all vh ∈ S1
#(Th). Then,

∣∣Λ4

(
eih, e

j
h, ψh

)∣∣ +
∣∣Λ5

(
eih, e

j
h, ψh

)∣∣ → 0

as h→ 0.

Proof. Owing to the definition of Λ4 and Lemma 1.4.7 we have

Λ4

(
eih, e

j
h, ψh

)
≤ C

∥∥eih
∥∥∥∥ejh

∥∥ ∥∥A(ψh) − AT(ψh)
∥∥

L∞(T2)

≤ C
∥∥eih

∥∥∥∥ejh
∥∥ sup

K∈Th

min
γ=1,2,3

| cosαK,γ | ‖ψh‖L∞(T2).

The inverse estimate of Lemma 1.4.9 guarantees that

‖ψh‖L∞(T2) ≤ C log h−1
min

∥∥∇ψh

∥∥

and the definition of ψh provides the estimate
∥∥∇ψh

∥∥ ≤ ‖Φ‖.
The combination of the estimates and the definition of logarithmically right-angled triangulations
proves the asserted limit for Λ4. The same arguments lead to the assertion for Λ5 (where the
uniform bounds

∥∥eih
∥∥

L∞(T2)
≤ 1 may be employed for a more direct proof).
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Lemma 2.2.7. Let 1 ≤ i ≤ k and f i
h ∈ S1

#(Th) be as in Lemma 2.2.5. There exist
(
tiι

)
ι∈N

⊂ R and(
yi

ι

)
ι∈N

⊂ T
2 such that

∑
ι∈N

|tiι|2/3 ≤ C and for an appropriate subsequence (which is not relabeled)

and every η ∈ C∞(T2) we have (
f i

h;Ihη
)
h
→

∑

ι∈N

tiιη(y
i
ι).

Proof. We define Fh ∈ C(T2)∗ as
Fh(η) :=

(
f i

h;Ihη
)
h
.

Since Fh is uniformly bounded in C(T2)∗ there exists F ∈ C(T2)∗ such that (for a subsequence) we
have Fh ⇀

∗ F in C(T2)∗. We fix δ > 0 and define
∑

δ,h
:=

{
z ∈ Nh : hz max

j=1,2,...,k

∥∥∇ejh
∥∥

L∞(ωz)
> δ

}
.

Then, using that hz

∥∥∇ejh
∥∥

L∞(ωz)
≤ C

∥∥∇ejh
∥∥

L2(ωz)
for each z ∈ Nh we infer that

card
∑

δ,h
≤ δ−2

∑

z∈Nh

h2
z max

j=1,2,...,k

∥∥∇ejh
∥∥2

L∞(ωz)

≤ Cδ−2
∑

z∈Nh

k∑

j=1

∥∥∇ejh
∥∥2

L2(ωz)
≤ Cδ−2

k∑

j=1

∥∥∇ejh
∥∥2 ≤ Cδ−2,

i.e., the cardinality of the set
∑

δ,h is uniformly bounded with respect to h and therefore, for an
appropriate subsequence which is not relabeled we have

∑
δ,h

→
∑

δ
=

{
xδ

1, x
δ
2, ...., x

δ
Lδ

}

as h→ 0. With F z
h := Fh

(
ϕz

)
∈ R for each z ∈ Nh we have

Fh(η) =
∑

z∈Nh

F z
hη(z) =

∑

z∈Σδ,h

F z
hη(z) +

∑

z∈Nh\Σδ,h

F z
hη(z) =: F bad

δ,h (η) + F good
δ,h (η).

With the estimates of Lemma 2.2.5 we infer
∣∣F good

δ,h (η)
∣∣ ≤ Ch

∥∥∇η
∥∥

L∞(T2)
+ C

∑

z∈Nh\Σδ,h

hz

∥∥∇eih
∥∥

L∞(ωz)
γ2

h,z|η(z)|

≤ Ch
∥∥∇η

∥∥
L∞(T2)

+ Cδ‖η‖L∞(T2),

in particular we have (after passage to a subsequence) that F good
δ,h ⇀∗ F good

δ in C(T2)∗ as h → 0

with F good
δ ∈ C(T2)∗ such that

∥∥F good
δ

∥∥
C(T2)∗

≤ Cδ. For F bad
δ,h we have that

∣∣F bad
δ,h (η)

∣∣ ≤ Ch
∥∥∇η

∥∥
L∞(T2)

+ C
∑

z∈Σδ,h

γ3
h,z|η(z)|.

An application of Lemma 1.9.3 shows that for a subsequence we have F bad
δ,h ⇀∗ F bad

δ =
∑Lδ

ι=1 ρ
δ
ι δxδ

ι

as h→ 0 for ρδ
ι ∈ R such that

∑Lδ

ι=1 |ρδ
ι |2/3 ≤ C independently of δ. We thus have

∥∥F − F bad
δ

∥∥
C(T2)∗

≤ Cδ.

Employing Lemma 1.9.1 we verify the assertion.
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Lemma 2.2.8. Suppose that
(
uh

)
h>0

is a bounded sequence in W 1,2(T2; Rn) such that uh ∈ S1
#(Th)n

for all h > 0 and uh(z) ∈ N for all z ∈ Nh. For each h > 0 let
(
eih

)
i=1,2,...,k

be an orthonormal

frame for u−1
h TN which is optimal in the sense of Lemma 2.2.3 so that maxi=1,2,...,k

∥∥∇eih
∥∥ ≤ C.

Then, for every accumulation point u ∈ W 1,2(T2; Rn) of the sequence
(
uh

)
h>0

and an appropriate
subsequence, which is not relabeled in the following, we have:
(i) u(x) ∈ N for almost every x ∈ T

2 and

uh ⇀ u in W 1,2(T2; Rn);

(ii) there exist
(
ei

)
i=1,2,..,k

⊂W 1,2(T2; Rn) such that

eih ⇀ ei in W 1,2(T2; Rn)

and
(
ei

)
i=1,2,...,k

is an orthonormal frame for u−1TN , i.e., for almost every x ∈ T
2 the vectors

e1(x), e2(x), ..., ek(x) form an orthonormal basis for Tu(x)N ;

(iii) for ωij := ej,T∇ei ∈ L2(T2; R2) we have

ωij
h , ω

ij
h ⇀ ωij in L2(T2; Rn);

(iv) for ϑi := ei,T∇u ∈ L2(T2; R2) we have

ϑi
h, ϑ

i
h ⇀ ϑi in L2(T2; R2);

(v) there exist bij ∈W 1,2(T2) and H ij ∈ L2(T2; R2) such that for aij
h , b̂ijh , and H ij

h as in Lemma 2.2.4
we have

aij
h ⇀ 0 in W 1,2(T2), b̂ijh ⇀ bij in W 1,2(T2), H ij

h → H ij in L2(T2; R2)

and ωij = Curl bij +H ij .

Proof. (i) For every accumulation point u ∈ W 1,2(T2; Rn) of the bounded sequence
(
uh

)
h>0

there

exists a subsequence which we do not relabel such that uh ⇀ u in W 1,2(T2; Rn). Lemma 1.8.1 then
implies that u(x) ∈ N for almost every x ∈ T

2.
(ii) Since each sequence

(
eih

)
h>0

is bounded in W 1,2(T2; Rn) each admits a weak limit ei ∈
W 1,2(T2; Rn) of an appropriate subsequence. By successive extraction of subsequences we may
assume that the same subsequence converges weakly for each 1 ≤ i ≤ k. For 1 ≤ i, j ≤ k with i 6= j
we have eih(z) · ejh(z) = 0 for all z ∈ Nh and a nodal interpolation estimate proves

∥∥eih · ejh
∥∥ ≤ Ch‖∇

(
eih · ejh

)∥∥ ≤ Ch‖ej,Th ∇eih + ei,Th ∇ejh
∥∥ ≤ Ch,

where we used that |eih|, |e
j
h| ≤ 1 almost everywhere in T

2 and ‖∇eih‖, ‖∇e
j
h‖ ≤ C, independently

of h. Hence, eih · ejh → 0 in L2(T2) and in particular, eih(x) · ejh(x) → 0 for almost every x ∈ T
2.

Since also eih(x) → ei(x) and ejh(x) → ej(x) for almost every x ∈ T
2 we deduce that ei · ej = 0

almost everywhere in T
2. Similarly, using that |eih(z)| = 1 for all z ∈ Nh we estimate

∥∥|eih|2 − 1
∥∥ ≤ Ch‖∇|eih|2

∥∥ ≤ Ch‖ei,Th ∇eih
∥∥ ≤ Ch,

which implies |eih|2 → 1 in L2(T2) and hence |ei| = 1 almost everywhere in T
2. It remains to show

that for ℓ = k+1, ..., n we have ei ·
(
νℓ ◦u

)
= 0 almost everywhere in T

2. Since νℓ is locally C1 and
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eih(x) → ei(x), uh(x) → u(x) as h → 0 for almost every x ∈ T
2 it suffices to show that for every

δ > 0 and almost every x ∈M there exists h0 = h0(x) such that for all h < h0 we have

∣∣eih(x) · νℓ
(
uh(x)

)∣∣ ≤ δ.

Fix δ > 0 and define for h > 0

∑
δ,h

:=
{
z ∈ Nh :

∥∥∇uh

∥∥
L2(ωz)

+
∥∥∇eih

∥∥
L2(ωz)

> δ
}
.

Then, card
∑

δ,h ≤ Cδ−2 for all h > 0 and hence
∑

δ,h → ∑
δ =

{
xδ

1, x
δ
2, ..., x

δ
Lδ

}
for xδ

1, x
δ
2, ..., x

δ
Lδ

∈
T

2 as h → 0. For each x ∈ T
2 \ ∑

δ there exists h0 such that for every h < h0 there exists
zx
h ∈ Nh \ ∑

δ,h such that x ∈ ωzx
h
. Then we have, using that eih(z) · νℓ

(
uh(z)

)
= 0 for all z ∈ Nh,

that

∣∣eih(x) · νℓ
(
uh(x)

)∣∣ =
∣∣∣eih(zx

h) ·
[
νℓ

(
uh(x)

)
− νℓ

(
uh(zx

h)
)]

+
[
eih(zx

h) − eih(x)
]
· νℓ

(
uh(x)

)∣∣∣

≤
∥∥Dνℓ

∥∥
L∞(Bh0

(u(x)))

∣∣uh(x) − uh(zx
h)

∣∣ +
∣∣eih(zx

h) − eih(x)
∣∣

≤ Ch
(∥∥∇uh

∥∥
L∞(ωzx

h
)
+

∥∥∇eih
∥∥

L∞(ωzx
h
)

)

≤ C
(∥∥∇uh

∥∥
L2(ωzx

h
)
+

∥∥∇eih
∥∥

L2(ωzx
h
)

)

≤ Cδ,

which proves the statement.
(iii) For all η ∈ C∞(T2; R2) we have, using eih → ei in L2(T2; Rn) and ∇ej,αh ⇀ ∇ej,α in L2(T2; R2),
α = 1, 2, ..., n, that

(
ωij

h − ωij ; η
)

=

n∑

α=1

(
ej,αh ∇ei,αh − ej,α∇ei,α; η

)

=
n∑

α=1

{([
ej,αh − ej,α

]
∇ei,αh ; η

)
+

([
∇ej,αh −∇ej,α

]
· ei,α; η

)}
→ 0

as h→ 0. Therefore ωij
h ⇀ ωij in L2(T2; R2) as h→ 0. Using

∥∥A
(
ej,αh

)
− ej,αh I

∥∥ ≤ Ch
∥∥∇ej,αh

∥∥

we find that A
(
ej,αh

)
→ ej,αI in L2(T2; R2×2) for α = 1, 2, .., n and thus also ωij

h ⇀ ωij in L2(T2; R2).
(iv) This follows exactly as the assertion in (iii).
(v) For φ ∈ C∞(T2) and φh := Ihφ ∈ S1

#(Th) we have

(
∇aij

h ;∇φ
)

=
(
∇aij

h ;∇φh

)
+

(
∇aij

h ;∇
[
φ− φh

])

and the second term on the right-hand side vanishes as h→ 0 owing to uniform boundedness of aij
h

in W 1,2(T2) and nodal interpolation results. By definition of aij
h and Lemma 2.2.3 we have

(
∇aij

h ;∇φh

)
=

(
ωij

h ;∇φh

)
= Λ4

(
eih, e

j
h, φh

)
+ Λ5

(
eih, e

j
h, φh

)
.
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The definition of Λ4 and Λ5 and the estimates of Lemma 1.4.6 we derive

∣∣Λ4

(
eih, e

j
h, φh

)
+ Λ5

(
eih, e

j
h, φh

)∣∣ ≤ Ch
∥∥∇eih

∥∥∥∥∇ejh
∥∥∥∥∇φh

∥∥
L∞(M)

and thus aij
h ⇀ 0 as h → 0. Since H ij

h is a bounded sequence in a finite-dimensional space, cf.

Lemma 1.5.6, there exists H ij such that, for an appropriate subsequence, we have H ij
h → H ij in

L2(T2; R2). Since
∥∥CurlTh

bijh
∥∥ is bounded uniformly we find, using Lemma 1.5.8 that bijh − b̂ijh → 0

in L2(T2) and b̂ijh ⇀ bij for some bij ∈ W 1,2(T2) (and an appropriate subsequence). For every
ψ ∈ C∞(T2; R2) and ψh := Ihψ we find with an elementwise integration by parts as in the proof of
Lemma 2.9 that

(
ωij

h ;ψh

)
=

(
CurlTh

bijh ;ψh

)
+

(
H ij

h ;ψh

)

= −
(
bijh ; curlψh

)
+

(
H ij

h ;ψh

)
+

∑

E∈Eh

∫

E

[
bijh

](
ψh − cE

)
τE dt,

where cE ∈ R
2 is an arbitrary constant vector for each E ∈ Eh. Arguing as in (2.12), passing to

the limit for h→ 0, and integrating by parts we verify that ωij = Curl bij +H ij . This finishes the
proof of the lemma.

Remark 2.2.9. We remark that if N is orientable than the last part of item (ii) in the proof
of Lemma 2.2.8 can be significantly simplified: With νℓ : R

n → R
n as in Lemma 1.6.8 we have

eih(z) · νℓ
(
uh(z)

)
= 0 for all z ∈ Nh and ℓ = k + 1, ..., n and therefore

‖eih ·
(
νℓ ◦ uh

)
‖ ≤ Ch

∥∥∇
[
eih ·

(
νℓ ◦ uh

)]∥∥ ≤ Ch
(∥∥(

νℓ ◦ uh

)T∇eih
∥∥ +

∥∥ei,Th ∇
(
νℓ ◦ uh

)∥∥)
≤ Ch.

Pointwise convergence almost everywhere implies ei ·
(
νℓ ◦ u

)
= 0.

The following result is based on P.L. Lions’ concentrated compactness principle [Lio85]. For a
discussion of the assertion in the periodic setting we refer to [FMS98].

Lemma 2.2.10. [FMS98, Equation (2.4)] Suppose that
(
bh

)
h>0

,
(
eh

)
h>0

and
(
fh

)
h>0

are bounded

sequences in W 1,2(T2) with weak limits b, e, f ∈ W 1,2(T2), respectively, and assume that eh is
bounded in L∞(T2). Then, there exist

(
sι

)
ι∈N

⊂ R satisfying
∑

ι∈N
|sι| ≤ C and

(
xι

)
ι∈N

⊂ T
2 such

that for (a subsequence and) all η ∈ C∞(T2) we have

(
Curl bh; ehη∇fh

)
→

(
Curl b; eη∇f

)
+

∑

ι∈N

sιη(xι)

as h→ 0.

2.2.5 Statement of the main result

We are now in position to prove the asserted weak convergence result for a sequence of periodic,
almost discrete harmonic maps.

Theorem 2.2.11. Let
(
Th

)
h>0

be a sequence of logarithmically right-angled triangulations of T
2

and let
(
uh

)
h>0

be such that for all h > 0 we have uh ∈ S1
#(Th)n, uh(z) ∈ N for all z ∈ Nh, and

∥∥∇uh

∥∥ ≤ C.
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Suppose that there exists a sequence of linear functionals Resh : S1
#(Th)n → R such that

sup
vh∈S

1
#(Th)n\{0}

∣∣Resh(vh)
∣∣

‖vh‖W 1,2(T2)
→ 0

as h→ 0 and assume that for all vh ∈ S1
#(Th)n satisfying vh(z) ∈ Tuh(z)N for all z ∈ Nh we have

(
∇uh;∇vh

)
= Resh(vh).

Then every weak accumulation point of
(
uh

)
h>0

⊂W 1,2(T2; Rn) is a harmonic map into N .

Proof. We let u ∈W 1,2(T2; Rn) be a weak accumulation point of
(
uh

)
h>0

and we do not relabel the

corresponding subsequence so that uh ⇀ u as h→ 0. Let η ∈ C∞(T2) and for h > 0 set ηh := Ihηh.
For each h > 0 let

(
eih

)
i=1,2,...,k

be an orthonormal frame for u−1
h TN which is optimal in the sense

of Lemma 2.2.3. Then, Lemma 2.2.4 and Lemma 2.2.5 imply that

Resh

(
Ih

[
ηhe

i
h

])
=

(
∇uh;∇Ih

[
ηhe

i
h

])

=
k∑

j=1

{(
Curl b̂ijh · ϑj

h; ηh

)
+

(
H ij

h · ϑj
h; ηh

)}
+

(
ϑi

h;∇ηh

)
+

(
f i

h; ηh

)
h
.

With the limits bij, H ij, ϑj and ωij of appropriate subsequences identified in Lemmas 2.2.7, 2.2.8,
and 2.2.10, and with the assumptions on Resh we find that

0 =

k∑

j=1

{(
Curl bij · ϑj; η

)
+

(
H ij · ϑj; η

)}
+

(
ϑi;∇η

)
+

∑

ι∈N

sιη(xι) +
∑

ι∈N

tιη(yι)

and ωij = Curl bij +H ij so that

k∑

j=1

(
ωij · ϑj

h; η
)

+
(
ϑi;∇η

)
=

∑

ι∈N

sιη(xι) +
∑

ι∈N

tιη(yι).

The left-hand side of this identity belongs to L1(M) + H−1(M), which does not contain Dirac
measures, see [FMS98] for details. Therefore, sι = tι = 0 for all ι ∈ N and Proposition 1.7.2 implies
that the weak limit u is a harmonic map into N .

2.3 Reduction of the general case to a periodic setting

In this section we discuss the generalization of Theorem 2.2.11 to general flat domains. The main
assertion is the following.

Theorem 2.3.1. Suppose that M = Mh ⊂ R
2 × {0} is a bounded Lipschitz domain in R

2 with
polyhedral boundary and assume that

(
Th

)
h>0

is a sequence of asymptotically right-angled, regular

triangulations of M . Let
(
uh

)
h>0

be such that for each h > 0 we have uh ∈ S1(Th)n, uh(z) ∈ N
for all z ∈ Nh, uh|ΓD,h

= uD,h, and ∥∥∇Mh
uh

∥∥ ≤ C.
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For each h > 0 let Resh : S1
D(Th)n → R satisfy

sup
vh∈S

1
D(Th)n\{0}

∣∣Resh(vh)
∣∣

‖vh‖W 1,2(M ;Rn)
→ 0

as h→ 0 and assume that for all vh ∈ S1
D(Th)n satisfying vh(z) ∈ Tuh(z)N for all z ∈ Nh we have

(
∇Mh

uh;∇Mh
vh

)
= Resh(vh).

If in addition uD,h → uD in L2(ΓD; R3) as h → 0 then every weak accumulation point of the
sequence

(
uh

)
h>0

⊂W 1,2(M ; R3) is a harmonic map into N with u|ΓD
= uD.

Proof. Let u ∈ W 1,2(M ; Rn) be a weak accumulation point of the sequence
(
uh

)
h>0

. Then,
Lemma 1.8.1 and Lemma 1.8.4 imply that u(x) ∈ N for almost every x ∈ M and u|ΓD

= uD,
respectively. It remains to show that u is a harmonic map, i.e., that

(
∇u;∇v

)
= 0

for all v ∈ W 1,2
0 (M ;Rn) satisfying v(x) ∈ Tu(x)N for almost every x ∈M . Given some fixed δ > 0

it suffices to prove this identity for all v ∈W 1,2
0 (Q;Rn) for all cubes Q ⊂M with sides of length at

most δ and parallel to the coordinate axis. We fix such a cube Q and may assume without loss of
generality that Q = Q1/4(a) is centered at a = (1/4, 1/4) and has sides of length 1/4. Also, we may
assume that Q1/2(a) ⊂M . For h sufficiently small we consider the cube Q1/2−2h(a) and introduce

the subset T̃h of the triangulation Th by setting

T̃h :=
{
K ∈ Th : K ∩Q1/2−2h(a) 6= ∅

}
.

Then, T̃h covers Q1/2−2h(a) and is contained in Q1/2(a), cf. Figure 2.1.

a

1/2

1/2

(a)

0

Q
1/4

(a)

Q
1/2−2h

Figure 2.1: Cubes Q1/4(a) and Q1/2−2h(a) for a = (1/4, 1/4) and typical trian-

gles of the subtriangulation T̃h.

In order to reduce to the periodic setting discussed in the previous section, we (1) extend T̃h

to a regular triangulation T̂h of (0, 1/2)2 , (2) extend uh|∪eTh
to a function ûh ∈ S1(T̂h)n such that

ûh(z) ∈ N for all z ∈ N̂h, the nodes of the triangulation T̂h, and such that
∥∥∇ûh

∥∥
L2((0,1/2)2)

≤ C,
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2 h

C

β

A’

C’

A

α B

Figure 2.2: Typical scenarios in the extension of the triangulation T̃h (shaded)
to a triangulation of (0, 1/2)2. The angle α is not critical in the left plot and
critical in the right one.

K4

K1

K2

K3

A

B

A’

B’

0 B’’

α

h

K1

K3

K2

K4

B’

0

α

K5

B’’

C

AA’

B

h

Figure 2.3: Typical scenarios in the extension of the triangulation T̃h (shaded)
to a triangulation of (0, 1/2)2 at a corner. The angle α is not critical in the left
plot and critical in the right one.

and (3) finally reflect ûh across the lines {1/2} × R and R × {1/2} in order to obtain a periodic
function on [0, 1]2 to which we can apply the theory of the previous section.

Step 1. The task to extend T̃h to a regular triangulation of (0, 1/2)2 is simple if Th is a uniform
triangulation consisting of halved squares with sides parallel to the coordinate axis. The general case
is slightly more involved and in order to guarantee shape-regularity of the extended triangulation we
discuss a few typical scenarios. Consider first the situation depicted in the left plot of Figure 2.2 and
assume that the angles α, β are not critical in the sense that they satisfy −π/2+c0 ≤ α, β ≤ π/2−c0
with a uniform (small) constant c0 > 0. We then introduce the new triangles K̃1, K̃2, K̃3, K̃4

as shown. A typical critical angle α is depicted in the right plot of Figure 2.2. In this case,
we connect the points A and C to obtain a new triangle K̃3. We can then proceed as in the
previous case. Next, we examine a typical situation at a corner of the cube Q1/2−2h(a). Again,
the construction of the extension depends on the angle α defined in Figure 2.3. In the left plot, α
satisfies −π/2 + c0 ≤ α ≤ π/2 − c0 and we introduce the new triangles K̃1, K̃2, K̃3, K̃4. The case
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of a critical angle is depicted in the right plot of Figure 2.3. We connect the vertices A and B to
introduce the new triangle K̃5. We are then in the situation described above. We remark that in
case that there are triangles with |A−B| ≪ h then the new triangles K̃i can be refined further in
order to maintain shape regularity.

Step 2. In the situations discussed above, we extend uh by setting ûh(A′) := uh(A), ûh(B′) := uh(B),
ûh(C ′) := uh(C) and ûh(A′) := uh(A), ûh(C ′) := uh(C) in the situations depicted in the left and
right plot Figure 2.2, respectively. We set ûh(A′) := uh(A), ûh(B′) = ûh(B′′) = ûh(0) := uh(B),
ûh(C ′) := uh(C) in the scenarios shown in Figure 2.3. In order to show that we do not increase the
gradient of uh we notice that, e.g., in the situation of the right plot of Figure 2.2 we have

∣∣∇ûh| eK2

∣∣ ≤ h−1
∣∣ûh(C ′) − ûh(A)

∣∣ ≤ h−1
(∣∣uh(A) − uh(B)

∣∣ +
∣∣uh(B) − uh(C)

∣∣)

≤
∣∣∇uh|KA

∣∣ +
∣∣∇uh|KB

∣∣,

where KA,KB ∈ T̃h are such that A ∈ KA and B ∈ KB .

Step 3. We reflect the triangulation T̂h and the function ûh across the lines {1/2}×R and R×{1/2}
to obtain a triangulation T #

h of T
2 and a function u#

h ∈ S1
#(T #

h ) periodic function on [0, 1]2,
cf. Figure 2.4.

−1/2

1

0 1

1/2

1/2

R

R

Figure 2.4: Reflection of the triangulation T̃h of (0, 1/2)2 to obtain a (”peri-
odic”) triangulation of T

2 with fundamental domain (−1/2, 1/2)2 . (The dot is
included for better visualization.)

We may now apply Theorem 2.2.11 to the sequence
(
u#

h

)
. The only thing we have to modify is

that test functions are supported in Q1/4(a). This shows that u is harmonic in Q1/4(a) and finishes
the proof of the theorem.

2.4 Various extensions

The condition that a sequence of triangulations is logarithmically right-angled severely restricts
the applicability of the convergence result of the previous section. In the first part of this section
we show that the condition is not required if the sequence of discrete harmonic maps is uniformly
bounded in W 1,2+σ(M ; Rn) for some σ > 0. This suggests that the angle condition is mostly needed
to cope with technical difficulties. Moreover, this observation justifies approximation schemes on
non-flat submanifolds M ⊂ R

3 for which right-angled triangulations may not be available at all.
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Related aspects for the approximation of harmonic maps on curved surfaces are discussed in the
second part of the section. The last part of this section discusses in brief the transfer of the above
convergence result to the numerical approximation of the harmonic map heat flow into general
submanifolds. Motivation for this is that some of the algorithms for the approximation of harmonic
maps introduced in Chapter 3 are based on gradient flow approaches.

2.4.1 Convergence on regular triangulations

The logarithmical right-angled condition implies that the discrete connection forms ωij
h in Coulomb

gauge are discrete divergence free, at least asymptotically, see Lemma 2.2.3. The following propo-
sition shows that this is also the case if the sequence

(
uh

)
h>0

admits higher integrability properties
and can be used to replace Lemma 2.2.6 in the proof of Theorem 2.2.11.

Proposition 2.4.1. Suppose that
(
Th

)
h>0

is a sequence of regular triangulations of T
2 with max-

imal mesh-size h → 0 and for each h > 0 let uh ∈ S1
#(Th)n be such that uh(z) ∈ N for all z ∈ Nh.

Suppose that there exists σ > 0 and C > 0 such that

∥∥∇uh

∥∥
L2+σ(T2)

≤ C

for all h > 0. Given η ∈ C∞(T2) set ηh := Ih[η] ∈ S1
#(Th) and let ψj

h := Gh

[
ηhϑ

j
h

]
∈ S1

#(Th) be

defined through
∫

T2 ψ
j
h dx = 0 and

(
∇ψj

h;∇vh

)
=

(
ηhϑ

j
h;∇vh

)

for all vh ∈ S1
#(Th) and with ϑ

j
h as in Definition 2.2.1. We then have

∣∣Λ4

(
eih, e

j
h, ψ

j
h

)∣∣ +
∣∣Λ5

(
eih, e

j
h, ψ

j
h

)∣∣ → 0

as h→ 0, where Λ4 and Λ5 are as in Lemma 2.2.3.

Proof. Given a, b ∈ L∞(T2) and c ∈ Lq(T2) for q ∈ (1,∞) we have

(
ab; c

)
≤ ‖a‖1/q

L∞(T2)
‖b‖1/q

L∞(T2)
‖a‖1/q′‖b‖1/q′‖c‖Lq(T2).

By definition of Λ4

(
eih, e

j
h, ψ

j
h

)
we verify with q := 2 + σ that

∣∣Λ4

(
eih, e

j
h, ψh

)∣∣ ≤
∥∥∇eih

∥∥1/q

L∞(T2)

∥∥∇ejh
∥∥1/q

L∞(T2)

∥∥∇eih
∥∥1/q′∥∥∇ejh

∥∥1/q′∥∥ψj
h − A

(
ψj

h

)∥∥
Lq(T2)

≤ Ch
∥∥∇eih

∥∥1/q

L∞(T2)

∥∥∇ejh
∥∥1/q

L∞(T2)

∥∥∇eih
∥∥1/q′∥∥∇ejh

∥∥1/q′∥∥∇ψj
h

∥∥
Lq(T2)

,

where we incorporated the estimate of Lemma 1.4.6. An inverse estimate and
∥∥eℓh

∥∥
L∞(T2)

≤ 1 and∥∥∇eℓh
∥∥ ≤ C for ℓ = i, j imply

∣∣Λ4

(
eih, e

j
h, ψh

)∣∣ ≤ Ch1−2/q
∥∥∇ψj

h

∥∥
Lq(T2)

. (4.13)

We define G : L2(T2; R2) →
◦
W 1,2(T2) for Φ ∈ L2(T2; R2) by

(
∇G[Φ];∇v

)
=

(
Φ;∇v

)
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for all v ∈
◦
W 1,2(T2) :=

{
w ∈W 1,2(T) :

∫
T2 w dx = 0

}
. Moreover, we let RGh : W 1,2(T2) →

◦
S1

#(Th)

denote the Ritz-Galerkin projection onto
◦
S 1

#(Th) := S1
#(Th)∩

◦
W 1,2(T2) defined for a ∈ W 1,2(T2)

through (
∇RGh[a];∇vh

)
=

(
∇a;∇vh

)

for all vh ∈
◦
S1

#(Th). We then have Gh = RGh ◦ G and in particular that

ψh =
(
RGh ◦ G

)[
ηhϑ

j
h

]
.

By definition, the Ritz-Galerkin projection satisfies
∥∥∇RGh[a]

∥∥ ≤
∥∥∇a

∥∥ for all a ∈ W 1,2(T2).
Results in [BTW03] imply that it also satisfies

∥∥∇RGh[a]
∥∥

L∞(T2)
≤ C

∥∥∇a
∥∥

L∞(T2)
for all a ∈

W 1,∞(T2). Interpolation of operators, see [BL76], thus implies that

∥∥∇RGh[a]
∥∥

Lq(T2)
≤ C

∥∥∇a
∥∥

Lq(T2)

for all a ∈W 1,q(T2). Since the operator G satisfies, see [Iwa83],

∥∥∇G
[
Φ

]∥∥
Lq(T2)

≤ C
∥∥Φ

∥∥
Lq(T2)

we have that

∥∥∇ψh

∥∥
Lq(T2)

=
∥∥∇Gh

[
ηhϑ

j
h

]∥∥
Lq(T2)

=
∥∥∇

(
RGh ◦ G

)[
ηhϑ

j
h

]∥∥
Lq(T2)

≤ C
∥∥∇G

[
ηhϑ

j
h

]∥∥
Lq(T2)

≤ C
∥∥ηhϑ

j
h

∥∥
Lq(T2)

≤ C
∥∥∇uh

∥∥
Lq(T2)

∥∥ηh

∥∥
L∞(T2)

,

where we incorporated the definition of ϑ
j
h and the bound

∥∥ejh
∥∥

L∞(T2)
≤ 1 in the last estimate.

Using this bound and the assumed estimate
∥∥∇uh

∥∥
Lq(T2)

≤ C in (4.13) we deduce

∣∣Λ4

(
eih, e

j
h, ψh

)∣∣ ≤ Ch1−2/q
∥∥ηh

∥∥
L∞(T2)

,

which proves the asserted limit for Λ4 since q > 2. The same argumentation implies the asserted
limit for Λ5.

2.4.2 Convergence of discrete harmonic maps on curved surfaces

The analysis carried out in Section 2.2 transfers to a large extent to discrete harmonic maps on
curved surfaces. Here, we briefly discuss necessary modifications of the argumentation.

Suppose that M ⊂ R
3 is a two-dimensional, smooth, compact, and orientable submanifold

without boundary and for each h > 0 we are given an approximation Mh of M defined through
a set of triangles Th as in Section 1.3. For each h > 0 let uh ∈ S1(Th)n be such that uh(z) ∈ N
for all z ∈ Nh. Since the discrete product rule and the discrete Helmholtz decomposition also hold
on Mh, Definition 2.2.1 as well as Lemmas 2.2.2 and 2.2.3 hold verbatim with S1

#(Th) replaced by
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S1(Th), ∇ substituted by ∇Mh
, and noting that ωij

h , ω
ij
h , ϑ

i
h, ϑ

i
h ∈ L2(Mh; R3). Also, Lemmas 2.2.4

and 2.2.5 only require notational changes. The assertions of Lemmas 2.2.6 and 2.2.7 are still valid
on curved surfaces, however, a logarithmical right-angled condition appears very restrictive for
curved surfaces since right-angled triangulations may not be available for certain curved surfaces
at all. Nevertheless, the right-angled condition may be replaced by a regularity assumption as in
Proposition 2.4.1, we refer to the end of this section for details. By employing the lifting operator
of Section 1.3 one may also pass to limits of the various functions as in Lemma 2.2.8. Since the
proof of Lemma 2.2.10 is based on Wente’s inequality which also holds on Riemannian surfaces,
see [Hél02], the conclusion of Lemma 2.2.10 may also be drawn for liftings of functions defined on
the sequence of approximate surfaces

(
Mh

)
h>0

although not all technical details have been checked.
To state the result of Theorem 2.2.11 for curved surfaces it remains to show that integrals over
Mh and those of the corresponding lifted functions on M have the same limits as h → 0: For
functions bh, eh, fh ∈ S1(Th) and η ∈ C∞(M) we let b̃h, ẽh, f̃h ∈ L∞(M) denote their liftings onto

M and choose η̌ such that η̌̃= η. Recalling the identity ∇Mh
bh =

(
GDh

)T∇M b̃h from the proof of
Lemma 1.3.5 as well as CurlMh

= µh ×∇Mh
and CurlM = µ×∇M we infer that

∫

Mh

ehη̌CurlMh
bh · ∇Mh

fh dsh −
∫

M
ẽhηCurlM b̃h · ∇M f̃h ds

=

∫

M
ẽhη

(
µ̃h ×

[(
GDh

)T∇M b̃h
])

·
[(

GDh

)T∇M f̃h

]{
Qh/Q− 1

}
ds

+

∫

M
ẽhη

{(
µ̃h ×

[(
GDh

)T∇M b̃h
])

·
[(

GDh

)T∇M f̃h

]
−

(
µ×∇M b̃h

)
· ∇M f̃h

}
ds

=

∫

M
ẽhη

(
µ̃h ×

[(
GDh

)T∇M b̃h
])

·
[(

GDh

)T∇M f̃h

]{
Qh/Q− 1

}
ds

+

∫

M
ẽhη

{([
µ̃h − µ

]
×

[(
GDh

)T∇M b̃h
])

·
[(

GDh

)T∇M f̃h

]

+
(
µ×

[(
GDh − I3×3)

T∇M b̃h
])

·
[(

GDh

)T∇M f̃h

]

+
(
µ×∇M b̃h

)
·
[(

GDh − I3×3)
T∇M f̃h

]}
ds.

One may now argue as in the proof of Lemma 1.3.5 to deduce that the right-hand side tends to
zero as h→ 0 and therefore

∫

Mh

ehη̌CurlMh
bh · ∇Mh

fh dsh →
∫

M
eηCurlMb · ∇Mf ds+

∑

ι∈N

sιη(xι)

as h→ 0. Similarly, we verify that
∫

Mh

H ij
h · ϑj

hηh dsh −
∫

M
H̃ ij

h · ϑ̃
j

hη̃h ds→ 0

and ∫

Mh

ϑi
h · ∇Mh

ηh dsh −
∫

M
ϑ

i
hη̃h ds→ 0
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as h → 0. This finishes the sketch of the convergence proof for discrete harmonic maps on loga-
rithmically right-angled triangulations of curved surfaces.

For sequences of regular triangulations we assume higher integrability of the lifted sequence(
ũh

)
h>0

and aim at bounding the projection onto discrete gradients of ηhϑ
j
h in Lq(Mh) for some q

greater than 2 as in Proposition 2.4.1. Since stability of projections onto gradient fields is unclear for
non-smooth submanifolds such as Mh but is known for the smooth submanifold M owing to [ISS99],
we have to adjust the argumentation of Proposition 2.4.1. For φ ∈ L2(Mh) we define

Gh

[
φ
]
:= RGhψ̌,

where ψ = GM

[
φ̃
]
∈

◦
W 1,2(M) satisfies

(
∇ψ;∇Mη

)
=

(
φ;∇Mη

)
for all η ∈

◦
W 1,2(M). We have by

choice of aij
h and Λ4,5 that

(
∇Mh

aij
h ; ηhϑ

i
h

)
=

(
∇Mh

aij
h ;∇Gh

[
ηhϑ

j
h

])

=
(
ωij

h ;∇Mh
Gh

[
ηhϑ

j
h

])

=
(
ωij

h ;∇Mh
Gh

[
ηhϑ

j
h

])
+

(
ωij

h ;∇Mh

{
Gh − Gh

}[
ηhϑ

j
h

])

= Λ4,5

(
eih, e

j
h,Gh

[
ηhϑ

j
h

])
+

(
ωij

h ;∇Mh

{
Gh − Gh

}[
ηhϑ

j
h

])

and notice that the first term on the right-hand side can be treated as in Proposition 2.4.1 so that it
remains to show that the second term on the right-hand side tends to zero as h→ 0. By definition
of Gh and properties of the transfer operators we have

(
∇Mh

Gh

[
φ
]
;∇Mh

vh

)
=

(
∇Mh

ψ̌;∇Mh
vh

)

=
(
∇MGM

[
φ̃
]
;∇M ṽh

)
+ o(1)

=
(
φ̃;∇M ṽh

)
+ o(1)

=
(
φ;∇Mh

vh

)
+ o(1)

=
(
∇Mh

Gh

[
φ
]
;∇Mh

vh

)
+ o(1)

for all vh ∈ S1(Th)n and this finishes the discussion of the modification of Proposition 2.4.1 for
curved surfaces.

2.4.3 Approximation of the L
2 flow of harmonic maps

The L2 flow of harmonic maps into a submanifold N describes a function u : [0, T ] ×M → N that
satisfies u(0) = u0 in the sense of traces for some given u0 ∈W 1,2(M ; Rn) such that u0(x) ∈ N for
almost every x ∈M and (

∂tu(t, ·); v
)

+
(
∇Mu(t, ·);∇M v

)
= 0 (4.14)

for almost every t ∈ (0, T ) and all v ∈ W 1,2(M ; Rn) such that v(x) ∈ Tu(t,x)N for almost every
x ∈M .
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Suppose that for a uniform partition of (0, T ) defined through a time-step size τ > 0 an ap-
proximation scheme provides piecewise affine and constant functions ua

h, u
c
h : [0, T ] → S1(Th)n such

that uc
h(t, z) ∈ N for almost every t ∈ (0, T ) and all z ∈ Nh, ua

h(jτ) = uc
h(jτ) for j = 0, 1, 2, ..., JT ,

and (
∂tu

a
h(t, ·); vh

)
+

(
∇Mh

uc
h(t, ·);∇Mh

vh

)
= 0

for almost all t ∈ (0, T ) and all vh ∈ S1(Th)n such that vh(z) ∈ Tuc
h(t,z)N for all z ∈ Nh. Suppose

that we also have for all T ′ ∈ (0, T ) that

∫ T ′

0

∥∥∂tu
a
h

∥∥2
dt+

1

2

∥∥∇Mh
uc

h(T ′)
∥∥2 ≤ 1

2

∥∥∇Mh
Ihu0

∥∥2
. (4.15)

Then, there exists u ∈ H1
[
0, T ;L2(M ; Rn)

]
∩ L∞

[
0, T ;W 1,2(M ; Rn)

]
such that for an appropriate

subsequence we have

∂tu
a
h ⇀ ∂tu in L2

[
0, T ;L2(M ; Rn)

]

and

uc
h ⇀

∗ u in L∞
[
0, T ;W 1,2(M ; Rn)

]

as (h, τ) → 0. A natural question that arises is whether u is a solution of the continuous prob-
lem (4.14). The previous sections provided conditions which guarantee

(
∇Mh

uc
h;∇Mh

Ih

[
ηeih

])
→

(
∇Mu;∇M

[
ηei

])
.

If the time-dependent orthonormal frame converges strongly in L2
[
0, T ;L2(M ; Rn)], i.e., eih → ei

strongly in L2((0, T ) ×M ; Rn) for i = 1, 2, ..., k (for an appropriate subsequence), one can modify
the argumentation of the previous sections to show that for the time-dependent problem we get

∫ T

0

{(
∂tu

a
h;Ih

[
ηeih

])
+

(
∇Mh

uc
h;∇Mh

Ih

[
ηeih

])}
dt

→
∫ T

0

{(
∂tu; ηe

i
)

+
(
∇Mu;∇Mηe

i
)}

dt

as (h, τ) → 0. We notice however that this requires a different gauge of the frame. Since the
energy estimate (4.15) also holds in the limit, u(0) = u0 provided that Ihu0 → u0 in W 1,2(M ; Rn),
and u(t, x) ∈ N for almost every (t, x) ∈ (0, T ) × M one may then show that the sequence ua

h

approximates weak solutions of the harmonic map heat flow into N in the sense of [Str85].

2.5 Weak convergence of discrete harmonic maps into spheres

If N = Sn−1 then convergence of discrete harmonic maps follows in arbitrary dimensions. The key
towards proving this is the following lemma which shows that the wedge product and the surface
gradient on curved surfaces behave as in the “flat” case. The asserted identity is essential for
the convergence analysis presented below since it allows to avoid products of gradients of weakly
convergent sequences in W 1,2(M).
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Lemma 2.5.1. Let Dγ, γ = 1, 2, ...,m, denote the components of ∇M . Then, for all v ∈W 1,2(M ; Rn)∩
L∞(M ; Rn) and φ ∈W 1,2(M ; Λ2(Rn)) ∩ L∞(M ; Λ2(Rn)) we have

(
∇Mv;∇M ∗−1

[
∗φ ∧ v

])
=

m∑

γ=1

(
Dγv; ∗−1

[
(Dγ∗φ) ∧ v

])
,

where we identified R
n and Λ(Rn).

Proof. For γ = 1, 2, ...,m we have according to Lemma 1.2.3 and bilinearity of the wedge product
that

Dγ

[
∗φ ∧ v

]
=

(
Dγ∗φ

)
∧ v + ∗φ ∧

(
Dγv

)
.

Hence, using the property of the wedge product that a ∧ a = 0 and a · b = a ∧ ∗b as well as
a ∧ (b ∧ c) = (c ∧ a) ∧ b for a, b ∈ R

n and c ∈ Λℓ(Rn) we deduce that

(
∇Mv;∇M ∗−1

[
∗φ ∧ v

])
=

m∑

γ=1

(
Dγv; ∗−1Dγ

[
∗φ ∧ v

])

=

m∑

γ=1

(
Dγv; ∗−1

[
(Dγ∗φ) ∧ v

])
+

m∑

γ=1

(
Dγv; ∗−1

[
∗φ ∧Dγv

])

=

m∑

γ=1

(
Dγv; ∗−1

[
(Dγ∗φ) ∧ v

])
,

which proves the lemma.

Theorem 2.5.2. Let
(
uh

)
h>0

be such that uh ∈ S1(Th)n, uh(z) ∈ Sn−1 for all z ∈ Nh, uh|ΓD,h
=

uD,h, and ∥∥∇Mh
uh

∥∥ ≤ C

for all h > 0. Suppose that for each h > 0 the linear functional Resh : S1
D(Th)n → R satisfies

sup
vh∈S1

D(Th)n\{0}

∣∣Resh(vh)
∣∣

‖ṽh‖W 1,2(M ;Rn)
→ 0

as h→ 0 and assume that for all vh ∈ S1
D(Th)3 satisfying vh(z) · uh(z) = 0 for all z ∈ Nh we have

(
∇Mh

uh;∇Mh
vh

)
= Resh(vh).

If uD,h → uD in L2(ΓD; Rn) then every weak accumulation point of the lifted sequence
(
ũh

)
h>0

⊂
W 1,2(M ; Rn) is a harmonic map into Sn−1 with u|ΓD

= uD.

Proof. For a weak accumulation point u ∈W 1,2(M ; Rn) and a subsequence (which is not relabeled
in the following) of

(
ũh

)
h>0

such that ũh ⇀ u in W 1,2(M ; Rn) we have ũh → u in L2(M ; Rn).

Lemma 1.8.1 and Lemma 1.8.4 show that u(x) ∈ N = Sn−1 for almost every x ∈ M and that

u|ΓD
= uD. To show that u is a harmonic map we fix φ ∈ C∞

c (M ; Λ2(Rn)) and let φ̌:= φ ◦ Ph so
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that the lifting of φ̌ coincides with φ, i.e., φ̌̃= φ. By stability of nodal interpolation in W 1,2(K),
K ∈ Th, and Lemmas 1.2.3 and 1.3.7 we have that

∥∥∇Mh
Ih

[
∗φ̌∧ uh

]∥∥ ≤ C
∥∥∇Mh

[
∗φ̌∧ uh

]∥∥

≤ C
(
‖uh‖L∞(Mh)

∥∥∇Mh
φ̌
∥∥ +

∥∥φ̌
∥∥

L∞(Mh)

∥∥∇Mh
uh

∥∥)

≤ C
(
‖φ‖L∞(M) +

∥∥∇Mφ
∥∥)
,

(5.16)

where we also used that ‖uh‖L∞(Mh) ≤ 1 and
∥∥∇Mh

uh

∥∥ ≤ C. With Fh as in Lemma 1.3.5 we have

Resh

(
Ih∗−1

[
∗φ̌∧ uh

])
=

(
∇Mh

uh;∇Mh
Ih ∗−1

[
∗φ̌∧ uh

])

=
(
∇Mh

uh;∇Mh
∗−1

[
∗φ̌∧ uh

])
+

(
∇Mh

uh;∇Mh
∗−1

(
Ih

[
∗φ̌∧ uh

]
− ∗φ̌∧ uh

))

=
(
∇M ũh;∇M ∗−1

[
∗φ ∧ ũh

])
+

(
Fh∇M ũh;∇M ∗−1

[
φ ∧ ũh

])

+
(
∇Mh

uh;∇Mh
∗−1

{
Ih

[
∗φ̌∧ uh

]
− ∗φ̌∧ uh

})
=: I + II + III.

(5.17)

By assumptions on Resh and (5.16) we have

Resh

(
Ih ∗−1

[
∗φ̌∧ uh

])
→ 0

as h→ 0. Since
∥∥Fh

∥∥
L∞(M)

→ 0 as h→ 0 and
∥∥∇M ∗−1

[
∗φ ∧ ũh

]∥∥ ≤ C we also verify that

II =
(
Fh∇M ũh;∇M ∗−1

[
∗φ ∧ ũh

])
→ 0

as h→ 0. The estimate (4.4) in Chapter 1 and Lemma 1.3.7 imply that for each K ∈ Th we have

∥∥∇Mh
∗−1

(
Ih

[
∗φ̌∧ uh

]
−∗φ̌∧ uh

)∥∥
L2(K)

≤ Ch
∥∥D2

Mh
∗−1

[
∗φ̌∧ uh

]∥∥
L2(K)

≤ Ch
(∥∥∇Mh

uh

∥∥∥∥∇Mh
φ̌
∥∥

L∞(K)
+ ‖uh‖L∞(Mh)

∥∥D2
Mh
φ̌
∥∥

L2(K)

)

≤ Ch
(∥∥∇Mφ

∥∥
L∞( eK)

+
∥∥D2

Mφ
∥∥

L2( eK)

)

so that

III =
(
∇Mh

uh;∇Mh
∗−1

(
Ih

[
∗φ̌∧ uh

]
− ∗φ̌∧ uh

))
→ 0

as h → 0. By Lemma 2.5.1 and the convergence properties of ũh, i.e., ũh → u in L2(M ; Rn) and
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ũh ⇀ u in W 1,2(M ; Rn) we infer that

I =
(
∇M ũh;∇M ∗−1

[
∗φ ∧ ũh

])
=

m∑

γ=1

(
Dγ ũh; ∗−1

[
(Dγ∗φ) ∧ ũh

])

→
m∑

γ=1

(
Dγu; ∗−1

[
(Dγ∗φ) ∧ u

)
=

(
∇Mu;∇M ∗−1

[
∗φ ∧ u

])
,

(5.18)

as h→ 0. The combination of the identified limits shows that

(
∇Mu;∇M ∗−1

[
∗φ ∧ u

])
= 0

and a density argument proves that this identity holds for all φ ∈W 1,2
0 (M ; Λ2(Rn))∩L∞(M ; Λ2(Rn)).

Given any ψ ∈W 1,2
0 (M ; Rn)∩L∞(M ; Rn) such that u ·ψ = 0 almost everywhere in M there exists

φ ∈ W 1,2
0 (M ; Λ2(Rn)) ∩ L∞(M ; Λ2(Rn)) such that ψ = ∗−1

[
∗φ ∧ u

]
and thus we deduce that the

identity (
∇Mu;∇Mψ

)
= 0

is satisfied for all ψ ∈W 1,2
0 (M ; Rn) ∩ L∞(M ; Rn) such that ψ · u = 0 almost everywhere. Proposi-

tion 1.7.2 implies that u is a harmonic map.

62



Chapter 3

Iterative algorithms for the

computation of discrete harmonic

maps

We analyze and introduce various iterative schemes for the computation of discrete harmonic maps
into a large class of submanifolds N in this chapter. The schemes are motivated by H1 and L2 gra-
dient flows of the harmonic map problem or realize a Newton scheme for an equivalent saddle-point
formulation. Besides well posedness of the algorithms we discuss stability bounds and convergence
on the discrete level and we investigate optimality of constraints on ratios of damping parameters
and mesh-sizes or angle conditions of triangulations. Convergence to continuous harmonic maps
into submanifolds as the maximal mesh-size and termination criterion tend to zero can then be
deduced with the results of the previous chapter.

3.1 Discrete harmonic maps

As in the first chapter we assume that the smooth, compact, orientable, d-dimensional submanifold
M ⊂ R

d+1 either has no boundary or is a Lipschitz domain in R
d ×{0} with polyhedral boundary.

In the latter case we let ΓD ⊆ ∂M be such that ΓD is either empty or of positive (d−1)-dimensional
surface measure. Whenever we are given a triangulation Th of a submanifold M with non-empty
boundary we suppose that ΓD is matched exactly by the union of edges on ΓD.

Definition 3.1.1. Set

◦
S1(Th) :=

{ S1
D(Th) =

{
vh ∈ S1(Th) : vh|ΓD

= 0
}

if ΓD 6= ∅,
{
vh ∈ S1(Th) :

∫
Mh

vh dx = 0
}

if ∂M = ∅.

Given uD = uD|ΓD
for some uD ∈ W 1,2(M ; Rn) such that uD ∈ C(ΓD; Rn) and uD(x) ∈ N for all

x ∈ ΓD, we define uD,h ∈ S1(Th)n and uD,h := uD,h|ΓD
by setting

uD,h(z) :=

{
uD(z) for z ∈ Nh ∩ ΓD,
0 for z ∈ Nh \ ΓD.
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Definition 3.1.2. A vector field uh ∈ S1(Th)n is called a discrete harmonic map into N subject to
the boundary data uD,h if and only if uh|ΓD

= uD,h, uh(z) ∈ N for all z ∈ Nh, and uh is stationary
for

vh 7→ 1

2

∫

Mh

∣∣∇Mh
vh

∣∣2 dx

among all vh ∈ S1(Th)n such that vh|ΓD
= uD,h and vh(z) ∈ N for all z ∈ Nh.

Proposition 3.1.3. Given uD,h as in Definition 3.1.2 there exists a discrete harmonic map into
N .

Proof. This follows immediately from the coercivity of the energy functional, the observation that
admissible discrete vector fields exist, and the fact that S1(Th)n is finite-dimensional.

As in the previous chapter we let N ⊂ R
n denote a compact, k-dimensional Cℓ submanifold,

ℓ ≥ 2, without boundary. Occasionally we will assume that N is orientable and given by smooth
level set functions.

Assumption (O). N is orientable and there exist functions fk+1, ..., fn ∈ Cℓ(Rn) such that

N =
{
p ∈ R

n : f ℓ(p) = 0 for ℓ = k + 1, ..., n
}

and for all p ∈ N the vectors
∇fk+1(p), ...,∇fn(p)

are linearly independent.

We remark that if Assumption (O) is satisfied then ∇f ℓ(p) ⊥ TpN for all p ∈ N and ℓ =
k + 1, ..., n so that we may define

νℓ(q) :=
∇f ℓ(q)∣∣∇f ℓ(q)

∣∣
for q in an appropriate neighborhood of N and ℓ = k + 1, ..., n. According to Lemma 1.6.8 we will
assume that νℓ is defined in the entire R

n though not necessarily given by the above expression.

The following assertions characterize discrete harmonic maps and are essential for the definition
of the iterative schemes discussed in the following sections.

Lemma 3.1.4. A function uh ∈ S1(Th)n satisfying uh|ΓD
= uD,h is a discrete harmonic map into

N subject to the boundary data uD,h if and only if
(a) there holds uh(z) ∈ N for all z ∈ Nh and

(
∇Mh

uh;∇Mh
vh

)
= 0

for all vh ∈ S1
D(Th)n such that vh(z) ∈ Tuh(z)N for all z ∈ Nh.

In case that Assumption (O) is satisfied then (a) holds if and only if
(b) there exist λℓ

h ∈ S1(Th), ℓ = k + 1, ..., n, such that

(
∇Mh

uh;∇Mh
vh

)
+

n∑

ℓ=k+1

(
λℓ

h; (νℓ ◦ uh) · vh

)
h

= 0,

n∑

ℓ=k+1

(
̺ℓ

h; f ℓ ◦ uh

)
h

= 0

for all
(
vh, (̺

k+1
h , ..., ̺n

h)
)
∈ S1

D(Th)n × S1(Th)n−k.
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Proof. We first assume that Assumption (O) is satisfied and prove equivalence of (a) and (b).
Suppose that (b) is satisfied. Then, choosing ̺ℓ

h = ϕz in the second equation and incorporating
properties of reduced integration yields that f ℓ

(
uh(z)

)
= 0 for ℓ = k+1, ..., n and hence uh(z) ∈ N

for all z ∈ Nh. For vh ∈ S1
D(Th)n such that vh(z) ∈ Tuh(z)N for all z ∈ Nh we have (νℓ ◦ uh)(z) ·

vh(z) = 0 for all z ∈ Nh and hence the first equation in (b) reduces to

(
∇Mh

uh;∇Mh
vh

)
= 0

which is the equation in (a).
Conversely, if (a) is satisfied then we define λℓ

h ∈ S1(Th) through

λℓ
h(z) := −β−1

z

(
∇Mh

uh;∇Mh

[
(νℓ ◦ uh)(z)ϕz

])

for all z ∈ Nh and ℓ = k + 1, ..., n. Given any vh ∈ S1
D(Th)n we let vnor

h ∈ S1
D(Th)n denote the

function that satisfies

vnor
h (z) =

n∑

ℓ=k+1

{
(νℓ ◦ uh)(z) · vh(z)

}
(νℓ ◦ uh)(z)

for all z ∈ Nh. Then, vtan
h := vh − vnor

h satisfies vtan
h (z) ∈ Tuh(z)N for all z ∈ Nh. Since(

∇Mh
uh;∇Mh

vtan
h

)
= 0 and uh(z) ∈ N for all z ∈ Nh, we deduce with the definition of λℓ

h that

(
∇Mh

uh;∇Mh
vh

)
=

(
∇Mh

uh;∇Mh
vnor
h

)

=
∑

z∈Nh

n∑

ℓ=k+1

(
∇Mh

uh;∇Mh

[{
(νℓ ◦ uh)(z) · vh(z)

}
(νℓ ◦ uh)(z)ϕz

])

=
∑

z∈Nh

n∑

ℓ=k+1

{
(νℓ ◦ uh)(z) · vh(z)

}(
∇Mh

uh;∇Mh

[
(νℓ ◦ uh)(z)ϕz

])

= −
∑

z∈Nh

n∑

ℓ=k+1

{
(νℓ ◦ uh)(z) · vh(z)

}
βzλ

ℓ
h(z)

= −
n∑

ℓ=k+1

(
λℓ

h; (νℓ ◦ uh) · vh

)
h
,

(1.1)

which is the first identity in (b). The second identity follows immediately since uh(z) ∈ N for all
z ∈ Nh implies that f ℓ

(
uh(z)

)
= 0 for ℓ = k+1, ..., n and all z ∈ Nh. The properties of the discrete

inner product then show that (
̺h; f ℓ ◦ uh

)
h

= 0

for all ̺h ∈ S1(Th). Therefore, (b) is satisfied.
It remains to show that (a) is equivalent to Definition 3.1.2. If uh is a discrete harmonic map into
N subject to the boundary data uD,h then for all vh ∈ S1

D(Th)n we have (for sufficiently small t so
that uh(z) + tvh(z) ∈ UδN

(N) for all z ∈ Nh, cf. Section 1.6)

lim
t→0

t−1
(1

2

∫

Mh

∣∣∇Mh
IhπN (uh + tvh)

∣∣2 dx− 1

2

∫

Mh

∣∣∇Mh
uh

∣∣2 dx
)

= 0, (1.2)
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where IhπN (uh+tvh) denotes that function in S1(Th)n whose nodal values coincide with πN

(
uh(z)+

tvh(z)
)

for all z ∈ Nh. Noting that πN is C1 in a neighborhood of N we find that for all z ∈ Nh

the function wt
h := Ih

[
πN (uh + tvh)

]
satisfies

wt
h(z) = πN (uh + tvh)(z) = πN

(
uh(z)

)
+ tDπN

(
uh(z)

)
vh(z) + o(t)

for all z ∈ Nh, provided that t is small enough. In particular, if vh(z) ∈ Tuh(z)N for all z ∈ Nh then
we verify, using πN

(
uh(z)

)
= uh(z) for all z ∈ Nh and DπN (p)|TpN = idTpN for all p ∈ N , that

wt
h = uh + tvh + o(t).

This implies that

1

2

∫

Mh

∣∣∇Mh
wt

h

∣∣2 dx− 1

2

∫

Mh

∣∣∇Mh
uh

∣∣2 dx = t

∫

Mh
∇Mh

uh · ∇Mh
vh dx+ o(t)

and hence, (1.2) reduces to (
∇Mh

uh;∇Mh
vh

)
= 0.

This proves that if uh is a discrete harmonic map then (a) is satisfied.
Conversely, suppose that (a) holds. For fixed ε > 0 and all t ∈ (−ε, ε) let wt

h ∈ S1(Th)n be such that
wt

h(z) ∈ N for all z ∈ Nh and wt
h|ΓD

= uD,h. Moreover, suppose that w0
h = uh and the mapping

t 7→ wt
h is continuously differentiable. We want to show that the function

g : t 7→ 1

2

∫

Mh

∣∣∇Mh
wt

h

∣∣2 dx

satisfies g′(0) = 0. A Taylor expansion about t = 0 yields

wt
h = uh + tvh + o(t),

where vh ∈ S1
D(Th)n is defined by vh(z) := d

dt

∣∣
t=0

wt
h(z) for all z ∈ Nh. Then, vh(z) ∈ Tuh(z)N for

all z ∈ Nh and owing to (a) we have

1

2

∫

Mh

∣∣∇Mh
πN (uh + tvh)

∣∣2 dx− 1

2

∫

Mh

∣∣∇Mh
uh

∣∣2 dx = t
(
∇Mh

uh;∇Mh
vh

)
+ o(t) = o(t)

which proves that g′(0) = 0. This finishes the proof of the lemma.

Remark 3.1.5. The equations in (b) of the previous lemma characterize a stationary point of the
functional

Ê
(
uh, (λ

k+1
h , ..., λn

h)
)
:=

1

2

∥∥∇Mh
uh

∥∥2
+

n∑

ℓ=k+1

(
λℓ

h; f ℓ(uh)
)
h
.

The use of reduced integration is essential to guarantee that uh(z) ∈ N for all z ∈ Nh. Considering
the (n− 1)-dimensional unit sphere N = Sn−1 and fn(p) := |p|2 − 1, the condition that

(
̺h; |uh|2 − 1

)
= 0

holds for all ̺h ∈ S1(Th) only implies that the constraint is satisfied in an averaged sense, namely
that Ph

[
|uh|2

]
= 1, where Ph is the L2 orthogonal projection onto S1(Th). This does in general not

imply that |uh(z)| = 1 holds for all nodes z ∈ Nh.
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3.2 Stability and convergence of an H
1 gradient flow approach

The first approximation scheme discussed in this chapter is motivated by an approach proposed
in [Alo97] on a continuous level for harmonic maps into spheres. The scheme can best be motivated
by considering a higher order gradient flow for the minimization of the constrained Dirichlet energy.
The H1 gradient flow for harmonic maps into N describes a function u : (0,∞)×M → N such that
u(0, ·) = u0, u(t, ·)|ΓD

= uD, and

(
∇M∂tu;∇Mv

)
+

(
∇Mu;∇Mv

)
= 0

for almost every t ∈ (0,∞) and all v ∈ W 1,2
D (M ; Rn) such that v(x) ∈ Tu(t,x)N for almost every

x ∈ M . Noting that ∂tu(t, x) ∈ Tu(t,x)N for almost every x ∈M yields a symmetric reformulation
of the problem in which w = ∂tu is the unknown rather than u itself. An explicit discretization
in time with a time-step size (or damping parameter) κ > 0 based on these observations reads as
follows (where we assume for ease of presentation that ΓD 6= ∅).

Algorithm I (Explicit H1 flow semi-discretization). Input: damping parameter κ > 0.

1. Choose u0 ∈ W 1,2(M ; Rn) such that u0|ΓD
= uD and u0(x) ∈ N for almost every

x ∈M . Set i := 0.

2. Compute wi ∈W 1,2
D (M ; Rn) such that wi(x) ∈ Tui(x)N for almost every x ∈M and

(
∇Mw

i;∇Mv
)

+
(
∇Mu

i;∇Mv
)

= 0

for all v ∈W 1,2
D (M ; Rn) such that v(x) ∈ Tu(x)N for almost every x ∈M .

3. Set
ui+1(x) := πN

(
ui(x) + κwi(x)

)

for almost every x ∈M .

4. Set i := i+ 1 and go to 2.

The same algorithm can be derived by considering a linearization of the constraint u(x) ∈ N
for almost every x ∈ M : suppose ui satisfies ui(x) ∈ N for almost every x ∈ M and assume that
it serves as an approximation of a harmonic map into N . If we look for a correction w so that
ui + κw is a harmonic map, then a linearization about ui(x) of the condition (ui + κw)(x) ∈ N
reads w(x) ∈ Tui(x)N for almost every x ∈ M . An iterative scheme that alternatingly computes a

correction wi subject to the linearized constraint and then projects the temporary update ui+1 :=
ui+κwi onto N leads to the algorithm above in which κ can be thought of as a damping parameter.
Yet another interpretation of the algorithm is through a simplification of a Newton iteration,
see Remarks 3.5.1 (iii) for details.

Below we are not primarily interested in the question whether the output of our algorithms
approximate the time-dependent problem described above, but aim at understanding under what
conditions on the time-step size (respectively damping parameter) the iterations are well-defined
and whether convergence of the iterates ui to a discrete harmonic map can be established. We refer
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to [AJ06, BKP07] for a related algorithm for the approximation of the Landau-Lifshitz-Gilbert
equation of micromagnetics (with the target manifold being the unit sphere), and to [BBFP07] for
a scheme that approximates the p-harmonic heat flow into spheres.

3.2.1 Full discretization

A fully discrete version of Algorithm I replaces the pointwise operations and conditions such as the
projection onto N by corresponding conditions at the nodes of a triangulation and reads as follows.

Algorithm A. Input: triangulation Th, damping parameter κ > 0, stopping criterion ε > 0.

1. Choose u0
h ∈ S1(Th)n such that u0

h|ΓD
= uD,h and u0

h(z) ∈ N for all z ∈ Nh \ ΓD. Set
i := 0.

2. Compute wi
h ∈

◦
S1(Th)n such that wi

h(z) ∈ Tui
h(z)N for all z ∈ Nh and

(
∇Mh

wi
h;∇Mh

vh

)
= −

(
∇Mh

ui
h;∇Mh

vh

)

for all vh ∈
◦
S1(Th)n such that vh(z) ∈ Tui

h(z)N for all z ∈ Nh.

3. Stop if
∥∥∇Mh

wi
h

∥∥ ≤ ε.

4. Define ui+1
h ∈ S1(Th)n by setting

ui+1
h (z) := πN

(
ui

h(z) + κwi
h(z)

)

for all z ∈ Nh.

5. Set i := i+ 1 and go to 2.

Output: u∗h := ui
h.

Remark 3.2.1. The solution wi
h in Step 2 can be computed from a saddle-point problem which

seeks
(
wh, (λ

k+1
h , ..., λn

h)
)
∈

◦
S1(Th)n × S1(Th)n−k such that

(
∇Mh

wh;∇Mh
vh

)
+

n∑

ℓ=k+1

(
λℓ

h; (νℓ ◦ ui
h) · vh

)
h

=
(
∇Mh

ui
h;∇Mh

vh

)
,

n∑

ℓ=k+1

(
̺ℓ

h; (νℓ ◦ ui
h) · vh

)
h

= 0,

for all
(
vh, (̺

k+1
h , ..., ̺n

h)
)
∈

◦
S1(Th)n×S1(Th)n−k. Notice that the normal vectors νℓ are only required

at the nodes and need not be globally continuous.

In the following subsections we provide sufficient conditions that guarantee that Algorithm A
is well-defined, stable, and convergent to a discrete harmonic map into N as ε→ 0.
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3.2.2 Well-posedness

In case that the target manifold N is not the boundary of a convex set then mild but dimension-
dependent conditions on the damping parameter κ ensure that the projection onto N is well-defined
in each step of the iteration. For ease of readability we fix i and drop the superscripts in the following
lemma.

Lemma 3.2.2. (i) Given any uh ∈ S1(Th)n satisfying uh(z) ∈ N for all z ∈ Nh \ ΓD there exists

a unique wh ∈
◦
S1(Th)n such that wh(z) ∈ Tui

h(z)N for all z ∈ Nh and

(
∇Mh

wh;∇Mh
vh

)
= −

(
∇Mh

uh;∇Mh
vh

)

for all vh ∈
◦
S1(Th)n such that vh(z) ∈ Tui

h(z)N for all z ∈ Nh.

(ii) There exists a constant CN,Th
> 0 such that the function wh satisfies

‖wh‖L∞(Mh) ≤ CN,Th
h

1−d/2
min log h−1

min

∥∥∇Mh
uh

∥∥.

In particular, if κ ≤
(
C0CN,Th

)−1
h

d/2−1
min log h−1

minωN for C0 :=
∥∥∇Mh

uh

∥∥ then

dist
(
uh(z) + κwh(z), N

)
≤ δN

so that πN

(
uh(z) + κwh(z)

)
is well-defined for all z ∈ Nh.

Remark 3.2.3. Recall from Section 1.6 that ωN = ∞ if N = ∂C for a convex set C ⊆ R
n so that

in this case the projection in Step 4 is always well-defined.

Proof. The set

Lh :=
{
vh ∈

◦
S1(Th)n : vh(z) ∈ Tuh(z)N for all z ∈ Nh

}

is a subspace of
◦
S 1(Th)n. The Lax-Milgram lemma guarantees the existence of a unique wh ∈ Lh

such that (
∇Mh

wh;∇Mh
vh

)
= −

(
∇Mh

uh;∇Mh
vh

)

for all vh ∈ Lh, in particular, ∥∥∇Mh
wh

∥∥ ≤
∥∥∇Mh

uh

∥∥.

The Poincaré inequality of Lemma 1.2.2 and the inverse estimate of Lemma 1.4.9 show

‖wh‖L∞(Mh) ≤ Ch
1−d/2
min log h−1

min

∥∥∇Mh
wh

∥∥.

If κ ≤
(
C0C

)−1
h

d/2−1
min log h−1

minωN then we have by definition of ωN in Lemma 1.6.4 for all z ∈ Nh

that

dist
(
uh(z) + κwh(z), N

)
≤ δN

which ensures that πN

(
uh(z) + κwh(z)

)
is well-defined for all z ∈ Nh.
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3.2.3 Stability

Slightly more restrictive conditions on the damping parameter κ and regularity of N are required
to ensure uniform boundedness of iterates of Algorithm A in W 1,2(M ; Rn).

Lemma 3.2.4. In addition to the above assumptions suppose that N is a C3 submanifold and
d ≤ 4. Then, there exist constants C ′, C ′′ > 0 such that if

κ ≤ C ′ min
{
hmin, ωNh

d/2−1
min | log hmin|−1

}

then we have for J ∈ N and iterates u0
h, u

1
h, ..., u

J+1
h and w1

h, w
2
h, ..., w

J+1
h of Algorithm A that

(
1 − C ′′κh−1

min

)
κ

J∑

i=0

∥∥∇Mh
wi

h

∥∥2
+

1

2

∥∥∇Mh
uJ+1

h

∥∥2 ≤ 1

2

∥∥∇Mh
u0

h

∥∥2
.

The constants C ′, C ′′ > 0 only depend on C0 :=
∥∥∇Mh

u0
h

∥∥, N , and the geometry of Th.

Proof. Owing to Lemma 3.2.2 and the assumptions on κ we have that all steps of Algorithm A are
well-defined. Using that πN is twice continuously differentiable in a neighborhood of N , cf. The-
orem 1.6.1, recalling that DπN (p)|TpN = id|TpN for all p ∈ N , and employing the fact that N is
compact so that |ui

h(z)| ≤ C for all z ∈ Nh, we verify that the identity

ui+1
h (z) = πN

(
ui

h(z) + κwi
h(z)

)

= πN

(
ui

h(z)
)

+ κDπN

(
ui

h(z)
)
wi

h(z) + O
(∣∣κwi

h(z)
∣∣2)

= ui
h(z) + κwi

h(z) + O
(∣∣κwi

h(z)
∣∣2)

is satisfied for all z ∈ Nh. We define ri+1
h :=

(
ui+1

h − ui
h

)
− κwi

h and deduce from the last estimate
that ∣∣ri+1

h (z)
∣∣ ≤ Cκ2

∣∣wi
h(z)

∣∣2,

with a constant that only depends on N . From this estimate we derive the bound

∥∥ri+1
h

∥∥2 ≤ Cκ4
∥∥wi

h

∥∥4

L4(Mh)
, (2.3)

for which we employed (4.6) of Chapter 1. Owing to the first equation of Algorithm A we have,
upon choosing vh = wi

h = κ−1(ui+1
h −ui

h)−κ−1ri+1
h and employing the binomial identity b(b−a) =

(b− a)2/2 + (b2 − a2)/2,

∥∥∇Mh
wi

h

∥∥2
= −

(
∇Mh

ui
h;∇Mh

wi
h

)

= −κ−1
(
∇Mh

ui
h;∇Mh

(ui+1
h − ui

h)
)

+ κ−1
(
∇Mh

ui
h;∇Mh

ri+1
h

)

= κ−1
(
∇Mh

(ui+1
h − ui

h);∇Mh
(ui+1

h − ui
h)

)
− κ−1

(
∇Mh

ui+1
h ;∇Mh

(ui+1
h − ui

h)
)

+ κ−1
(
∇Mh

ui
h;∇Mh

ri+1
h

)

= κ−1
∥∥∇Mh

(ui+1
h − ui

h)
∥∥2 − 1

2κ

∥∥∇Mh
(ui+1

h − ui
h)

∥∥2

− 1

2κ

(∥∥∇Mh
ui+1

h

∥∥2 −
∥∥∇Mh

ui
h

∥∥2)
+ κ−1

(
∇Mh

ui
h;∇Mh

ri+1
h

)
,
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or equivalently,

∥∥∇Mh
wi

h

∥∥2
+

1

2κ

(∥∥∇Mh
ui+1

h

∥∥2 −
∥∥∇Mh

ui
h

∥∥2)

=
1

2κ

∥∥∇Mh
(ui+1

h − ui
h)

∥∥2
+ κ−1

(
∇Mh

ui
h;∇Mh

ri+1
h

)
.

(2.4)

To bound the first term on the right-hand side we note that, according to the definition of ri+1
h ,

1

2κ

∥∥∇Mh
(ui+1

h − ui
h)

∥∥2
=
κ

2

∥∥∇Mh
(ui+1

h − ui
h)/κ

∥∥2

≤ κ
∥∥∇Mh

wi
h

∥∥2
+ κ

∥∥κ−1∇Mh
ri+1
h

∥∥2
.

An inverse estimate, the bound (2.3), and the Sobolev estimate
∥∥wi

h

∥∥
L4(Mh)

≤ C
∥∥∇Mh

wi
h

∥∥ for

d ≤ 4, cf. Theorem 1.2.1, show that

κ−1
∥∥∇Mh

ri+1
h

∥∥2 ≤ Cκ−1h−2
min

∥∥ri+1
h

∥∥2

≤ Cκ−1h−2
minκ

4
∥∥wi

h

∥∥4

L4(Mh)

≤ Cκ3h−2
min

∥∥∇Mh
wi

h

∥∥4
.

Suppose that
∥∥∇Mh

ui
h

∥∥ ≤ C0 (which is, by definition of C0, satisfied for i = 0). Then we clearly
have

∥∥∇Mh
wi

h

∥∥ ≤ C0 and hence

κ−1
∥∥∇Mh

ri+1
h

∥∥2 ≤ CC2
0κ

3h−2
min

∥∥∇Mh
wi

h

∥∥2
.

The previous estimates show

1

2κ

∥∥∇Mh
(ui+1

h − ui
h)

∥∥2 ≤
(
1 + CC2

0κ
2h−2

min

)
κ
∥∥∇Mh

wi
h

∥∥2
. (2.5)

The second term on the right-hand side of (2.4) is bounded using
∥∥∇Mh

ui
h

∥∥ ≤ C0, an inverse
estimate, and (2.3) by

κ−1
(
∇Mh

ui
h;∇Mh

ri+1
h

)
≤ κ−1

∥∥∇Mh
ui

h

∥∥∥∥∇Mh
ri+1
h

∥∥

≤ κ−1C0

∥∥∇Mh
ri+1
h

∥∥

≤ κ−1C0h
−1
min

∥∥ri+1
h

∥∥

≤ κ−1C0h
−1
minκ

2
∥∥wi

h

∥∥2

L4(Mh)

≤ κ−1CC0h
−1
minκ

2
∥∥∇Mh

wi
h

∥∥2
.

(2.6)

The combination of (2.4) with (2.5) and (2.6) implies, upon using κh−1
min ≤ C ′, that

(
1 − Cκh−1

min

)∥∥∇Mh
wi

h

∥∥2
+

1

2κ

(∥∥∇Mh
ui+1

h

∥∥2 −
∥∥∇Mh

ui
h

∥∥2) ≤ 0.

This estimate shows that
∥∥∇Mh

ui+1
h

∥∥ ≤ C0 if
∥∥∇Mh

ui
h

∥∥ ≤ C0 and hence justifies the above assump-
tion that

∥∥∇Mh
ui

h

∥∥ ≤ C0. This finishes the proof of the theorem.
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3.2.4 A sharp refinement for convex targets

As noted in Remark 3.2.3, if N = ∂C is the boundary of a convex set then Algorithm A is well-
defined for all choices of κ. Provided that the underlying triangulation Th is weakly acute and
κ < 2, Algorithm A is also unconditionally stable, owing to the fact that the projection πN is
non-expanding. The regularity assumptions on N of Lemma 3.2.4 are not required in the following
assertion.

Lemma 3.2.5. Suppose that Th is weakly acute, κ < 2, and N = ∂C for a bounded, open, convex
set C ⊂ R

n. Then, for J ∈ N and iterates u0
h, u

1
h, ..., u

J+1
h and w1

h, w
2
h, ..., w

J+1
h of Algorithm A we

have

κ
(
1 − κ/2

) J∑

i=0

∥∥∇Mh
wi

h

∥∥2
+

1

2

∥∥∇Mh
uJ+1

h

∥∥2 ≤ 1

2

∥∥∇Mh
u0

h

∥∥2
.

Proof. Since
∥∥∇Mh

wi
h

∥∥2
= −

(
∇Mh

ui
h;∇Mh

wi
h

)
we have

1

2

∥∥∇Mh

(
ui

h + κwi
h

)∥∥2
=

1

2

∥∥∇Mh
ui

h

∥∥2
+ κ

(
∇Mh

ui
h;∇Mh

wi
h

)
+
κ2

2

∥∥∇Mh
wi

h

∥∥2

=
1

2

∥∥∇Mh
ui

h

∥∥2 − κ
(
1 − κ/2

)∥∥∇Mh
wi

h

∥∥2
.

Employing the fact that for weakly acute triangulations we have that Kz,z′ ≤ 0 for distinct z, z′ ∈
Nh, cf. Definition 1.4.2, noting that ui

h(z) + κwi
h(z) 6∈ C for all z ∈ Nh, and recalling that the

projection πN : R
n \ C → N is Lipschitz continuous with Lipschitz constant less than or equal to 1

we infer with Lemma 1.4.4 that

∥∥∇Mh
ui+1

h

∥∥2
= −1

2

∑

z,z′∈Nh

Kz,z′
∣∣ui+1

h (z) − ui+1
h (z′)

∣∣2

= −1

2

∑

z,z′∈Nh

Kz,z′
∣∣πN

(
ui

h(z) + κwi
h(z)

)
− πN

(
ui

h(z′) + κwi
h(z′)

)∣∣2

≤ −1

2

∑

z,z′∈Nh

Kz,z′
∣∣(ui

h(z) + κwi
h(z)

)
−

(
ui

h(z′) + κwi
h(z′)

)∣∣2

=
∥∥∇Mh

(
ui

h + κwi
h

)∥∥2
.

Here we also used that contributions to the sum are trivial for z = z′. A combination of the
estimates implies

κ
(
1 − κ/2

)∥∥∇Mh
wi

h

∥∥2
+

1

2

∥∥∇Mh
ui+1

h

∥∥2 − 1

2

∥∥∇Mh
ui

h

∥∥2 ≤ 0,

which is the asserted bound after summation over i = 0, 1, 2, .., J .

Weak acuteness of a triangulation is not just a technical detail to ensure stability of Step 4 in
Algorithm A for N = ∂C and 0 < κ < 2. The angle condition is sharp in the sense of the following
example which is a refinement of an example from [Bar05b].
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Figure 3.1: Triangulation in Example 3.2.6 which is weakly acute if and only if
β ≥ 1/2.

Example 3.2.6. Let 0 < β ≤ 1, κ > 0, M := (0, 1) × (0, β), and let Th be the triangulation of M
defined through the nodes

z1 := (0, 0), z2 := (1/2, 0), z3 := (1, 0), z4 := (1, β), z5 := (1/2, β),

z6 := (0, β), z7 := (0, β/2), z8 := (1, β/2), z9 := (1/4, β/2), z10 := (3/4, β/2)

and triangles

K1 := conv{z1, z7, z9}, K2 := conv{z1, z2, z9}, K3 := conv{z2, z9, z10}, K4 := conv{z2, z3, z10},
K5 := conv{z3, z8, z10}, K6 := conv{z4, z8, z10}, K7 := conv{z4, z5, z10}, K8 := conv{z5, z9, z10},
K9 := conv{z5, z6, z9}, K10 := conv{z6, z7, z9},

cf. Figure 3.1. Set s := 1/2 − β and let ui
h, w

i
h ∈ S1(Th)n, n ≥ 2, be the functions satisfying

ui
h(zj) = (1, 0, ..., 0) for j = 1, 2, ..., 8, ui

h(z9) = (−1, 0, ..., 0), ui
h(z10) = (1, 0, ..., 0),

and

wi
h(zj) = 0 for j = 1, 2, ..., 9, wi

h(z10) = (0,−s/κ, 0, ..., 0).

Then, ui
h(z) ∈ Sn−1 and wi

h(z) ∈ Tui
h(z)S

n−1 for all z ∈ Nh. For ui+1
h ∈ S1(Th)n defined through

ui+1
h (z) := πSn−1

(
ui

h(z) + κwi
h(z)

)
for all z ∈ Nh we have

∥∥∇Mh
ui+1

h

∥∥ ≤
∥∥∇Mh

(
ui

h + κwi
h

)∥∥

if and only if Th is weakly acute, i.e., if and only if β ≥ 1/2.

Proof. The proof of Lemma 3.2.5 shows that the estimate holds if Th is weakly acute and this is the
case if and only if β ≥ 1/2. Suppose that β < 1/2 and abbreviate vh := ui

h + κwi
h and uh := ui+1

h .
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Owing to symmetry of K, Lemma 1.4.4, and vh(zj) = uh(zj) for j = 1, 2, ..., 9 we have

δ :=
∥∥∇Mh

vh

∥∥2 −
∥∥∇Mh

uh

∥∥2

= −1

2

∑

z,z′∈Nh

Kz,z′
(
|vh(z) − vh(z′)|2 − |uh(z) − uh(z′)|2

)

= −
9∑

j=1

Kzj ,z10

(
|vh(zj) − vh(z10)|2 − |uh(zj) − uh(z10)|2

)

= −
8∑

j=1

Kzj ,z10

(
|(1, 0, ..., 0) − vh(z10)|2 − |(1, 0, ..., 0) − uh(z10)|2

)

− Kz9,z10

(
|(−1, 0, ..., 0) − vh(z10)|2 − |(−1, 0, ..., 0) − uh(z10)|2

)
.

We have |(1, 0, ..., 0) − vh(z10)|2 = s2, |(−1, 0, ..., 0) − vh(z10)|2 = 4 + s2, and

t21 := |(1, 0, ..., 0) − uh(z10)|2 = 2 − 2/
√

1 + s2,

t22 := |(−1, 0, ..., 0) − uh(z10)|2 = 2 + 2/
√

1 + s2.

Since
∑10

j=1 Kzj ,z10 = 0 we have
∑8

j=1 Kzj ,z10 = −Kz9,z10 −Kz10,z10 and hence

δ = (s2 − t21)
(
Kz9,z10 + Kz10,z10

)
− Kz9,z10(4 + s2 − t22)

= Kz10,z10(s
2 − t21) − Kz9,z10(4 + t21 − t22).

Direct calculations yield to

Kz10,z10 = (12β2 + 5)/(4β), Kz9,z10 = (1 − 4β2)/(4β).

Setting φ(s2) :=
√

1 + s2 − 1 − s2/2 we have

4β
√

1 + s2 δ =
(
12β2 + 5

)(
s4/2 + s2φ(s2) − 2φ(s2)

)
−

(
1 − 4β2

)(
2s2 + 4φ(s2)

)
.

Since β2 = 1/4 − s+ s2 we verify that

4β
√

1 + s2 δ =
(
8 − 12s + 12s2

)(
s4/2 + s2φ(s2) − 2φ(s2)

)
− 16(s − s2)

(
s2/2 + φ(s2)

)

= −8s3 + 12s4 − 6s5 + 6s6 + φ(s2)
(
− 169s− 12s3 + 12s4

)

= −6s3(1 − 2s) − 6s5(1 − s) + 4sφ(s2)
(
2 − 3s2 + 3s3

)
− 2

(
s3 + 8φ(s2)

)
.

Since 0 < s < 1/2 and φ(s2) < 0, the first three terms on the right-hand side are negative. A
Taylor expansion reveals −s4/8 ≤ φ(s2) and implies that the last term on the right-hand side is
non-positive. This shows δ < 0 if β < 1/2 and implies the assertion of the example.

3.2.5 Termination and convergence

In case that Algorithm A is well-defined and stable, the iterates converge to a discrete harmonic
map into N . Notice that in the following theorem the discretization is fixed.
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Theorem 3.2.7. Suppose that the conditions of Lemma 3.2.4 or Lemma 3.2.5 are satisfied. Then,
Algorithm A terminates within a finite number of iterations and the output u∗h satisfies u∗h(z) ∈ N
for all z ∈ Nh, u

∗
h|ΓD

= uD,h, and

(
∇Mh

u∗h;∇Mh
vh

)
= Resh

(
vh

)
,

for all vh ∈
◦
S 1(Th)n such that vh(z) ∈ Tu∗

h(z)N for all z ∈ Nh, where the linear functional

Resh : S1
D(Th)n → R satisfies ∣∣Resh

(
vh

)∣∣ ≤ ε ‖∇Mh
vh‖

for all vh ∈ S1
D(Th)n. Moreover, for a sequence

(
εJ

)
J∈N

of positive numbers such that εJ → 0 as

J → ∞, every accumulation point of the corresponding bounded sequence of outputs
(
u∗,Jh

)
J∈N

of
Algorithm A is a discrete harmonic map into N subject to the boundary data uD,h.

Proof. By Lemma 3.2.4 or Lemma 3.2.5 we have that for all J ∈ N the bound

J∑

i=0

∥∥∇Mh
wi

h

∥∥2 ≤ C
(
h, κ, u0

h

)

is satisfied. Therefore, wi
h → 0 as i→ ∞ and hence Algorithm A terminates within a finite number

of iterations. If u∗h = ui∗

h for some i∗ ∈ N is the output of Algorithm A, we verify the first part of
the theorem upon defining Resh : S1

D(Th)n → R through

Resh

(
vh

)
:=

(
∇Mh

wi∗

h ;∇Mh
vh

)

for vh ∈ S1
D(Th)n and recalling that by the termination criterion we have

∥∥∇Mh
wi∗

h

∥∥ ≤ ε. For a

sequence εJ → 0, J ∈ N, the corresponding sequence of outputs
(
u∗,Jh

)
J∈N

obtained with the same

u0
h is uniformly bounded. Let uh ∈ S1(Th)n be the limit of a subsequence of

(
u∗,Jh

)
J∈N

which is not

relabeled in the following. Then, uh(z) = limJ→∞ u∗,Jh (z) for every z ∈ Nh so that uh(z) ∈ N for
all z ∈ Nh by continuity of N . Moreover, we trivially have uh|ΓD

= uD,h. For each J ∈ N we define

λJ,ℓ
h ∈ S1(Th) by setting

λJ,ℓ
h (z) := −β−1

z

(
∇Mh

u∗,Jh ;∇Mh

[
(νℓ ◦ u∗,Jh )(z)ϕz

])

for all z ∈ Nh and ℓ = k + 1, ..., n. Given any vh ∈ S1
D(Th)n we let vJ,nor

h ∈ S1
D(Th)n be defined

through

vJ,nor
h (z) :=

n∑

ℓ=k+1

[
(νℓ ◦ u∗,Jh )(z) · vh(z)

]
(νℓ ◦ u∗,Jh )(z)

for all z ∈ Nh. Then, vJ,tan
h := vh − vJ,nor

h ∈ S1
D(Th)n satisfies vJ,tan

h (z) ∈ T
u∗,J

h (z)
N for all z ∈ Nh.

Arguing as in the derivation of (1.1) in the proof of Lemma 3.1.4 we verify that

(
∇Mh

u∗,Jh ;∇Mh
vJ,nor
h

)
= −

n∑

ℓ=k+1

(
λJ,ℓ

h ; (νℓ ◦ u∗,Jh ) · vh

)
h
.
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With the correction w∗,J
h ∈

◦
S1(Th)n provided by Algorithm A which satisfies

∥∥∇Mh
w∗,J

h

∥∥ ≤ εJ and

upon noting that we may subtract a constant from vJ,tan
h to deduce the equation

(
∇Mh

u∗,Jh ;∇Mh
vJ,tan
h

)
=

(
∇Mh

w∗,J+1
h ;∇Mh

vJ,tan
h

)

we verify that

(
∇Mh

u∗,Jh ;∇Mh
vh

)
+

n∑

ℓ=k+1

(
λJ,ℓ

h ; (νℓ ◦ u∗,Jh ) · vh

)
h

=
(
∇Mh

w∗,J+1
h ;∇Mh

vJ,tan
h

)

for all vh ∈ S1
D(Th)n. Since wJ

h → 0 and λJ,ℓ
h → λℓ

h as J → ∞ for functions λℓ
h ∈ S1(Th),

ℓ = k+1, ..., n, we deduce with Lemma 3.1.4 (a) that uh is a discrete harmonic map into N subject
to the boundary data uD,h.

3.3 L
2 gradient flow approach for harmonic maps into 2-spheres

The above considerations for the discretization of the H1 gradient flow of harmonic maps can also
be carried out for the L2 gradient flow which reads

(
∂tu; v

)
+

(
∇Mu;∇Mv

)
= 0

for almost every t ∈ (0,∞) and for all v ∈W 1,2(M ; Rn) such that v(x) ∈ Tu(t,x)N for almost every
x ∈M . We aim at developing an implicit discretization and assume that N = S2. In this case the
strong formulation of the equation reads

∂tu− ∆Mu =
∣∣∇Mu

∣∣2u

and taking the cross product of this identity with u twice and using u× u = 0 we have

u×
(
u× ∂tu

)
− u×

(
u× ∆Mu

)
= 0.

The Graßmann identity

a×
(
b× c

)
= b

(
a · c

)
− c

(
a · b

)

valid for a, b, c ∈ R
3 together with the properties of u that u ·u = 1 and u · ∂tu = 0 then yields that

for strong solutions we have

∂tu+ u×
(
u× ∆Mu

)
= 0. (3.7)

To derive a discretization of this equation we consider a sequence
(
ui

)
i=0,1,...,J+1

of approxima-
tions at time-steps iκ and set

u
i+1/2
h :=

(
ui + ui+1

)
/2 and dtu

i+1 :=
(
ui+1 − ui

)
/κ

for i = 0, 1, 2, ..., J . Our Crank-Nicolson type discretization of (3.7) follows [BP07] and reads as
follows.
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Algorithm II (Implicit L2 flow semi-discretization). Input: time-step size κ > 0.

1. Choose u0 ∈W 1,2(M ; Rn) such that u0(x) ∈ S2 for almost every x ∈M . Set i := 0.

2. Compute ui+1 ∈W 1,2(M ; Rn) such that

(
dtu

i+1; v
)

+
(
ui+1/2 × (ui+1/2 × ∆Mu

i+1/2); v
)

= 0

for all v ∈W 1,2(M ; Rn).

3. Set i := i+ 1 and go to 2.

Notice that the equation in Step 2 of Algorithm II defines an unconstrained problem which,
however, requires the solution of a nonlinear system of equations. The striking property of the
algorithm is that for v = ui+1/2 the second term in the right-hand side of the equation in Step 2
disappears so that

dt

∥∥ui+1
∥∥2

=
(
dtu

i+1;ui+1/2
)

= 0.

This will imply unconditional well posedness and conservation of the unit length constraint, pro-
vided that the spatial discretization is done appropriately. Even though the scheme follows from
a discretization of a strong formulation, we will show that approximations converge to (weakly)
harmonic maps without making any regularity assumptions on an exact solution. For a convergence
proof of iterates to weak solutions of the L2 gradient flow of (p-) harmonic maps into spheres in a
Euclidean setting we refer the reader to [BP06, BP07].

Throughout this section we restrict to

N = S2 and ΓD = ∅.

While the second restriction is made to avoid technical difficulties, the first one is essential. Not
only do we need that the target manifold is a sphere, it also has to be two-dimensional.

3.3.1 Implicit discretization of the L
2 gradient flow

To fully discretize (3.7) we define a discrete Laplace operator ∆̃Mh
: S1(Th) → S1(Th) by requiring

that for vh ∈ S1(Th) the identity

−
(
∆̃Mh

vh;χh

)
h

=
(
∇Mh

vh;∇Mh
χh

)

is satisfied for all χh ∈ S1(Th). For vector valued functions, ∆̃Mh
is obtained by applying it to each

of the components of the vector field.
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Algorithm B. Input: triangulation Th, time-step size κ > 0, stopping criterion ε > 0,
approximation tolerance δ ≥ 0.

1. Choose u0
h ∈ S1(Th)3 such that |u0

h(z)| = 1 for all z ∈ Nh. Set i := 0.

2. Compute ui+1
h ∈ S1(Th)3 and ri+1

h ∈ S1(Th)3 such that
∥∥ri+1

h

∥∥
h
≤ δ and

κ−1
(
ui+1

h − ui
h; vh

)
h

+
(
u

i+1/2
h × (u

i+1/2
h × ∆̃Mh

u
i+1/2
h

)
;vh

)
h

=
(
u

i+1/2
h × ri+1

h ; vh

)
h

for all vh ∈ S1(Th)3.

3. Stop if κ−1
∥∥ui+1

h − ui
h

∥∥
h
≤ ε.

4. Set i := i+ 1 and go to 2.

Output: u
∗,1/2
h := u

i+1/2
h and u∗h := ui+1

h .

We remark that the Crank-Nicolson type discretization together with the use of reduced inte-
gration is essential here to guarantee conservation of the constraint at the nodes and unconditional
stability. The additional right-hand side in Step 2, defined through a small but a priori unspecified
function ri+1

h ∈ S1(Th)3, models an inexact solution of the original nonlinear equation. The special
structure of this residual is important to guarantee that iterates satisfy the pointwise constraint
|ui+1

h (z)| = 1 exactly for all z ∈ Nh. For δ = 0, hence ri+1
h = 0, existence of iterates follows from a

fixed-point argument which will also motivates an iterative solver for the equation in Step 2.

Proposition 3.3.1. Given any ui
h ∈ S1(Th)3 there exists ui+1

h ∈ S1(Th)3 such that

κ−1
(
ui+1

h − ui
h; vh

)
h

+
(
u

i+1/2
h × (u

i+1/2
h × ∆̃Mh

u
i+1/2
h

)
; vh

)
h

= 0

for all vh ∈ S1(Th)3, i.e., the identity in Step 2 of Algorithm B holds with ri+1
h = 0.

Proof. For wh ∈ S1(Th)3 define

Φ(wh) :=
2

κ
wh − 2

κ
ui

h − wh ×
(
wh × ∆̃Mh

wh

)
.

By Young’s inequality and properties of the cross product we have for all wh ∈ S1(Th)3 that

(
Φ(wh);wh

)
h

=
2

κ
‖wh‖2

h − 2

κ
(ui

h;wh)h ≥ 1

κ
‖wh‖2

h − 1

κ
‖ui

h‖2
h.

Hence we deduce that
(
Φ(wh);wh

)
h
≥ 0 for all wh ∈ S1(Th)3 satisfying

∥∥wh

∥∥
h
≥

∥∥ui
h

∥∥
h
. This

implies (cf. [GR86, Corollary 1.1, p. 279]) that there exists w∗
h ∈ S1(Th)3 with

(
Φ(w∗

h); vh

)
h

= 0 for

all vh ∈ S1(Th)3. Setting ui+1
h := 2w∗

h − ui
h so that u

i+1/2
h = w∗

h and u
i+1/2
h − ui

h = (ui+1
h − ui

h)/2,
the definition of Φ yields that

0 =
(
Φ(u

i+1/2
h ); vh

)
h

=
1

κ

(
ui+1

h − ui
h; vh

)
h
−

(
u

i+1/2
h × (u

i+1/2
h × ∆̃Mh

u
i+1/2
h ); vh

)
h

for all vh ∈ S1(Th)3. Thus, the identity in Step 2 of Algorithm B is satisfied with ri+1
h = 0.
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3.3.2 Constraint-conservation, stability, and termination

As a consequence of the symmetric discretization of (3.7) in time we obtain conservation of the
unit-length constraint as well as unconditional stability of the iteration.

Lemma 3.3.2. Suppose that 0 ≤ δ ≤ 1. For J ∈ N and iterates u0
h, u

1
h, ..., u

J+1
h of Algorithm B we

have
|ui

h(z)| = 1

for 0 ≤ i ≤ J + 1 and all z ∈ Nh as well as

1

2

∥∥∇Mh
uJ+1

h

∥∥2
+

(
1 − δ

)
κ

J∑

i=0

∥∥ui+1/2
h × ∆̃Mh

u
i+1/2
h

∥∥2

h
≤ 1

2

∥∥∇Mh
u0

h

∥∥2
+ κ(J + 1)δ/4

and

1

2

∥∥∇Mh
uJ+1

h

∥∥2
+ (1 − δ)2κ

J∑

i=0

∥∥κ−1
[
ui+1

h − ui
h

]∥∥2

h
≤ 1

2

∥∥∇Mh
u0

h

∥∥2
+ (5/4)κ(J + 1)δ.

Proof. The choice vh = u
i+1/2
h (z)ϕz for z ∈ Nh in Step 2 of Algorithm B yields

1

2κ

(
|ui+1

h (z)|2 − |ui
h(z)|2

)
= κ−1

[
ui+1

h (z) − ui
h(z)

]
· ui+1/2

h (z)

= β−1
z

(
κ−1

[
ui+1

h − ui
h

]
;u

i+1/2
h (z)ϕz

)
h

= 0

and implies that |ui+1
h (z)| = 1 provided that |ui

h(z)| = 1. With vh = ∆̃Mh
u

i+1/2
h in Step 2 of

Algorithm B we deduce, using
∥∥ui+1/2

h

∥∥
L∞(Mh)

≤ 1 and
∥∥ri+1

h

∥∥
h
≤ δ,

1

2κ

(∥∥∇Mh
ui+1

h

∥∥2 −
∥∥∇Mh

ui
h

∥∥2)
+

∥∥ui+1/2
h × ∆̃Mh

u
i+1/2
h

∥∥2

h

= −
(
κ−1

[
ui+1

h − ui
h

]
; ∆̃Mh

u
i+1/2
h

)
h
−

(
u

i+1/2
h × (u

i+1/2
h × ∆̃Mh

u
i+1/2
h ); ∆̃Mh

u
i+1/2
h

)
h

= −
(
u

i+1/2
h × ri+1

h ; ∆̃Mh
u

i+1/2
h

)
h

≤ δ
∥∥ui+1/2

h × ∆̃Mh
u

i+1/2
h

∥∥
h

≤ δ/4 + δ
∥∥ui+1/2

h × ∆̃Mh
u

i+1/2
h

∥∥2

h
.

Hence
1

2κ

(∥∥∇Mh
ui+1

h

∥∥2 −
∥∥∇Mh

ui
h

∥∥2)
+

(
1 − δ

)∥∥ui+1/2
h × ∆̃Mh

u
i+1/2
h

∥∥2

h
≤ δ/4. (3.8)

Multiplication by κ and summation over i = 0, 1, 2, ..., J provides the first estimate. We choose

vh = κ−1
[
ui+1

h −ui
h

]
in Step 2 of Algorithm B to verify with

∥∥ui+1/2
h

∥∥
L∞(Mh)

≤ 1,
∥∥ri+1

h

∥∥
h
≤ δ, and

Young’s inequality, that
∥∥κ−1

[
ui+1

h − ui
h

]∥∥2

h

=
(
u

i+1/2
h × ∆̃Mh

u
i+1/2
h , u

i+1/2
h × κ−1

[
ui+1

h − ui
h

])
h

+
(
u

i+1/2
h × ri+1

h , κ−1
[
ui+1

h − ui
h

])
h

≤
∥∥ui+1/2

h × ∆̃Mh
u

i+1/2
h

∥∥
h

∥∥κ−1
[
ui+1

h − ui
h

]∥∥
h

+ δ
∥∥κ−1

[
ui+1

h − ui
h

]∥∥
h

≤ 1

2

∥∥ui+1/2
h × ∆̃Mh

u
i+1/2
h

∥∥2

h
+

1

2

∥∥κ−1
[
ui+1

h − ui
h

]∥∥2

h
+
δ

2
+
δ

2

∥∥κ−1
[
ui+1

h − ui
h

]∥∥2

h
,
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i.e., after subtraction of the second term on the right-hand side and multiplication by 2(1 − δ),

(1 − δ)2
∥∥κ−1

[
ui+1

h − ui
h

]∥∥2

h
≤ (1 − δ)

∥∥ui+1/2
h × ∆̃Mh

u
i+1/2
h

∥∥2

h
+ δ(1 − δ). (3.9)

Insertion of (3.9) into (3.8) and a subsequent summation over i = 0, 1, ..., J together with the
estimate δ(1 − δ) ≤ δ finish the proof of the lemma.

Algorithm B terminates provided that δ is sufficiently small.

Lemma 3.3.3. Suppose that δ ≤ min{1/2, ε2/10}. Then, Algorithm B terminates within at most

Jmax ≤ 8C0/
(
κε2

)
− 1 iterations where C0 :=

∥∥∇Mh
u0

h

∥∥2
.

Proof. If for i = 0, 1, 2, ..., J we have

∥∥κ−1
[
ui+1

h − ui
h

]∥∥
h
≥ ε

then Lemma 3.3.2 implies

(1/4)κ(J + 1)ε2 ≤ (1 − δ)2κ

J∑

i=0

∥∥κ−1
[
ui+1

h − ui
h

]∥∥2

h
≤ 1

2

∥∥∇Mh
u0

h

∥∥2
+ (5/4)κ(J + 1)δ

or, equivalently,
κ(J + 1)

(
ε2 − 5δ

)
≤ 4C0.

Since ε2 − 5δ ≥ ε2/2 this implies that J ≤ 8C0(κε
2)−1 − 1.

Remark 3.3.4. If we are interested in an approximation of the L2 gradient flow then (J+1)κ ≈ T
for some time horizon T > 0 is fixed and the choice δ = o(1) as h → 0 is sufficient to guarantee
stability of the iteration and validity of a correct energy estimate as (h, κ) → 0.

3.3.3 Convergence to a continuous harmonic map

As opposed to the analysis for Algorithm A, it turns out that it is preferable to verify directly that a

sequence of outputs
(
u
∗,J+1/2
h

)
J∈N

converges unconditionally to a harmonic map into S2 as h→ 0,
εJ → 0, and δJ → 0 for J → ∞. Notice that we do not assume quasi-uniformity of triangulations
in the following theorem and that κ need not tend to zero.

Theorem 3.3.5. (i) For sequences
(
εJ

)
J∈N

and
(
δJ

)
J∈N

such that εJ → 0 as J → ∞ and δJ ≤
min{1/2, ε2J/10} for all J ∈ N every accumulation point of the sequence of outputs

(
u
∗,J+1/2
h

)
of

Algorithm B is a discrete harmonic map into S2.
(ii) If in addition to the assumptions in (i) we have that simultaneously h → 0 as J → ∞, then

every accumulation point of the sequence
(
u
∗,J+1/2
h

)
J∈N

is a harmonic map into S2.

Proof. (i) The inverse triangle inequality and conservation of the constraint |ui+1
h | = 1 of iterates

of Algorithm B show that for all z ∈ Nh we have

∣∣|u∗,J+1/2
h (z)| − 1

∣∣ =
∣∣|u∗,J+1/2

h (z)| − |u∗,J+1
h (z)|

∣∣

≤
∣∣(u∗,J+1/2

h − u∗,J+1
h

)
(z)

∣∣ =
κ

2

∣∣κ−1(u∗,J+1
h − u∗,Jh )(z)

∣∣ ≤ C(h)κεJ , (3.10)
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where we used that h is fixed and that owing to the stopping criterion of Algorithm B we have∥∥κ−1(u∗,J+1
h − u∗,Jh )

∥∥
h
≤ εJ . Therefore, any accumulation point uh ∈ S1(Th)n of the sequence

(
u
∗,J+1/2
h

)
J∈N

satisfies |uh(z)| = 1 for all z ∈ Nh. The properties of the cross product that (a×b)·c =

−b · (a× c) and a× (b× c) = (a · c)b− (a · b)c for a, b, c ∈ R3 imply

(
u
∗,J+1/2
h × (u

∗,J+1/2
h × ∆̃Mh

u
∗,J+1/2
h ); vh

)
h

=
(
∆̃Mh

u
∗,J+1/2
h ;u

∗,J+1/2
h × (u

∗,J+1/2
h × vh)

)
h

= −
(
∆̃Mh

u
∗,J+1/2
h ; |u∗,J+1/2

h |2vh

)
h

+
(
∆̃Mh

u
∗,J+1/2
h ; (u

∗,J+1/2
h · vh)u

∗,J+1/2
h

)
h

= −
(
∆̃Mh

u
∗,J+1/2
h ; vh

)
h
−

(
∆̃Mh

u
∗,J+1/2
h ; (|u∗,J+1/2

h |2 − 1)vh

)
h

+
(
∆̃Mh

u
∗,J+1/2
h ; (u

∗,J+1/2
h · vh)u

∗,J+1/2
h

)
h
.

(3.11)

The identity in Step 2 of Algorithm B, (3.11), and properties of the discrete inner product show

for vh = Ih

[
u
∗,J+1/2
h × wh

]
with arbitrary wh ∈ S1(Th)3 that

−
(
∆̃Mh

u
∗,J+1/2
h ;u

∗,J+1/2
h × wh

)
h

= −κ−1
(
u∗,J+1

h − u∗,Jh ;u
∗,J+1/2
h × wh

)
h
−

(
u
∗,J+1/2
h × ∆̃Mh

u
∗,J+1/2
h ; (|u∗,J+1/2

h |2 − 1)wh

)
h

+
(
r∗,J+1
h × u∗,J+1

h ;u
∗,J+1/2
h × wh

)
h

=: I + II + III.

Since by the stopping criterion it holds κ−1
∥∥u∗,J+1

h −u∗,Jh

∥∥
h
≤ εJ and since |u∗,J+1/2

h (z)| ≤ 1 for all
z ∈ Nh we deduce that

I ≤ εJ‖wh‖h.

Lemmas 3.3.2 and 3.3.3 imply that

∥∥u∗,J+1/2
h × ∆̃Mh

u
∗,J+1/2
h

∥∥
h
≤ Cκ−1/2 (3.12)

and together with
∣∣|u∗,J+1/2

h (z)| − 1
∣∣ ≤ C(h)κεJ we verify that

II ≤ C(h)κ1/2εJ‖wh‖h.

The guaranteed bound
∥∥r∗,J+1

h

∥∥
h
≤ δJ and |u∗,J+1/2

h (z)| ≤ 1 for all z ∈ Nh shows that

III ≤ δJ‖wh‖h.

Therefore, we verify that an accumulation point uh of the sequence
(
u
∗,J+1/2
h

)
J∈N

satisfies

(
∆̃Mh

uh;uh × wh

)
h

= 0

for all wh ∈ S1(Th)3. For every vh ∈ S1(Th)3 such that vh(z) ∈ Tuh(z)S
2 there exists wh ∈ S1(Th)3

satisfying vh(z) = uh(z) × wh(z) for all z ∈ Nh. Therefore, we verify by definition of ∆̃Mh
that

0 = −
(
∆̃Mh

uh; vh

)
h

=
(
∇Mh

uh;∇Mh
vh

)
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for all such vh which, owing to Lemma 3.1.4, proves that uh is a discrete harmonic map into S2.

(ii) To prove the second assertion we notice that the lifted sequences of outputs
(
ũ
∗,J+1/2
h

)
and(

ũ∗,J+1
h

)
are bounded in W 1,2(M ; R3) and owing to the estimate

∥∥u∗,J+1/2
h − u∗,J+1

h

∥∥ =
1

2

∥∥u∗,J+1
h − u∗,Jh

∥∥ ≤ 1

2
κεJ

have the same accumulation points. Since |u∗,J+1
h (z)| = 1 for all z ∈ Nh, nodal interpolation

estimates imply

∥∥|u∗,J+1
h |2 − 1

∥∥ ≤ Ch
∥∥∇Mh

[
|u∗,J+1

h |2
]∥∥ ≤ Ch

∥∥∇Mh
u∗,J+1

h

∥∥.

Therefore, every accumulation point u ∈ W 1,2(M ; R3) satisfies |u| = 1 almost everywhere in M .

For any φ ∈ C∞
c (M) we denote by φ̌∈ L∞(Mh) the function whose lifting onto M coincides with

φ and notice

(
∆̃Mh

u
∗,J+1/2
h ;u

∗,J+1/2
h × φ̌

)
h

= −
(
∇Mh

u
∗,J+1/2
h ;∇Mh

Ih

[
u
∗,J+1/2
h × φ̌

])

= −
(
∇Mh

u
∗,J+1/2
h ;∇Mh

[
u
∗,J+1/2
h × φ̌

])

−
(
∇Mh

u
∗,J+1/2
h ;∇Mh

{
u
∗,J+1/2
h × φ̌− Ih

[
u
∗,J+1/2
h × φ̌

]})
.

Employing (3.11) and the identity in Step 2 of Algorithm B shows

∣∣(∆̃Mh
u
∗,J+1/2
h ;u

∗,J+1/2
h × φ̌

)
h

∣∣

≤
∣∣(u∗,J+1/2

h × (u
∗,J+1/2
h × ∆̃Mh

u
∗,J+1/2
h );u

∗,J+1/2
h × φ̌

)
h

∣∣

+
∣∣(∆̃Mh

u
∗,J+1/2
h ; (|u∗,J+1/2

h |2 − 1)u
∗,J+1/2
h × φ̌

)
h

∣∣

≤
∣∣κ−1

(
u∗,J+1

h − u∗,Jh ;u
∗,J+1/2
h × φ̌

)
h

∣∣ +
∣∣(u∗,J+1/2

h × rJ+1
h ;u

∗,J+1/2
h × φ̌

)
h

∣∣

+
∣∣(∆̃Mh

u
∗,J+1/2
h ; (|u∗,J+1/2

h |2 − 1)u
∗,J+1/2
h × φ̌

)
h

∣∣

≤ εJ‖φ̌‖h + δJ‖φ̌‖h +
∥∥u∗,J+1/2

h × ∆̃Mh
u
∗,J+1/2
h

∥∥ ∥∥|u∗,J+1/2
h |2 − 1

∥∥ ‖φ̌‖L∞(Mh)

≤ CεJ‖φ‖L2(M) + CδJ‖φ‖L2(M) + Cκ1/2ε‖φ‖L∞(M).

For the last estimate we used (3.12) and
∥∥|u∗,J+1/2

h |2 − 1
∥∥ ≤ CκεJ which follows from (3.10).
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Lemma 3.3.2 and the interpolation estimates of Section 1.4 imply that

∣∣(∇Mh
u
∗,J+1/2
h ;∇Mh

{
u
∗,J+1/2
h × φ̌− Ih

[
u
∗,J+1/2
h × φ̌

]})∣∣

≤ Ch
∥∥D2

Mh

[
u
∗,J+1/2
h × φ̌

]∥∥

≤ Ch
(∥∥∇Mh

u
∗,J+1/2
h

∥∥∥∥∇Mh
φ̌
∥∥

L∞(Mh)
+

∥∥D2
Mh
φ̌
∥∥)
.

Lemma 1.3.5 guarantees

(
∇Mh

u
∗,J+1/2
h ;∇Mh

[
u
∗,J+1/2
h × φ̌

])
=

([
I + Fh

]
∇M ũ

∗,J+1/2
h ;∇M

[
ũ
∗,J+1/2
h × φ

])

and the property of Fh that Fh = o(h) together with a combination of the previous four estimates
imply (

∇M ũ
∗,J+1/2
h ;∇M

[
ũ
∗,J+1/2
h × φ

])
→ 0

as h→ 0. With the help of Lemma 2.5.1 we note

(
∇M ũ

∗,J+1/2
h ;∇M

[
ũ
∗,J+1/2
h × φ

])
=

m∑

γ=1

(
Dγ ũ

∗,J+1/2
h ; ũ

∗,J+1/2
h ×Dγφ

)
.

Since ũ
∗,J+1/2
h → u strongly in L2(M ; R3) we verify once more with Lemma 2.5.1 that

0 =
(
Dγu; u×Dγφ

)
=

(
∇Mu;∇M

[
u× φ

])

which shows that u is a harmonic map into S2 and finishes the proof of the theorem.

Remark 3.3.6. A convergence proof for h → 0 could also be based on Theorem 2.5.2 but would
require to impose restrictive constraints on the discretization parameters. More precisely, for the
setting of Theorem 2.5.2 we would have to employ the sequence u∗,J+1

h which satisfies the constraints

at the nodes. In the proof given here, we rather proved convergence of the averages u
∗,J+1/2
h which

solve the discretized partial differential equation.

3.3.4 Fully practical construction of iterates

We next discuss convergence of a fixed-point iteration that solves the nonlinear equation in each
time-step of Algorithm B. Owing to a careful linearization, the proposed fixed-point iteration will
preserve the unit length constraint in each iteration step. This is not clear for other iterative solvers
such as a Newton iteration. Unfortunately, to guarantee convergence of the iteration, we have to
impose severe constraints on the damping parameter κ.

Lemma 3.3.7. There exists a constant C > 0 such that for all φh ∈ S1(Th) we have

∥∥∆̃Mh
φh

∥∥
h
≤ Ch−2

min‖φh‖h

and ∥∥∆̃Mh
φh

∥∥
L∞(Mh)

≤ Ch−2
min‖φh‖L∞(Mh).

83



Proof. The proof of the first estimate follows directly from the definition of ∆̃Mh
and the in-

verse estimate
∥∥∇Mh

φh

∥∥ ≤ Ch−1
min‖φh‖. To verify the second estimate, let z ∈ Nh be such that∥∥∆̃Mh

φh

∥∥
L∞(Mh)

=
∣∣∆̃Mh

φh(z)
∣∣. Choosing χh = ∆̃Mh

φh(z)ϕz in the definition of ∆̃Mh
φh and

recalling properties of the discrete inner product from Definition 1.4.10 yields that

∣∣∆̃Mh
φh(z)

∣∣2 = β−1
z

(
∆̃Mh

φh;χh

)
h

= −
(
∆̃Mh

φh(z)
)
β−1

z

(
∇Mh

φh;∇Mh
ϕz

)

= −
(
∆̃Mh

φh(z)
)
β−1

z

∑

y∈Nh

φh(y)
(
∇Mh

ϕy;∇Mh
ϕz

)

≤ C|∆̃Mh
φh(z)|β−1

z

∥∥φh

∥∥
L∞(Mh)

∥∥∇Mh
ϕz

∥∥2

≤ C|∆̃Mh
φh(z)|β−1

z

∥∥φh

∥∥
L∞(Mh)

h−2
min

∥∥ϕz

∥∥2

≤ C|∆̃Mh
φh(z)|h−2

min

∥∥φh

∥∥
L∞(Mh)

,

where we used that the number of nodes y ∈ Nh such that
(
∇Mh

ϕy;∇Mh
ϕz

)
6= 0 is bounded

h-independently, that
∥∥∇Mh

ϕy

∥∥ ≤ C
∥∥∇Mh

ϕz

∥∥ for such y ∈ Nh, and that β−1
z

∥∥ϕz

∥∥2 ≤ C.

The following algorithm is motivated by the proof of Proposition 3.3.1 and solves the nonlinear
equation in Step 2 of Algorithm B. It is based on a linearization of the equation in Step 2 of
Algorithm B with δ = 0 (i.e., ri+1

h = 0). This linearization of the nonlinear part is done in such a
way that the unit length constraint is preserved throughout the iteration and that the residual is
of the form of the right-hand side in Step 2 of Algorithm B.

Algorithm Binner. Input: triangulation Th, damping parameter κ > 0, approximation
tolerance δ ≥ 0, starting value ui

h (approximate solution of i-th time-step).

1. Set w0
h := ui

h and j := 0.

2. Compute wj+1
h ∈ S1(Th)3 such that

2

κ

(
wj+1

h ; vh

)
h

+
(
wj+1

h × (wj
h × ∆̃Mh

wj
h); vh

)
h

=
2

κ

(
ui

h; vh

)
h

for all vh ∈ S1(Th)3. Set ej+1
h := wj+1

h − wj
h and

ri+1
h := wj+1

h × ∆̃Mh
ej+1
h + ej+1

h × ∆̃Mh
wj

h.

3. If
∥∥ri+1

h

∥∥
h
≤ δ then stop and set ui+1

h := 2wj+1
h − ui

h.

4. Set j := j + 1 and go to 2.

Output: ui+1
h and ri+1

h .

The following theorem shows that all steps in Algorithm Binner are well-defined, that the algo-
rithm terminates if κ = O(h2), and that the outputs ui+1

h and ri+1
h solve Step 2 of Algorithm B.
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Theorem 3.3.8. (i) Let ui
h ∈ S1(Th)3 such that |ui

h(z)| = 1 for all z ∈ Nh. Then, for all j ≥ 0

the system in Step 2 of Algorithm Binner admits a unique solution wj+1
h ∈ S1(Th)3 such that∣∣wj+1

h (z)
∣∣ ≤ 1 and

∣∣(2wj+1
h − ui

h

)
(z)

∣∣ = 1 for all z ∈ Nh. Moreover, we have

∥∥ej+1
h

∥∥
h
≤ Cκh−2

min

∥∥ejh
∥∥

h
. (3.13)

(ii) If Cκh−2
min < 1 and δ > 0 then Algorithm Binner terminates within a finite number of iterations

and the output ui+1
h and ri+1

h solve Step 2 of Algorithm B.

Proof. The left-hand side in Step 2 of Algorithm Binner defines a continuous bilinear form on
[S1(Th)3]2 and properties of the cross product show that this bilinear form is elliptic. Hence,
there exists a unique solution wj+1

h . Upon choosing vh = wj+1
h (z)ϕz for z ∈ Nh we verify that

|wj+1
h (z)| ≤ |ui

h(z)| = 1. Defining ui+1
h = 2wj+1

h − ui
h implies that for all vh ∈ S1(Th)3 we have

1

κ

(
ui+1

h − ui
h; vh

)
h

+
(
wj+1

h × (wj
h × ∆̃Mh

wj
h); vh

)
h

= 0.

The choice vh = wj+1
h (z)ϕz for z ∈ Nh and the identity wj+1

h =
(
ui+1

h +ui
h

)
/2 yield that |ui+1

h (z)|2 =
|ui

h(z)|2 = 1. We subtract equations from Step 2 corresponding to two successive iteration steps

and choose vh = ej+1
h to verify that for j ≥ 1 we have

2

κ

∥∥ej+1
h

∥∥2

h
= −

(
wj

h × (ejh × ∆̃Mh
wj

h); ej+1
h

)
h
−

(
wj

h × (wj−1
h × ∆̃Mh

ejh); ej+1
h

)
h

≤
∥∥ejh

∥∥
h

∥∥∆̃Mh
wj

h

∥∥
L∞(Mh)

∥∥ej+1
h

∥∥
h

+
∥∥∆̃Mh

ejh
∥∥

h

∥∥ej+1
h

∥∥
h
,

where we used
∥∥wj

h

∥∥
L∞(Mh)

,
∥∥wj−1

h

∥∥
L∞(Mh)

≤ 1. The estimates of Lemma 3.3.7 yield (3.13). Es-

timate (3.13) then implies that the iteration of the algorithm converges and terminates within a
finite number of iterations if Cκh−2

min < 1. Suppose that for some j ≥ 0 we have ui+1
h = 2wj+1

h −ui
h,

in particular u
i+1/2
h = wj+1

h . Then, the system in Step 2 of Algorithm Binner implies that for all
vh ∈ S1(Th)3 we have

κ−1
([
ui+1

h − ui
h

]
; vh

)
h

+
(
u

i+1/2
h × (u

i+1/2
h × ∆̃Mh

u
i+1/2
h ); vh

)
h

=
(
u

i+1/2
h × (wj+1

h × ∆̃Mh
wj+1

h ); vh

)
h
−

(
u

i+1/2
h × (wj

h × ∆̃Mh
wj

h); vh

)
h

=
(
u

i+1/2
h × (ej+1

h × ∆̃Mh
wj+1

h ); vh

)
h

+
(
u

i+1/2
h × (wj

h × ∆̃Mh
ej+1
h ); vh

)
h

=
(
u

i+1/2
h × ri+1

h ; vh

)
h
,

which proves (ii) and finishes the proof of the theorem.

Remark 3.3.9. Newton schemes for the approximate solution of the homogeneous equation in
Step 2 of Algorithm B do in general not lead to a residual that has the structure of the right-
hand side of the equation: Suppose that ui

h ∈ S1(Th)3 is given. Then, in order to compute an

approximation of u
i+1/2
h , one is led to finding w∗

h ∈ S1(Th)3 such F (w∗
h) = 0, where

F (wh) =
2

κ

(
wh − ui

h

)
+ Ih

[
wh × (wh × ∆̃Mh

wh)
]
.
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Given an iterate wj
h (e.g., with w0

h = ui
h), the correction ch ∈ S1(Th)3 in the update wj+1

h = wj
h− ch

is the solution of

DF (wj
h)[ch] = F (wj

h),

i.e., ch satisfies

2

κ

(
ch; vh

)
h

+
(
ch × (wj

h × ∆̃Mh
wj

h); vh

)
h

+
(
wj

h × (ch × ∆̃Mh
wj

h); vh

)
h

+
(
wj

h × (wj
h × ∆̃Mh

ch); vh

)
h

=
2

κ

(
wj

h − ui
h; vh

)
h

+
(
wj

h × (wj
h × ∆̃Mh

wj
h); vh

)
h
,

for all vh ∈ S1(Th)3. Setting ui+1
h := 2wj+1

h −ui
h, i.e., u

i+1/2
h = wj+1

h , the equation may be rewritten
as

κ−1
([
ui+1

h − ui
h

]
; vh

)
h

+
(
u

i+1/2
h × (u

i+1/2
h × ∆̃Mh

u
i+1/2
h ); vh

)
h

=
(
cjh × (wj

h × ∆̃Mh
cjh); vh

)
h

+
(
cjh × (cjh × ∆̃Mh

wj
h); vh

)
h

+
(
wj

h × (cjh × ∆̃Mh
cjh); vh

)
h

+
(
cjh × (cjh × ∆̃Mh

cjh); vh

)
h
,

and the right-hand side is not of the desired form
(
u

i+1/2
h × ri+1

h ; vh

)
.

3.4 θ-Schemes for the approximation of the L
2 flow of harmonic

maps

A family of θ-schemes for the L2 flow of harmonic maps into spheres and for Landau-Lifshitz-Gilbert
equations has recently been proposed in [Alo07] and shown to be unconditionally convergent for
θ > 1/2 provided that underlying triangulations are weakly acute. The proof exploits the H1

stability of the projection of updates onto the sphere, cf. Lemma 3.2.5. In this section we modify
the scheme in order to approximate the harmonic map heat flow into targets N which are the
boundaries of convex sets. The main idea for the definition of the approximation scheme is to
compute for given θ ∈ [0, 1] and time-step size κ > 0 an approximate time-derivative wi satisfying
wi(x) ∈ Tui(x)N for given ui with ui(x) ∈ N for almost every x ∈M such that

(
wi; v

)
+

(
∇M

[
ui + θκwi

]
;∇Mv

)
= 0

holds for all v with v(x) ∈ Tui(x)N for almost every x ∈M . The update ui + κwi is then projected

onto N to define the new iterate ui+1 := πN

(
ui + κwi

)
. This scheme may be regarded as a semi-

implicit discretization of the harmonic map heat flow into convex targets. To compute stationary
points of the flow, our full discretization reads as follows.
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Algorithm C. Input: triangulation Th, parameter θ ∈ [0, 1], time-step size κ > 0, stopping
criterion ε > 0.

1. Choose u0
h ∈ S1(Th)n such that u0

h|ΓD
= uD,h and u0

h(z) ∈ N for all z ∈ Nh \ ΓD. Set
i := 0.

2. Compute wi
h ∈ S1

D(Th)n such that wi
h(z) ∈ Tui

h(z)N for all z ∈ Nh and

(
wi

h; vh

)
+

(
∇Mh

[
ui

h + θκwi
h

]
;∇Mh

vh

)
= 0

for all vh ∈ S1
D(Th)n such that vh(z) ∈ Tui

h(z)N for all z ∈ Nh.

3. Define ui+1
h ∈ S1(Th)n by setting

ui+1
h (z) := πN

(
ui

h(z) + κwi
h(z)

)

for all z ∈ Nh.

4. Stop if κ−1
∥∥ui+1

h − ui
h

∥∥
h
≤ ε.

5. Set i := i+ 1 and go to 2.

Output: u∗h := ui
h.

If θ < 1/2 then stability of Algorithm C requires that κ ≤ Ch1+d/2, see [Alo07] for the case that
N = S2. The following proposition shows that the scheme is unconditionally stable for θ ∈ [1/2, 1]
provided that N = ∂C for a bounded, open, convex set C ⊂ R

n and Th is weakly acute.

Proposition 3.4.1. Suppose that θ ∈ [1/2, 1], Th is weakly acute, and N is C2 and satisfies N = ∂C
for a bounded, open, convex set C ⊂ R

n. Then the iteration of Algorithm C is well-defined and
iterates satisfy

κ
J∑

i=0

{∥∥wi
h

∥∥2
+ (θ − 1/2)κ

∥∥∇Mh
wi

h

∥∥2
}

+
1

2

∥∥∇Mh
uJ+1

h

∥∥2 ≤ 1

2

∥∥∇Mh
u0

h

∥∥2
.

Moreover, Algorithm C terminates within a finite number of iterations and the output u∗h satisfies
u∗h(z) ∈ N for all z ∈ Nh, u

∗
h|ΓD

= uD,h, and
(
∇Mh

u∗h;∇Mh
vh

)
= Resh

(
vh

)

for all vh ∈ S1
D(Th)n such that vh(z) ∈ Tu∗

h(z)N for all z ∈ Nh, where the linear functional

Resh : S1
D(Th)n → R satisfies ∣∣Resh

(
vh

)∣∣ ≤ Cε ‖∇Mh
vh‖,

vh ∈ S1
D(Th)n provided that κ2h

−1−d/2
min ε ≤ C ′.

Proof. Well posedness of the iteration is an immediate consequence of the Lax-Milgram lemma
for Step 2 and the assumed convexity of C in Step 3. Given i ≥ 0 set ûi+1

h := ui
h + κwi

h. Then,
ui+1

h = IhπN

(
ûi+1

h

)
and the proof of Lemma 3.2.5 shows that

∥∥∇Mh
ui+1

h

∥∥ ≤
∥∥∇Mh

ûi+1
h

∥∥. (4.14)
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Notice that

ui
h + θκwi

h = θ
(
ui

h + κwi
h

)
+ (1 − θ)ui

h = θûi+1
h + (1 − θ)ui

h

and

wi
h = κ−1

(
ûi+1

h − ui
h

)
.

Therefore, the choice vh = wi
h in the equation in Step 2 of Algorithm C yields to

∥∥wi
h

∥∥2
+ κ−1

(
∇Mh

[
θûi+1

h + (1 − θ)ui
h

]
;∇Mh

[
ûi+1

h − ui
h

])
= 0.

Using that for all a, b ∈ R
ℓ we have

(
θa+ (1 − θ)b

)
· (b− a) =

1

2

(
|b|2 − |a|2

)
+

2θ − 1

2
|b− a|2,

we deduce from the previous identity that

∥∥wi
h

∥∥2
+
κ−1

2

(∥∥∇Mh
ûi+1

h

∥∥2 −
∥∥∇Mh

ui
h

∥∥2)
+

2θ − 1

2κ

∥∥∇Mh

[
ûi+1

h − ui
h

]∥∥2
= 0

holds for all vh ∈ S1
D(Th)n such that vh(z) ∈ Tuh(z)N for all z ∈ Nh. Upon using (4.14) and

summing over i = 0, 1, 2, ..., J we deduce the first asserted estimate which also implies termination
of the algorithm. If u∗h = ui∗+1

h for some i∗ ≥ 0 then

(
∇Mh

u∗h;∇Mh
vh

)
=

(
∇Mh

[
ui∗

h + θκwi∗

h

]
;∇Mh

vh

)
+

(
∇Mh

[
ui∗+1

h − ûi∗+1
h

]
;∇Mh

vh

)

= −
(
wi∗

h ; vh

)
+

(
∇Mh

[
ui∗+1

h − ûi∗+1
h

]
;∇Mh

vh

)
.

We use that for all z ∈ Nh we have, cf. the proof of Lemma 3.2.4,

ui∗+1
h (z) − ûi∗+1

h (z) = πN

(
ui∗

h (z) + κwi∗

h (z)
)
−

(
ui∗

h (z) + κwi
h(z)

)
= κ2O

(∣∣wi∗

h (z)
∣∣2)

to verify with an interpolation result and an inverse estimate that

∥∥ui∗+1
h − ûi∗+1

h

∥∥ ≤ Cκ2
∥∥wi∗

h

∥∥2

L4(Mh)
≤ Cκ2h

−d/2
min

∥∥wi∗

h

∥∥2

L2(Mh)
.

A combination of the last two equations and an inverse estimate lead to

(
∇Mh

u∗h;∇Mh
vh

)
≤ C

(
1 + κ2h

−1−d/2
min ε

)
ε
(
‖vh‖ +

∥∥∇Mh
vh

∥∥)

which finishes the proof of the proposition.

Remarks 3.4.2. (i) To approximate a solution of the time-dependent problem one has to assume
that θ > 1/2 or κ/h → 0 if θ = 1/2, see [Alo07]. If θ > 1/2 then one can show that (the
liftings of the functions) dtu

i+1
h := κ−1

(
ui+1

h − ui
h

)
and wi

h always have the same weak limit in
L2

[
0, T ;W 1,2(M ; Rn)∗

]
: with estimates from the proof of Proposition 3.4.1, interpolation of L4

between L2 and W 1,2 for d ≤ 3, and Hölder’s inequality we find that for λ ∈ [0, 1] we have

∥∥dtu
i+1
h − wi

h

∥∥ = κ−1
∥∥ui+1

h − ûi+1
h ‖ ≤ Cκ

∥∥wi
h

∥∥2

L4(Mh)
≤ Cκ

∥∥wi
h

∥∥1/2

L2(Mh)

∥∥∇Mh
wi

h

∥∥3/2

L2(Mh)

≤ Cκ4λ
∥∥wi

h

∥∥2

L2(Mh)
+ Cκ4(1−λ)/3

∥∥∇Mh
wi∗

h

∥∥2

L2(Mh)
,
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where we assumed ΓD 6= ∅ for simplicity. Multiplication with κ and summation over i = 0, 1, 2, ..., J
yields with the estimates of Proposition 3.4.1 that

κ

J∑

i=0

∥∥dtu
i+1
h −wi

h

∥∥ ≤ C
(
κ4λ + κ(1−4λ)/3/(2θ − 1)

)∥∥∇Mh
u0

h

∥∥2

and the right-hand side tends to 0 provided 0 < λ < 1/4 and θ > 1/2.
(ii) Owing to the projection step, the scheme realized by Algorithm C can only be expected to be of
first order.
(iii) For θ = 0 Algorithm C coincides with the schemes proposed in [AJ06, BBFP07].

3.5 Discussion of Newton iterations

The equivalent definition of discrete harmonic maps in (b) of Lemma 3.1.4 has the advantage that
the constraint uh(z) ∈ N for all z ∈ Nh is formulated as an equality rather than an inclusion. This
makes it possible to directly try standard Newton solvers for the solution of the nonlinear systems
of equations. The idea to reformulate the harmonic map problem as a saddle-point problem has
been considered in [CD03] in case that the target manifold is the unit sphere and in [HTW06] for
one-dimensional target manifolds. For other attempts towards the design of higher-order schemes
we refer the reader to [LL89, Mor04].

Throughout this section we assume that Assumption (O) is satisfied, i.e., N is orientable and
given as the intersection of the zero level sets of differentiable functions fk+1, fk+2, ..., fn : R

n → R.
We recall that in this case the saddle-point formulation of Lemma 3.1.4 seeks uh ∈ S1(Th)n satisfying
uh|ΓD

= uD,h and λℓ
h ∈ S1

D(Th), ℓ = k + 1, ..., n such that

(
∇Mh

uh;∇Mh
vh

)
+

n∑

ℓ=k+1

(
λℓ

h; (νℓ ◦ uh) · vh

)
h

= 0,

n∑

ℓ=k+1

(
̺ℓ

h; f ℓ ◦ uh

)
h

= 0

for all
(
vh, (̺

k+1
h , ..., ̺n

h)
)
∈ S1

D(Th)n × S1
D(Th)n−k, where we incorporated boundary conditions for

the multipliers λℓ
h as well. Defining Xh := S1

D(Th)n × S1
D(Th)n−k we may recast the saddle-point

formulation as:

Find xh = (u′h, (λ
k+1
h , ..., λn

h)
)
∈ Xh such that F (xh)[yh] = 0 for all yh =

(
vh, (̺

k+1
h , ..., ̺n

h)
)
∈

Xh, where

F (xh)[yh] :=
(
∇Mh

[u′h + uD,h];∇Mh
vh

)

+
n∑

ℓ=k+1

(
λℓ

h; νℓ ◦ [u′h + uD,h] · vh

)
h

+
n∑

ℓ=k+1

(
̺ℓ

h; f ℓ ◦ [u′h + uD,h]
)
h
,

with the trivial extension uD,h ∈ S1(Th)n of the discrete Dirichlet data uD,h.

Given some xi
h ∈ Xh, a Newton iteration computes in each step a correction cih ∈ Xh such that

for all yh ∈ Xh the identity
DF (xi

h)(cih)[yh] = −F (xi
h)[yh]
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is satisfied. This defines the new iterate xi+1
h := xi

h + cih. Replacing u′h + uD,h by uh, the Newton
scheme may also be written as follows.

Algorithm D. Input: triangulation Th and termination parameter ε > 0.

1. Choose u0
h ∈ S1(Th)n and λ0,ℓ

h ∈ S1
D(Th), ℓ = k + 1, ..., n, such that u0

h|ΓD
= uD,h. Set

i := 0.

2. Compute
(
wi

h, (µ
i,k+1
h , ..., µi,n

h )
)
∈ Xh = S1

D(Th)n × S1
D(Th)n−k such that

(
∇Mh

wi
h;∇Mh

vh

)
+

n∑

ℓ=k+1

(
λi,ℓ

h ; (Dνℓ ◦ ui
h)[wi

h] · vh

)
h

+
n∑

ℓ=k+1

(
µi,ℓ

h ; (νℓ ◦ ui
h) · vh

)
h

= −
(
∇Mh

ui
h;∇Mh

vh

)
−

n∑

ℓ=k+1

(
λi,ℓ

h ; (νℓ ◦ ui
h) · vh

)
h
,

n∑

ℓ=k+1

(
̺ℓ

h; (νℓ ◦ ui
h) · wi

h

)
h

= −
n∑

ℓ=k+1

(
̺ℓ

h; f ℓ ◦ ui
h

)
h
,

for all
(
vh, (̺

k+1
h , ..., ̺n

h)
)
∈ Xh.

3. Set (
ui+1

h , (λi+1,k+1
h , ..., λi+1,n

h )
)
:=

(
ui

h + wi
h, (λ

i,k+1
h + µi,k+1

h , ..., λi,n
h + µi,n

h )
)
.

4. Stop if
∥∥∇Mh

wi
h

∥∥ +
∑n

ℓ=k+1

∥∥f ℓ ◦ ui+1
h

∥∥
h
≤ ε. Otherwise, set i := i+ 1, and go to 2.

Output: u∗h, λ∗,k+1
h , ..., λ∗,nh .

The following remarks reveal some difficulties in the analysis of Algorithm D.

Remarks 3.5.1. (i) Step 2 in Algorithm D admits no solution if, e.g., N = S2, f(p) = |p|2 − 1,
and uj

h(z) = 0 for some z ∈ Nh \ ΓD: in this case we have ν(p) = p for p ∈ N and the choice
̺h = ϕz in Step 2 of Algorithm D leads to

(
ϕz;u

i
h · wi

h

)
h

= 0 6= 1

2
βz = −

(
ϕz; |ui

h|2 − 1
)
h

for all wi
h ∈ S1

D(Th)m. Therefore, global well-posedness and convergence of Algorithm D is false in
general.
(ii) In case of termination of the iteration of Algorithm D, the output u∗h need not satisfy u∗h(z) ∈ N
for all z ∈ Nh.
(iii) Assuming that ui

h(z) ∈ N for all z ∈ Nh and defining

Xtan
h [ui

h] :=
{
vh ∈ S1

D(Th)n : vh(z) ∈ Tui
h(z)N for all z ∈ Nh

}
,

Step 2 in Algorithm D is equivalent to finding wi
h ∈ Xtan

h [ui
h] such that

(
∇Mh

wi
h;∇Mh

vh

)
+

n∑

ℓ=k+1

(
λi,ℓ

h ; (Dνℓ ◦ ui
h)

[
wi

h

]
· vh

)
h

= −
(
∇Mh

ui
h;∇Mh

vh

)
,
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for all vh ∈ Xtan
h [ui

h]. Notice that up to the second term on the left-hand side this is the iteration of
the scheme discussed in Section 3.2. Hence, Algorithm A may be regarded as a simplified Newton
iteration.
(iv) For N = Sn−1, [CD03] uses the term

∑
z∈Nh

λh(z)uh(z) · vh(z) instead of
(
λh;uh · vh

)
h
. This

corresponds to a strong penalization of the constraint.
(v) A one-dimensional minimization along the correction vector can be incorporated in Algorithm D
to improve the stability of the scheme.

Standard results (see, e.g., [Pla04, Deu04]) assert that the Newton iteration converges if, e.g.,
there exists x∗h ∈ Xh such that F (x∗h) = 0, DF (x∗h) is regular, and x0

h is sufficiently close to x∗h.
In the following example we show that the derivative DF (x∗h) may be singular for x∗h such that
F (x∗h) = 0, i.e., Step 2 of Algorithm B may fail to admit a unique solution and the algorithm cannot
be expected to converge in general even if a good initial value is available.

Figure 3.2: Every unit speed geodesic connecting north and south pole defines
a harmonic map in Example 3.5.2.

Example 3.5.2. (a) Let u : (0, 1) → R
3 be a harmonic map into S2 satisfying, u(0) = −u(1) =

(0, 0, 1), i.e., u ∈ W 1,2(0, 1; R3) satisfies |u| = 1 almost everywhere in (0, 1), u′′ − λu = 0 in weak
sense for some λ ∈ L1(0, 1) (in fact λ = −|u′|2), and u(0) = −u(1) = (0, 0, 1). Then, for each
φ ∈ (−π, π) the map

uφ := Rφu :=




cosφ sinφ 0
− sinφ cosφ 0

0 0 1


u

is a harmonic map into S2 subject to the same boundary conditions and with the same Lagrange-
multiplier λ, i.e., uφ satisfies |uφ| = 1 almost everywhere in (0, 1), uφ(0) = −uφ(1) = (0, 0, 1), and
u′′φ − λuφ = 0 in weak sense. The function

w :=
d

dφ

∣∣∣
φ=0

uφ = R0u :=




0 1 0
−1 0 0

0 0 0


u

satisfies w 6= 0, w(0) = w(1) = 0, w · u = 0 almost everywhere in (0, 1), and

w′′ − λw = R0u
′′ + λR0u = R0

(
u′′ + λu) = 0

in particular, we have w ∈W 1,2
0 (0, 1), u · w = 0 almost everywhere in (0, 1), and

(w′; v′) + (λ;w · v) = 0
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for all v ∈W 1,2
0 (0, 1) such that u · v = 0 almost everywhere in (0, 1).

(b) The same example can be constructed in a discrete setting: let Th be a partition of the interval
(0, 1) and uh ∈ S1(Th)3 such that |uh(z)| = 1 for all z ∈ Nh, uh(0) = −uh(1) = (0, 0, 1), and
suppose that there exists λh ∈ S1(Th) so that

(
u′h; v′h

)
+

(
λh;uh · vh

)
= 0

for all vh ∈ S1(Th)3. Arguing as in (a) we find that the vector field wh := R0uh ∈ S1
D(Th)3 is

non-trivial, satisfies wh(z) · uh(z) = 0 for all z ∈ Nh, and

(
w′

h; v′h
)

+
(
λh;wh · vh

)
= 0.

for all vh ∈ S1
D(Th)3 with vh(z) · uh(z) = 0 for all z ∈ Nh. Defining µh ∈ S1(Th) such that

(
µh;ϕz

)
h

= −
(
w′

h;ϕ′
z

)
−

(
λh;wh · ϕz

)
h

for all z ∈ Nh we see that
(
wh, µh

)
∈ Xh is a non-trivial solution of the equation in Step 2 of

Algorithm D.

The above example is related to the existence of Jacobi fields along a harmonic map. A necessary
condition for the existence of such, non-trivial fields is that a harmonic map fails to satisfy the so-
called cut-locus-condition, see [JK79]. This condition requires that for every pair of points p, q ∈ N
in the image of a harmonic map there exists a unique geodesic on N which connects p and q.
This is obviously not the case in the above example. However, whenever the boundary conditions
are slightly perturbed in Example 3.5.2, then the cut-locus-condition is satisfied and there exists
exactly one harmonic map u and no non-trivial Jacobi field along u. We finally remark that [CD03]
proposes to factor out the conformal group of S2 in the set of admissible vector fields to guarantee
uniqueness of harmonic maps between topological spheres even if the cut-locus condition is not
satisfied.

3.6 Combined algorithm

Although the Newton scheme cannot be expected to converge to discrete harmonic maps in general
it still performs often well in practice if a good initial value is available. The canonical idea is to use
the globally convergent scheme of Algorithm A to find a reasonable starting value for Algorithm D
and then monitor convergence of the local iteration. The following algorithm alternatingly iterates
the global and the local strategy and is arranged in such a way that if the local strategy does not
converge within a prescribed number of iterations, then the last iterate of the global strategy is
used to proceed further with the global strategy. The algorithm reduces to Algorithm A or D if
either Jglobal = 0 or Jlocal = 0. Figure 3.3 provides a schematic description of the algorithm. As in
the previous section we assume that Assumption (O) is satisfied.
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Algorithm E. Input: triangulation Th, damping parameter κ > 0, stopping criterion ε > 0,
non-negative integers Jglobal, Jlocal such that max{Jglobal, Jlocal} > 0.

(I) Choose u0
h ∈ S1(Th)n such that u0

h|ΓD
= uD,h and u0

h(z) ∈ N for all z ∈ Nh. Set i := iglobal := 0.

(G0) If iglobal = Jglobal then set ilocal := 0 and go to (II)

(G1) Compute wi
h ∈

◦
S1(Th)n such that wi

h(z) ∈ Tui
h(z)N for all z ∈ Nh and

(
∇Mh

wi
h;∇Mh

vh

)
= −

(
∇Mh

ui
h;∇Mh

vh

)

for all vh ∈
◦
S1(Th)n such that vh(z) ∈ Tui

h(z)N for all z ∈ Nh.

(G2) Stop if
∥∥∇Mh

wi
h

∥∥ ≤ ε.

(G3) Define ui+1
h ∈ S1(Th)n by setting

ui+1
h (z) := πN

(
ui

h(z) + κwi
h(z)

)

for all z ∈ Nh.

(G4) Set i := i+ 1 and iglobal := iglobal + 1 and go to (G0).

(II) Set uold
h := ui

h and choose λi,ℓ
h ∈ S1

D(Th), ℓ = k + 1, ..., n.

(L0) If ilocal = Jlocal then set ui
h := uold

h , iglobal := 0, and go to (G0) .

(L1) Compute
(
wi

h, (µ
i,k+1
h , ..., µi,n

h )
)
∈ Xh := S1

D(Th) × S1
D(Th)n−k such that

(
∇Mh

wi
h;∇Mh

vh

)
+

n∑

ℓ=k+1

(
λi,ℓ

h ; (Dνℓ ◦ ui
h)[wi

h] · vh

)
h

+

n∑

ℓ=k+1

(
µi,ℓ

h ; (νℓ ◦ ui
h) · vh

)
h

= −
(
∇Mh

ui
h;∇Mh

vh

)
−

n∑

ℓ=k+1

(
λi,ℓ

h ; (νℓ ◦ ui
h) · vh

)
h
,

n∑

ℓ=k+1

(
̺ℓ

h; (νℓ ◦ ui
h) · wi

h

)
h

= −
n∑

ℓ=k+1

(
̺ℓ

h; f ℓ ◦ ui
h

)
h
,

for all
(
vh, (̺

k+1
h , ..., ̺n

h)
)
∈ Xh.

(L2) Set
(
ui+1

h , (λi+1,k+1
h , ..., λi+1,n

h )
)
:=

(
ui

h + wi
h, (λ

i,k+1
h + µi,k+1

h , ..., λi,n
h + µi,n

h )
)
.

(L3) Stop if
∥∥∇Mh

wi
h

∥∥ +
∑n

ℓ=k+1

∥∥f ℓ ◦ ui+1
h

∥∥
h
≤ ε.

(L4) Set i := i+ 1, ilocal := ilocal + 1, and go to (L0).

Output: u∗h, λ∗,k+1
h , ..., λ∗,nh .
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u0 := unew
globalSet

Jlocal

u0 := unew
global

Jglobal

unew
local

u0

u0

unew
global

u0

Initialization: 

No
Residual small ?

No
Residual small ?

Yes

Yes

obtain update

END

END

BEGIN

obtain update

strategy with starting value        to

local iteration.)

(Reject update from

Perform              iterations of the global

Perform              iterations of the local

Set

strategy with starting value        to

Choose feasible

Figure 3.3: Schematic description of the combination of Algorithm E.

The only rigorous statement that we can provide for Algorithm E is that it works at least as
well as Algorithm A (up to an increased number of iterations), provided that Jglobal > 0.

Theorem 3.6.1. Suppose Jglobal > 0. Assume that N is C3 and

κ ≤ C ′ min{hmin, ωNh
d/2−1
min log

(
hmin

)−1}

with C ′ from Lemma 3.2.4, or N = ∂C for a bounded, open, convex set C ⊂ R
n, Th is weakly acute,

and κ < 2. Then the iteration of Algorithm E terminates within a finite number of iterations.

Proof. This follows since the global strategy alone, realized by Steps (G1)-(G4), converges, cf.
Theorem 3.2.7.

Remarks 3.6.2. (i) The constraint wi
h(z) ∈ Tui

h(z)N for all z ∈ Nh provides a Lagrange multiplier

which may be used to define an initial value λj
h in Step (II) for the initialization of the local strategy,

cf. Lemma 3.1.4.
(ii) Another useful stopping criterion for the (temporary) termination of the global strategy can be
based on a small decrease of the Dirichlet energy.
(iii) The iteration of the local strategy should be terminated (e.g., by setting jlocal = Nlocal) if the
problem in (L1) does not admit a solution.
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Chapter 4

Numerical experiments

4.1 Implementation aspects

The algorithms introduced and analyzed in the previous chapter were implemented in the numer-
ical computing environment MATLAB. In order to decrease the total runtime, some subroutines
were programmed in C and included with the interface MEX. Besides employing standard matrix
manipulation operations and sparse data structures, we always made use of MATLAB’s backslash
operator to solve linear systems of equations possibly including constraints via use of Lagrange
multipliers. In this section we exemplify implementation issues by discussing short MATLAB
implementations of the Laplace-Beltrami operator and of an iterative scheme for the practical re-
alization of the projection operator πN . The implementations of Algorithms A, B, C, D and E of
Chapter 3 are then immediate consequences and we refer the reader to Appendix A for details.

4.1.1 MATLAB routine for the Laplace-Beltrami operator

Following [Dzi88], a finite element approximation of the Poisson problem on surfaces,

−∆Mu = f

on M , subject to boundary conditions u|ΓD
= uD and ∂u/∂σ = g on ΓN := ∂M \ ΓD, where ΓD is

a possibly empty subset of ∂M and ∂u/∂σ the co-normal derivative of u on ∂M (which coincides
with the normal derivative if M is flat), see [DDE05], reads as follows:

Given a triangulation Th of the approximation Mh of M find uh ∈ S1(Th) such that uh(z) =
uD(z) for all z ∈ Nh ∩ ΓD and

∫

Mh

∇Mh
uh · ∇Mh

vh dsh =

∫

Mh

f̌ vh dsh +

∫

ΓN,h

ǧvh d dth (1.1)

for all vh ∈ S1
D(Th) and approximations f̌, ΓN,h, and ǧ of f , ΓN, and g, respectively.

The triangulation Th is specified by providing matrices c4n, n4e, Db, and Nb. Here, c4n is
an Lc × (d + 1) array defining the coordinates of the Lc nodes z1, z2, ..., zLc ∈ Nh of Th on the
d-dimensional hypersurface M ⊂ R

d+1. The Ls × (d + 1) array n4e defines the Ls subsimplices
contained in Th by providing the corresponding row numbers in the matrix c4n of the vertices
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for each element K ∈ Th. The discrete approximations of the boundary parts ΓD and ΓN of the
possibly empty boundary ∂M are specified in the M1×d and M2×d arrays Db and Nb, respectively,
by providing the row numbers of the nodes on each edge (d = 2) or face (d = 3) on ΓD and ΓN.

To compute the stiffness matrix corresponding to the left-hand side of (1.1) we compute for
each element K ∈ Th a unit normal vector µh|K and the auxiliary node ẑK := xK +hKµh|K , where
xK is the midpoint of K. The nodal basis functions

(
ϕz |K : z ∈ Nh∩K

)
are then linearly extended

to the (d + 1)-simplex K̂ := conv{K, ẑK} by defining ϕz(ẑK) := 0. This allows to compute a full,
(d + 1)-dimensional gradient whose restriction to Mh is then projected onto the tangent space of
the discrete surface Mh using the projection matrix

PK := I(d+1)×(d+1) − µh|K ⊗ µh|K .

If d = 2, K = conv{z0, z1, z2} for z0, z1, z2 ∈ Nh, and z1 − z0 and z2 − z0 are two different edge
vectors of K, then the property of the vector product, that

2H2(K)µh|K = (z1 − z0) × (z2 − z0)

allows to compute all required geometric quantities related to the triangle K.
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Figure 4.1: Numerical approximations of the Laplace-Beltrami problem (1.1) on
the upper half sphere (left) and on a torus (right) with homogeneous Dirichlet
conditions on ∂M and with f(x1, x2, x3) = x2.

The MATLAB code shown in Figure 4.2 realizes these ideas for d = 2 and was developed in
the spirit of [ACF99, BC04]. Dirichlet conditions are included by eliminating corresponding nodes
from the linear system of equations; in case that ΓD = ∅ the constraint

∫
Mh

uh dsh = 0 is added to
the linear system of equations in order to guarantee a regular system matrix, assuming that f and
g as well as their approximations satisfy appropriate compatibility conditions.

The computed approximate solution for (1.1) with f(x1, x2, x3) = x2 and uD = 0 and for
triangulations of the upper half unit sphere and the torus with radii (r1, r2) = (1, 1/4) into 2560
and 2048 triangles, respectively, are displayed in left and right plots of Figure 4.1.

4.1.2 Numerical realization of the orthogonal projection πN

Various approaches have been discussed in the literature to iteratively approximate the orthogonal
projection πN onto closed surfaces N . For ease of presentation we consider the simplest case of a
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function LaplaceBeltrami

load c4n.dat; load n4e.dat; load Db.dat; load Nb.dat;

DiriNodes = unique(Db);

freeNodes = setdiff([1:size(c4n,1)],DiriNodes);

for j = 1 : size(n4e,1)

mu_K(j,:) = cross(c4n(n4e(j,2),:)-c4n(n4e(j,1),:),c4n(n4e(j,3),:)-c4n(n4e(j,2),:));

area_K(j) = norm(mu_K(j,:))/2;

mu_K(j,:) = mu_K(j,:) / norm(mu_K(j,:));

mp_K(j,:) = sum(c4n(n4e(j,:),:))/3;

diam_K(j) = norm(c4n(n4e(j,2),:)-c4n(n4e(j,1),:));

end

A = sparse(size(c4n,1),size(c4n,1));

b = zeros(size(c4n,1),1);

c = zeros(size(c4n,1),1);

x = zeros(size(c4n,1),1);

for j = 1 : size(n4e,1)

tmp_tetra = [c4n(n4e(j,:),:);mp_K(j,:)+diam_K(j)*mu_K(j,:)];

grads3_K = [1,1,1,1;tmp_tetra’] \ [0,0,0;eye(3)];

P_K = eye(3) - mu_K(j,:)’ * mu_K(j,:);

for m = 1 : 3

b(n4e(j,m)) = b(n4e(j,m)) + (1/3) * area_K(j) * f(mp_K(j,:));

c(n4e(j,m)) = c(n4e(j,m)) + (1/3) * area_K(j);

for n = 1 : 3

A(n4e(j,m),n4e(j,n)) = A(n4e(j,m),n4e(j,n)) + ...

area_K(j) * (P_K * grads3_K(m,:)’)’ * (P_K * grads3_K(n,:)’);

end

end

end

for j = 1 : size(Nb,1)

length_E = norm(c4n(Nb(j,1),:) - c4n(Nb(j,2),:));

mp_E = (c4n(Nb(j,1),:) - c4n(Nb(j,2),:))/2;

b(Nb(j,1)) = b(Nb(j,1)) + (1/2) * length_E * g(mp_E);

b(Nb(j,2)) = b(Nb(j,2)) + (1/2) * length_E * g(mp_E);

end

if isempty(DiriNodes)

A = [A,c;c’,0];

b = [b;0];

else

for j = 1 : size(DiriNodes,1)

x(DiriNodes(j)) = u_D(c4n(DiriNodes(j),:));

end

b = b - A * x;

end

x(freeNodes) = A(freeNodes,freeNodes) \ b(freeNodes);

trisurf(n4e,c4n(:,1),c4n(:,2),c4n(:,3),x(1:size(c4n,1)))

function val = f(X)

val = X(2);

function val = u_D(X)

val = 0;

function val = g(X)

val = 0;

Figure 4.2: MATLAB implementation of the finite element scheme for the
Laplace-Beltrami operator and approximate solution of the Poisson problem
on a surface.
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hypersurface N ⊂ R
k+1 defined by a continuous function f : R

k+1 → R through

N =
{
p ∈ R

k+1 : f(p) = 0
}
.

We assume that f is C1 and satisfies |∇f | 6= 0 in a neighborhood of N . Closed formulas are available
for simple geometries such as the unit sphere, tori defined through radii r1, r2, and ellipsoids with
equatorial and polar radii d1, d2 and c, respectively.

Example 4.1.1. The zero sets of the functions f1, f2, f3 : R
3 → R, given for q = (q1, q2, q3) ∈ R

3,
by

f1(q) := 1 − |q|2,
f2(q) :=

[(∣∣(q1, q2)
∣∣ − r1

)2
+ q23

]1/2 − r2,

f3(q) :=
q21
r21

+
q22
r22

+
q23
c2

− 1

define the unit sphere S2, a torus T 2
r1r2

with radii r1 and r2, and an ellipsoid E2
r1r2c with equatorial

radii r1, r2 and polar radius c, respectively.

We follow ideas in [DD07] and consider for given q ∈ R
k+1 the functional

G(p, λ) :=
1

2
|p− q|2 + λf(p). (1.2)

Then, if q ∈ UδN
(N) we have p = πN (q) if and only if |p− q| ≤ δN and there exists λ ∈ R such that

the pair (p, λ) is stationary for G. Indeed, we have

∂λG(p, λ) = f(p) = 0 ⇐⇒ p ∈ N

and if p ∈ N , upon recalling that ν(p) = ∇f(p)/|∇f(p)|, then

∂pG(p, λ) = p− q + λ∇f(p) = 0 ⇐⇒ p− q = α ν(p),

where |α| = |p − q|. We thus deduce that p = πN (q).
We employ a classical Newton iteration to compute stationary points for G. We note

∇(p,λ)G(p, λ) =
(
p− q + λ∇f(p), f(p)

)

and, if f ∈ C2 in a neighborhood of N ,

D2
(p,λ)G(p, λ) =

[
I(k+1)×(k+1) + λD2f(p) ∇f(p)

(
∇f(p)

)T
0

]
.

Given (p, λ) ∈ N×R such that ∇(p,λ)G(p, λ) = 0, i.e., |λ| = |p−q|/
∣∣∇f(p)

∣∣, the matrix D2
(p,λ)G(p, λ)

is invertible if the linear mapping defined by the matrix I(k+1)×(k+1) +λD
2f(p) restricted to TpN =

(
∇f(p)

)⊥
is invertible, cf. [BF91, Bra01]. Sufficient for this is that |λ| < ρ

(
D2f(p)

)−1
, where

ρ
(
D2f(p)

)
denotes the spectral radius of D2f(p). The following result then follows from well-

known assertions on Newton iterations, see e.g. [Pla04, Deu04].
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Proposition 4.1.2. Suppose that f ∈ C3
(
UδN

(N)
)
. There exists δN,π > 0 such that the Newton

iteration (
pi+1, λi+1

)
:=

(
pi, λi

)
−

[
D2

(p,λ)G
(
pi, λi

)]−1∇(p,λ)G
(
pi, λi

)
.

with starting value
(
p0, λ0

)
=

(
q, 0

)
converges to

(
p, λ

)
=

(
πN (q), (p − q) · ν(p)/|∇f(p)|

)
whenever

q ∈ UδN,π
(N) :=

{
q′ ∈ R

n+1 : dist(q′, N) < δN,π

}
.

A MATLAB routine that realizes the Newton scheme for two-dimensional tori but which can
easily be adapted to other submanifolds is shown in Figure 4.3.

function pi_N(q,r)

eps_pi = 1.0E-10;

p = q;

lambda = 0;

dG = [(p-q)’+lambda*df(p,r)’;f(p,r)];

res = norm(dG)

while res >= eps_pi

d2G = [eye(3)+lambda*d2f(p,r),df(p,r)’;df(p,r),0];

v_new = [p’;lambda] - d2G\dG;

p = v_new(1:3)’;

lambda = v_new(4);

dG = [(p-q)’ + lambda*df(p,r)’;f(p,r)];

res = norm(dG);

end

function val = f(p,r)

val = Gamma(p,r)^(1/2) - r(2);

function val = df(p,r)

val = (1/2)*Gamma(p,r)^(-1/2)*dGamma(p,r);

function val = d2f(p,r)

val = -(1/4)* Gamma(p,r)^(-3/2)*dGamma(p,r)’*dGamma(p,r) + ...

(1/2)*Gamma(p,r)^(-1/2)*d2Gamma(p,r);

function val = Gamma(p,r)

val = (norm(p(1:2)) - r(1))^2 + p(3)^2;

function val = dGamma(p,r)

val = 2*[(norm(p(1:2))-r(1))*p(1:2)/norm(p(1:2)),p(:,3)];

function val = d2Gamma(p,r)

val = 2*[eye(2)-(r(1)/norm(p(1:2)))*(eye(2)-p(1:2)’*p(1:2)/norm(p(1:2))^2),...

zeros(2,1);0,0,1];

Figure 4.3: MATLAB implementation of the Newton iteration for the ap-
proximation of πT 2

r1,r2
for the torus T 2

r1,r2
with radii r = (r1, r2). Here,

T 2
r1,r2

= f−1
(
{0}

)
for f(p) := Γ(p)1/2 − r2 and Γ(p) =

(
|(p1, p2)| − r1

)2
+ p2

3 for
p =

(
p1, p2, p3

)
.

Remarks 4.1.3. (i) Let q ∈ UδN
(N), define the signed distance function dN (q) :=

(
signf(q)

)∣∣πN (q)−
q
∣∣, and abbreviate p := πN (q). The identities p = q − dN (q)ν(p) and ν(p) = ∇f(p)/

∣∣∇f(p)
∣∣ imply

f(q) = f(p) + ∇f(p) · (q − p) + O
(
dN (q)2

)

= dN (q)
∣∣∇f(p)

∣∣ + O
(
dN (q)2

)
.
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Based on the resulting approximation dN (q) ≈ f(q)/|∇f(q)|, [DD07] employs the iteration

(1) p̂i+1 := pi − f
(
pi

)
∣∣∇f

(
pi

)∣∣
∇f

(
pi

)
∣∣∇f

(
pi

)∣∣

(2) pi+1 := q −
(
signf(q)

) ∣∣p̂i+1 − q
∣∣ ∇f

(
p̂i+1

)
∣∣∇f

(
p̂i+1

)∣∣

to approximate πN (q).
(ii) If f = dN is the signed distance function of N then the Newton scheme of Proposition 4.1.2
with starting value

(
q, 0

)
detects the correct solution p = πN (q) within one step: we have

(
p1, λ1

)
=

(
q, 0

)
−

[
I(k+1)×(k+1) ν(p)

(
ν(p)

)T
0

]−1 [
0

dN (q)

]

=
(
q, 0

)
−

(
dN (q)ν(p),−dN (q)

)

=
(
p, dN (q)

)
.

(iii) For submanifolds N of codimension larger than one and defined through continuous functions
fk+1, ..., fn : R

n → R by N =
{
p ∈ R

n : fk+1(p) = .... = fn(p) = 0
}
, the projection πN (q) can be be

approximated by computing stationary points for the functional

G : UδN
(N) × R

n−k → R,
(
p, (λk+1, ..., λn)

)
7→ 1

2
|p− q|2 +

n∑

ℓ=k+1

λℓf ℓ(p).

We ran the Newton iteration and the scheme described in Remark 4.1.3 (i) with the same
stopping criterion

∣∣∇(p,λ)G
(
pi, λi

)∣∣ ≤ επ := 10−10 for different starting values. Table 4.1 displays
the numbers of iterations and shows that the Newton scheme works efficiently in this example. In
most of the experiments the scheme described in Remark 4.1.3 (i) works as well as the Newton
scheme. Our overall experience with the algorithms is that the Newton scheme is more robust and
even converges to the right object when the distance of q to N is very large.

N f q Newton Demlow & Dziuk

T 2
r1,r2

tan(dN ) (0, 0, 0) + ξ/10 4 4

T 2
r1,r2

tan(dN ) (2, 2, 2) + ξ/10 4 4

T 2
r1,r2

dN (2, 2, 2) + ξ/10 1 1

T 2
r1,r2

dN 30 (1, 1, 1) 1 > 100

S2 tan(dN ) (0, 0, 0) + ξ/10 5 4

S2 dN (0, 0, 0) + ξ/10 1 1

Table 4.1: Numbers of iterations of the Newton method and the scheme de-
scribed in Remark 4.1.3 (i) for the approximation of the orthogonal projection
πN (q) onto a torus with radii

(
r1, r2

)
=

(
1, 1/4

)
and the unit sphere S2 (which

coincides with the degenerated torus with radii
(
r1, r2

)
=

(
0, 1

)
). The vector

ξ =
(
ξ1, ξ2, ξ3

)
denotes a random vector satisfying maxi=1,2,3 |ξi| ≤ 1.
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4.2 Performance of Algorithms A and D for a 3D prototype sin-

gularity

In this section we report on the practical performance of Algorithms A and D for the approximation
of a three-dimensional harmonic map into the two-dimensional unit sphere S2 with a prototype
singularity. In particular, we consider the Euclidean situation M = (−1/2, 1/2)3 ×{0} ⊆ R

3+1 and
N = S2 together with

uD(x) :=
x

|x| for x ∈ ΓD := ∂M.

It is known [Lin87] that the unique energy minimizing harmonic map into S2 subject to these
boundary conditions is u(x) = x/|x| for x ∈ M and has a singularity at the origin. In the
following we neglect the forth (vanishing) component of coordinates and write ∇ for the usual
three-dimensional gradient. Notice that S2 = ∂B1(0) is the boundary of a bounded, open, convex
set.

4.2.1 Stability of Algorithm A and necessity of weak acuteness

As proved in Lemma 3.2.5 for the case that N = ∂C for a convex set C, Algorithm A is uncondi-
tionally stable and convergent for κ < 2 if the underlying triangulation is weakly acute. If Th is not
weakly acute, then a proper damping parameter κ = O(hmin) has to be employed in Algorithm A.

For each positive integer J we defined a weakly acute triangulation T ac
J with hmin ≈ 2−J of

M into 6 · 23J tetrahedra by first partitioning M into 23J many cubes of side-length 2−J and
subsequently dividing each cube into six tetrahedra by dilation and translation of the following
acute triangulation of the unit cube: for the reference cube Qref := (0, 1)3 with vertices

ẑ1 := (0, 0, 0), ẑ2 := (1, 0, 0), ẑ3 := (0, 0, 1), ẑ4 := (1, 0, 1),

ẑ5 := (0, 1, 0), ẑ6 := (1, 1, 0), ẑ7 := (0, 1, 1), ẑ8 := (1, 1, 1)

a partition of Qref into six right-angled tetrahedra is given by

K̂1 := conv
{
ẑ1, ẑ2, ẑ3, ẑ6

}
, K̂2 := conv

{
ẑ2, ẑ4, ẑ3, ẑ6

}
, K̂3 := conv

{
ẑ3, ẑ4, ẑ8, ẑ6

}
,

K̂4 := conv
{
ẑ3, ẑ8, ẑ7, ẑ6

}
, K̂5 := conv

{
ẑ7, ẑ5, ẑ3, ẑ6

}
, K̂6 := conv

{
ẑ3, ẑ5, ẑ1, ẑ6

}
,

see Figure 4.4. It is important to notice that the faces of tetrahedra on two opposite sides of Qref

match so that an assembly of such partitions results in a regular triangulation. We remark that
such and similar partitions have also been used in [Bey95, KK01, KK03], e.g., to guarantee validity
of a discrete maximum principle for a discretization of the Poisson problem.

We also defined a sequence of non-weakly acute triangulations T n−ac
J by using the coarse trian-

gulation T n−ac
0 (which actually is weakly acute) of M into six tetrahedra shown in Figure 4.4 and

recursively defining T n−ac
J+1 by partition of each tetrahedron K ∈ T n−ac

J into eight sub-tetrahedra

obtained from connecting midpoints of edges of K, cf. Figure 4.5. Hence, the triangulation T n−ac
J

consists of 6 ·8J = 6 ·23J many tetrahedra. One verifies however, that even though T n−ac
0 is weakly

acute, the triangulations T n−ac
J are not weakly acute if J ≥ 1.

We employ two different types of initial data to experimentally study the reliability and efficiency
of Algorithm A. Both of them interpolate the function x/|x| on the boundary of M . The first one
is constant in the interior of M while the second one is defined through random vectors on the unit
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z4

z8
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z7

Figure 4.4: Partition of the unit cube into six tetrahedra such that each of them
has a right (acute) angle.

Figure 4.5: Uniform refinement of a tetrahedron into eight sub-tetrahedra. This
refinement does not preserve weak acuteness of a triangulation.

sphere at interior nodes of a triangulation. More precisely, given a triangulation Th with nodes Nh

the initial vector field u0
h ∈ S1(Th)3 is defined through

u0
h(z) :=

{
(1, 0, 0) for z ∈ Nh \ ΓD,
z/|z| for z ∈ Nh ∩ ΓD,

(2.3)

or

u0
h(z) :=

{
ξ(z) for z ∈ Nh \ ΓD,
z/|z| for z ∈ Nh ∩ ΓD,

(2.4)

where ξ is a random vector-field with values in S2.

To study the necessity of a weak acuteness property of the underlying triangulation we ran
Algorithm A with ε = 10−4 and the three pairs

(
Th, κ

)
=

(
T ac

4 , 1
)
,

(
T n−ac

4 , 1
)
,

(
T n−ac

4 , hmin/10
)
,

where hmin = 2−4. The upper plot of Figure 4.6 displays the norm of the computed correction
vectors in Algorithm A,

∥∥∇wi
h

∥∥, for i = 1, 2, ... until termination, when u0
h is defined through (2.3).

The iteration stopped after 43 iterations when the weakly acute triangulation was used. This is in
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Figure 4.6: W 1,2 semi-norm of the correction wi
h in Algorithm A for a weakly

acute triangulation and a non-weakly acute triangulation with 24.576 tetrahedra
and hmin = 1/16 with different damping parameters κ for initial data which
are constant (upper plot) and random vectors on S2 (lower plot) in the interior
of M .
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good agreement with Theorem 3.2.7, which states that Algorithm A is globally convergent on weakly
acute triangulations if N is the boundary of a convex set. The fact that 156 iteration steps, i.e.,
about four times as many, are needed to satisfy the termination criterion of Algorithm A when a non-
weakly acute triangulation is used, indicates that the angle condition is not just a technical detail
but has influence on the practical performance of Algorithm A. In order to guarantee convergence
on arbitrary (regular) triangulations, a proper damping parameter κ ∈ O(hmin) has to be used.
In this case many more iterations are needed to achieve

∥∥∇wi
h

∥∥ ≤ ε and in this experiment the
termination criterion was not satisfied within the first 1000 iterations. The advantages of weakly
acute triangulations are also clearly visible when the initial u0

h is defined as in (2.4). The lower plot
of Figure 4.6 shows the rapid decay of the norm of the correction vectors on T ac

4 and the slower
decay on T n−ac

4 . We remark that while the energy is known to decrease monotonically on weakly
acute triangulations, we only know that the W 1,2 semi-norms of the corrections

(
wi

h

)
are square

summable.
To illustrate the evolution defined by the H1 gradient flow of Algorithm A, we plotted in

Figures 4.7 and 4.8 the first two components of the restriction of the vector field ui
h to the cross

section (−1/2, 1/2)2 × {0} of M . We used the initial vector fields u0
h defined either constantly in

the interior of M as in (2.3) and shown in Figure 4.7 or randomly as in (2.4) shown in Figure 4.8.
In both cases we used the weakly acute triangulation T ac

3 . We observe that for both choices of
initial data a smooth vector field away from a single singularity develops within a few iterations.
Then, in the subsequent iterations the singularity is transported to the origin leading to a stable
and symmetric equilibrium state. Thus, the energy decreasing iteration of Algorithm A provides
good approximations of the unique global energy minimizing harmonic map x/|x| in this example
independently of the choice of initial data u0

h.
For weakly acute triangulations with different mesh-size but with the same randomly and con-

stantly defined initial data as above, we plotted in Figure 4.9 the decay of the energy
∥∥∇ui

h

∥∥2
/2. A

rapid decrease of the energy can be observed within the first ten iterations and only small energy
variations occur when the singularity is transported towards the origin. As predicted by the theory,
the energy of iterates is monotonically decreasing.

From the first set of numerical experiments we draw the conclusion that Algorithm A performs
very reliably on weakly acute triangulations. Its efficiency seems best in the first iterations to
significantly decrease the possibly large energy of a possibly discontinuous initial vector field. While
leading to satisfying results, the algorithm appears to be rather slowly convergent once a low energy
level is passed owing to its global character.

4.2.2 Performance of the combined scheme

With M = (−1/2, 1/2)3 , uD(x) = x/|x|, and the two types of initial data defined by (2.3) and (2.4)
on the weakly acute triangulation T ac

4 of M we ran Algorithm E with different choices of the
input parameters Nglobal and Nlocal. We recall that the iteration of Algorithm E reduces to the
H1 gradient flow of Algorithm A if Nlocal = 0 and to the classical Newton iteration defined in
Algorithm D if Nglobal = 0. We employed the residual quantity

∥∥∇wi
h

∥∥ +
∥∥ |ui

h|2 − 1
∥∥

h
(2.5)

to measure the quality of approximation of a discrete harmonic map by iterates
(
ui

h, w
i
h) of Al-

gorithm E; recall that owing to Proposition 3.1.4 the pair of iterates
(
ui

h, w
i
h

)
of Algorithm E is

a discrete harmonic map into the sphere if and only if (2.5) vanishes. We notice that the second
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Figure 4.7: First two components of the restriction of the vector fields ui
h to

(−1/2, 1/2)2 × {0} for i = 0, 5, 85, 90, 125, 275 (from left to right and top to
bottom) obtained with Algorithm A on the weakly acute triangulation T ac

3 and
with constant initial data at interior nodes.
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Figure 4.8: First two components of the restriction of the vector fields ui
h to

(−1/2, 1/2)2 × {0} for i = 0, 5, 10, 25, 50, 185 (from left to right and top to
bottom) obtained with Algorithm A on the weakly acute triangulation T ac

3 and
with random initial data at interior nodes.
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Figure 4.9: Energy decay for different choices of initial data and different mesh-
sizes on weakly acute triangulations which guarantee monotone energy decay.

term in (2.5) disappears when Nlocal = 0 since then the constraint is satisfied exactly at the nodes
of the triangulation. In the upper and lower plot of Figure 4.10 we displayed this quantity for the
extreme cases (

Nglobal, Nlocal

)
= (5, 0) and

(
Nglobal, Nlocal

)
= (0, 5)

as well as the combined case (
Nglobal, Nlocal

)
= (5, 5)

for random and constant initial vector fields as defined in (2.3) and (2.4), respectively. Notice
that in the first two cases we could have used any positive integer instead of 5 to obtain the same
schemes while the values of the two numbers are important for the performance of Algorithm E
when both Nglobal and Nlocal are positive.

From the upper plot of Figure 4.10 we deduce that Algorithm E does not converge within 45
iterations when Nglobal = 0, i.e., when a Newton iteration is used to solve the discrete problem.
In fact, the system matrices tend to deteriorate which indicates divergence of the iteration for
the actual choice of constantly defined initial data. When Nlocal = 0 the residual quantity decays
monotonically and after 43 iterations the termination criterion is met. Convergence of the iteration
in this case is indeed guaranteed by Theorem 3.2.7, however, a lot of iterations are needed to
satisfy

∥∥∇wi
h

∥∥ ≤ ε = 10−4. This is different for the combined scheme of Algorithm E with
Nglobal = Nlocal = 5. We observe significantly faster termination of the combined iteration than for
the other methods. In fact, only 10 iterations of the global scheme (indicated by the thicker solid
line) are required to define a starting value for the local scheme (indicated by the thinner solid
line) that allows for rapid convergence. The performance of Algorithm E could actually be further
improved by the choice

(
Nglobal, Nlocal

)
= (10, 5) in this example. In fact, the advantages of the

combined scheme would become even more significant if a smaller termination parameter had been
used. Similar observations can be made for the randomly defined initial vector field u0

h from (2.4)
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Figure 4.10: Residual in Algorithm E for a weakly acute triangulation with
24.576 tetrahedra for various choices of Nglobal and Nlocal and initial data which
are constant (upper plot) and random vectors on S2 (lower plot) in the interior
of M . For the combined scheme with Nglobal = Nlocal = 5 the thick line
indicates the iterations with the global scheme and the thin lines those iterations
corresponding to the local scheme.
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and the reader is referred to the lower plot of Figure 4.10 for details.
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Figure 4.11: Energy decay in Algorithm E for different choices of Nglobal and
Nlocal and a randomly defined initial vector field. Thick parts of the solid line
indicate iterations with the globally convergent scheme.

We plotted in Figure 4.11 the decay of the energy for Algorithm E for randomly defined initial
data and various pairs of Nglobal and Nlocal. It is important to observe that the iteration of the
Newton method does not increase the energy in the combined scheme when it is convergent. This
is of essential importance but not guaranteed by theory.

4.2.3 Convergence of the Newton scheme to irregular discrete harmonic maps

With the one-dimensional example from Section 3.5 defined through M = (0, 1), N = S2, and the
boundary conditions u(0) = −u(1) = (0, 0, 1) we illustrate in this subsection that Newton iterations
may converge to discrete harmonic maps which are unfavorable in practice when an arbitrary initial
discrete vector field is used to setup the iteration. Here, arbitrary means that u0

h satisfies |u0
h(z)| = 1

for all nodes z ∈ Nh and u0
h(0) = −u0

h(1) = (0, 0, 1) but is arbitrary otherwise. This observation
underlines the advantages of Algorithm E which can compute a good initial value of low energy
to start the Newton iteration. For some randomly defined discrete initial vector fields with values
in the unit sphere at the nodes of the uniform partition of the interval (0, 1) into 25 elements of
diameter hmin = 1/25, the Newton iteration converged and detected the discrete harmonic maps
(up to a residual smaller that 10−6) shown in Figure 4.12. For each of the computed stationary
points we also displayed the corresponding energy

E
(
uh

)
=

1

2

∫

(0,1)

∣∣u′h
∣∣2 dsh.

In all of the displayed cases we find that irregular solutions with practical discontinuities correspond
to energies larger than 2/hmin = 50. The experiments thus underline the necessity and importance
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Figure 4.12: Various (almost) discrete harmonic maps into S2 as approxima-
tions of (non-unique) solutions to −u′′ = |u′|2u and |u| = 1 in (0, 1) sub-
ject to u(0) = −u(1) = (0, 0, 1). The approximations were computed with a
classical Newton scheme (i.e., Algorithm E with Nglobal = 0) and randomly
defined initial data u0

h satisfying |u0
h(j/25)| = 1 for j = 0, 1, 2, ..., 25 and

u0
h(0) = −u0

h(1) = (0, 0, 1).
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of approximation schemes that decrease the energy in the iteration. In these one-dimensional
experiments the condition numbers of the system matrices tended to deteriorate as predicted in
Example 3.5.2 in Section 3.5. Nevertheless, MATLAB provided solutions of the linear systems of
equations and thereby approximations with residuals smaller than 10−6 for approximately two out
of three randomly defined initial fields u0

h.

4.3 Geometric changes and occurrence of singularities in the har-

monic map heat flow into spheres

As is well understood theoretically, the L2 flow of harmonic maps into spheres may develop sin-
gularities resulting in a loss of control over

∥∥∇Mu(t, ·)
∥∥

L∞(M)
. In particular, [CDY92] constructs

smooth initial data u0 : M → S2 for M = B1(0) ⊂ R
2 such that there exists a weak solution of the

time-dependent problem

∂tu− ∆Mu = |∇Mu|2u, |u(t, ·)| = 1, u(t, ·)|∂M = u0|∂M , u(0, ·) = u0 (3.6)

which satisfies limt→t1

∥∥∇Mu(t, ·)
∥∥

L∞(M)
= ∞ for some t1 > 0. We notice that a weak solution is

unique as long as
∥∥∇Mu(t, ·)

∥∥
L∞(M)

<∞. Related to this is the fact that the L2 flow of harmonic

maps does in general not define a topological homotopy in the sense that u0 and u∞ = limt→∞ u(t, ·)
are topologically equivalent, cf. [EW76]. Here, u∞ is a weak accumulation point of the sequence(
u(t, ·)

)
t≥0

which is bounded in W 1,2(M ; R3) as t → ∞. This problem cannot be overcome by

imposing additional constraints since the set of vector fields u ∈W 1,2(M ; R3) that are topologically
equivalent to u0 is in general not weakly closed in W 1,2(M ; R3), cf. [Lem78]. A positive partial
result by [ES64] states that u and u∞ are indeed topologically equivalent if the target manifold
N has non-positive sectional curvature and this condition is sharp, see [EW76]. In this section
we study the occurrence of finite-time blow-up numerically in order to verify the reliability of our
approximation schemes defined by Algorithms A and E. The experiments show that our methods
can deal with singularities and topological changes appropriately and are capable of predicting
singularities correctly.

4.3.1 Discrete finite-time blow-up in the L
2 flow of harmonic maps

In our first set of experiments we employ the initial data of [CDY92] and set M := (−1, 1)2, N = S2,
ΓD := ∂M , and

u0(x) :=
1

|x|
(
x1 sinh(|x|), x2 sinh(|x|), |x| cos h(|x|)

)
, u0(0) :=

(
0, 0, 1

)

for x = (x1, x2) ∈ M and with h : [0,∞) → R defined by h(r) := br2 if r ≤ 1 and h(r) := b
otherwise. It is proved in [CDY92] that for M = B1(0), a singular solution of the L2 flow occurs if
and only if b ≥ π; below we choose b = 3π/2.

We approximate solutions of the time dependent problem with the following modification of
Algorithm A which approximates the L2 flow rather than the H1 flow of harmonic maps. The
resulting algorithm coincides with Algorithm E for θ = 0. Notice that the main change occurs in
the bilinear form on the left-hand side of the equation in Step 2.
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Algorithm A’. Input: triangulation Th, time horizon T > 0, time-step size κ > 0.

1. Choose u0
h ∈ S1(Th)n such that u0

h(z) = u0(z) for all z ∈ Nh. Set i := 0.

2. Compute wi
h ∈ S1

D(Th)n such that wi
h(z) ∈ Tui

h(z)N for all z ∈ Nh and

(
wi

h; vh

)
h

= −
(
∇Mh

ui
h;∇Mh

vh

)

for all vh ∈ S1
D(Th)n such that vh(z) ∈ Tui

h(z)N for all z ∈ Nh.

3. Define ui+1
h ∈ S1(Th)n by setting

ui+1
h (z) := πN

(
ui

h(z) + κwi
h(z)

)

for all z ∈ Nh.

4. Stop if ti+1 := κ(i+ 1) ≥ T .

5. Set i := i+ 1 and go to 2.

Output:
(
ui

h

)
i=0,1,2,...,JT+1

.

Here, κ is a time-step size and ui
h approximates an exact solution at time ti := iκ. The algorithm

terminates when the time-horizon T > 0 is reached. The discrete inner product (·; ·)h on the left-
hand side of Algorithm A’ can be replaced by the standard inner product in L2(Mh), resulting in a
slightly more expensive and less stable scheme, see [BBFP07] for a discussion. Following the lines
of the proof of Lemma 3.2.4 one can show that for J = 0, 1, 2, ..., JT

(
1 − C ′′κh

−1−d/2
min

)
κ

J∑

i=0

∥∥dtu
i+1
h

∥∥2

h
+

1

2

∥∥∇Mh
uJ+1

h

∥∥2 ≤ 1

2

∥∥∇Mh
u0

h

∥∥2
,

where dtu
i+1
h := κ−1

(
ui+1

h − ui
h

)
≈ wi

h for i = 1, 2, ..., J + 1. Based on this estimate, weak sub-
convergence of appropriate interpolations of iterates to a weak solution of the L2 flow of harmonic

maps into spheres, i.e., for N = S2, can be verified as in [BBFP07] provided that κ = o
(
h

1+d/2
min

)
.

We ran Algorithm A’ for uniform, right-angled triangulations TJ of M into 2·22J triangles which
are squares halved along the direction (1, 1) and with edge-length hmin = 2 · 2−J for J = 5, 6, 7.
The discrete initial data u0

h was defined by nodal interpolation of u0 and we employed κ = h2
min/10.

Figure 4.13 displays the W 1,∞ semi-norm and the energy

E
(
uh(t, ·)

)
=

1

2

∥∥∇Mh
uh(t, ·)

∥∥2

of numerical approximations as functions of t ∈ (0, 0.35) for different discretization parameters.
Here, the function uh : (0, T ) ×M → S2 is the function which is piecewise constant on (0, T ) and
satisfies

uh(t, ·) = ui
h

for t ∈ κ[i, i + 1). For all three employed triangulations TJ , J = 5, 6, 7, we observe in Figure 4.13
that the energy is monotonically decreasing, indicating good stability properties of our method,
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Figure 4.13: W 1,∞ semi-norm and energy as functions of t ∈ (0, 0.35) of numer-
ical approximations of the harmonic map heat flow problem into the sphere for
different discretization parameters for initial data leading to blow-up.

and assumes a constant, positive value when an equilibrium state is attained. Owing to the non-
constant Dirichlet boundary conditions employed in this example, the energy does not decrease to
zero. While the energy is decaying, the maximum norms of the gradients of the approximations
become extremely large and attain different maximal values for different triangulations indicating
the occurrence of so-called finite-time blow-up in this example. In fact, for each fixed triangulation,
the function t 7→

∥∥∇Mh
uh(t, ·)

∥∥
L∞(M)

assumes the maximum possible value among functions in

vh ∈ S1(TJ)3 satisfying |vh(z)| = 1 for all z ∈ Nh, namely

max
vh∈S

1(TJ )3,
|vh(z)|=1 f.a. z∈Nh

∥∥∇Mh
vh

∥∥
L∞(M)

= 2
√

2h−1
min = 2

√
2 2J−1,

which can be verified by defining for a right-angled triangle K ∈ Th with vertices z0, z1, z2 the
function vh|K by vh(z0) := (−1, 0, 0) and vh(z1) = vh(z2) := (1, 0, 0). After attainment of the maxi-
mum W 1,∞ semi-norm, it drops to an h-independent value corresponding to a smooth equilibrium
defined by the boundary data.

The displayed vector fields in Figures 4.15 and 4.16 illustrate the evolution of the discrete
solution on a criss-cross triangulation T cc

3 with 145 free nodes in this example. The choice of such a
triangulation is only for presentational convenience owing to its higher symmetry. We observe that
for t ≈ 0.39 the vector at the origin points in a different direction than the surrounding vectors
resulting in large, maximal gradients. Then, at t ≈ 0.4 the vector at the origin changes its direction
and for t ≥ 0.43 a smooth vector field with moderate energy and W 1,∞ semi-norm has developed.
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Figure 4.14: W 1,∞ semi-norm and energy of numerical approximations of the
harmonic map heat flow problem into the sphere for different discretization
parameters and subject to Neumann boundary conditions (upper plot). Same
quantities for the H1 flow of harmonic maps subject to Dirichlet conditions
(lower plot). In both cases no large (maximal) gradients occur.
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Figure 4.15: First two components of the vector field uh(t, ·) for t = 0, 0.1078,
0.2016, 0.3891, 0.4047, 0.4359 (from left to right and top to bottom). Vectors
are scaled by a factor 1/7 for graphical purposes. At t ≈ 0.40 the vector at the
origin changes its direction leading to large gradients.
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Figure 4.16: Zoom of the vector field uh(t, ·) to a neighborhood of 0 for t = 0,
0.1078, 0.2016, 0.3891, 0.4047, 0.4359 (from left to right and top to bottom).
A maximal W 1,∞ norm is attained, when the vector at the origin points into
another direction than the surrounding ones. Vectors are scaled by a factor 1/5
for graphical purposes.
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The evolution is significantly different when homogeneous Neumann type boundary conditions
are employed to define the time-dependent problem. The upper plot in Figure 4.14 shows the
evolution of the energy and of the W 1,∞ semi-norm. While for h = 2−4 the results are qualitatively
similar to the ones obtained with Dirichlet type boundary conditions, the W 1,∞ semi-norms seem
to be uniformly bounded by the moderate value 18 for h = 2−5 and h = 2−6. Thus, we may
conclude that finite-time blow-up only occurs for Dirichlet type boundary conditions for the initial
data considered here. A rigorous proof for this statement is however missing and beyond the scope
of this work. We remark that for Neumann type boundary conditions and a sufficiently large T > 0,
the evolution assumes a constant state in this example.

We also applied the H1 gradient flow approximation defined by the original Algorithm A in this
example. For the choice κ = hmin/10, the results obtained for the triangulations TJ , J = 4, 5, 6,
and with Dirichlet boundary conditions are displayed in the lower plot of Figure 4.14. We observe
that no large gradients occur. It is interesting to remark that the (semi-) discretized H1 gradient
flow preserves the topological degree of the initial u0 owing to a result in [Mor04]. This result
asserts that if M = B1(0) ⊂ R

2 then the topological degree

deg
u+ tφ

|u+ tφ|
is independent of t ∈ R for u, φ ∈ W 1,2(M ; R3) satisfying φ|∂M = 0 and |u| = 1, u · φ = 0 almost
everywhere in M .
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Figure 4.17: W 1,∞ semi-norm and energy as functions of t ∈ (0, 0.75) of nu-
merical approximations obtained with Algorithm C for θ = 1/2 and θ = 1 with
the blow-up initial data.

Finally, we ran the unconditionally stable θ-scheme of Algorithm C with θ = 1/2 and θ = 1
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for the blow-up initial data u0. The results obtained for the regular triangulations TJ , J = 4, 5, 6
and time-step size κ = h/4 are displayed in Figure 4.17. We observe that the discrete finite-time
blow-up occurs at a later time than in the approximation with the explicit scheme of Algorithm A’
corresponding to θ = 0. Nevertheless for small mesh-sizes the blow-up time seems to approach the
same value as the results in Figure 4.13 do. For θ = 1 this phenomenon is most likely due to the
dissipative character and strong damping property of the implicit scheme.
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Figure 4.18: Triangulations of the unit sphere into 192, 768, and 3072 triangles.
These triangulations are not weakly acute.

4.3.2 Discrete collapse of geometries in the L
2 flow of harmonic maps

To illustrate problems related to topological changes and occurrence of singularities in the L2 flow
of harmonic maps we choose M = N = S2 and let u0 : S2 → S2 be a perturbation of the identity
on S2. The identity map on S2 is a harmonic map into S2 as can be deduced from the identity

−∆Mx = H(x)µ(x)

for x ∈ M which holds on a large class of smooth surfaces with H denoting the (scalar) mean
curvature and µ a unit normal vector field on M , see [DDE05]. With the triangulation Th of S2

into 192 triangles shown in Figure 4.18, κ = h2
min/10, ε = 10−10, and δ = h4 we ran Algorithm B

for the initial data displayed in the left, upper plot of Figure 4.19. Snapshots of the evolution are
displayed in the remaining plots of Figure 4.19, where for various times t we plotted the deformed
triangulations

T t
h :=

{
uh(t,K) : K ∈ Th

}
.

We see that within a very small time interval, the mapping uh(t, ·) becomes smooth and seems
to approach the nodal interpolant of the identity map on S2. However, after a very long period
in time with almost no spatial changes, the discrete sphere starts to collapse and vanishes at
t ≈ 47. It is not clear to the author whether this collapse is a numerical artifact or due to the
strength of the perturbation. For smaller time-steps a similar behaviour can be observed but for
more moderate perturbations the collapse does not seem to occur. In the experiment at hand,
we found that the discrete time derivative satisfied ‖dtuh(t, ·)‖ ≥ 10−4 for 0 ≤ t ≤ 46.484. As
soon as the sphere collapses to a single point we have that uh(t, ·) is constant and stationary so
that ‖dtuh(t, ·)‖ = 0 for sufficiently large times. In Figure 4.21 we displayed the W 1,∞ semi-norm,
the energy, and the L2 norm of the discrete time derivative in this example and observe the late
finite-time blow-up with accompanying drop of the energy. We remark that similar observations
can be made for the H1 flow of harmonic maps if the perturbation of the identity is strong enough
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for the employed triangulation. We ran the same experiment with the finer triangulation of S2

consisting of 3072 triangles and with a perturbation of the nodal interpolant of the identity of
similar strength. Snapshots of the evolution determined by Algorithm B are shown in Figure 4.20.
Here, the sphere does not collapse before t = 50 and appears to be a stable configuration. We may
thus indeed conclude that the collapse occurring on the coarser discretization is an effect resulting
from the discretization and the corresponding underestimation of the exact energy. We also tried
Algorithm C in this experiment and obtained similar results. Since the employed triangulations
are not weakly acute those results are however not supported by the theory.

4.4 Approximation of harmonic maps into a torus

To test the performance of Algorithm A for other target manifolds than S2 we use Algorithm A to
approximate a function u : T1,1/4 → T1,1/4 with low Dirichlet energy. For a uniform triangulation
of the torus T1,1/4 into 1024 triangles of diameter h = 0.006 we defined an initial deformation
u0

h ∈ S1(Th)3 satisfying u0
h(z) ∈ T1,1/4 for all z ∈ Nh by perturbing the identity on T1,1/4, i.e., we

set

u0
h(z) := πT1,1/4

(
z + ξh(z)/3

)

for all z ∈ Nh and random vectors ξh(z) with |ξh(z)| ≤ 1. The damping parameter κ was chosen
as κ = h/2. As in Figure 4.19, we displayed in Figure 4.22 the deformed triangulations

T i
h :=

{
ui

h(K) : K ∈ Th

}

after various numbers of iterations. We see that the flow selects the an approximation of the identity
map on T1,1/4 yielding a smooth regularization of the rough initial data. We stress that in this
setting we could not observe a collapse or change of the geometry also for different discretization
parameters.

4.5 Practical stability and performance of Algorithms A’ and B

To obtain a better understanding of the practical reliability and performance of Algorithms A’
and B for the approximation of the L2 flow of harmonic maps into spheres, we employed

M = N = S2 and u0
h(x) := Ih

[
πS2

(
x+ ξh(x)

)]

for x ∈Mh and a random vector-field ξ whose components satisfy
∥∥ξi

∥∥
L∞(Mh)

≤ 5/2. The interpo-

lation operator Ih is defined through three uniform triangulations of S2 into 3072, 12288, and 49152
triangles corresponding to maximal mesh-sizes h = 2−J for J = 4, 5, 6, respectively, see Figure 4.18.
We approximated the L2 flow in the time-interval t ∈ (0, 1/4) with Algorithms A’ and B as well
as the Algorithm A” which is obtained by replacing the discrete inner product (·, ·)h in Step 2 of
Algorithm A’ by the standard L2 inner product on Mh. For the fixed-point iteration defining the
inner loop of Algorithm B and specified in Algorithm Binner we chose the termination criterion
δ = h2.

Table 4.2 displays the total CPU times for the three different algorithms and the three different
triangulations. The table also indicates stability of the iteration through “√” and occurrence of an
instability by the symbol “×”. The results shown in the table imply that the choice κ = h2/2 is not
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Figure 4.19: Deformed triangulations T t
h of Th under uh(t, ·) for t = 0, 0.016,

0.031, 0.078, 0.156, 30.078, 35.547, 37.109, 40.234, 41.016, 42.969, 45.313,
45.703, 46.094, 46.484 (from left to right and top to bottom). Here, uh is
defined by the L2 flow approximation with the implicit scheme of Algorithm B.
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Figure 4.20: Deformed triangulations T t
h of Th under uh(t, ·) for a triangulation

Th of S2 into 3072 triangles for t = 0, 0.016, 0.004, 0.051, 0.070, 50.0 (from left
to right and top to bottom) obtained with Algorithm B.
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Figure 4.21: W 1,∞ semi-norm, energy, and norm of the discrete time derivative
for the collapse of the sphere displayed in the sequence of plots in Figure 4.19.
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Figure 4.22: Deformations of the torus T1,1/4 defined through deformed trian-
gulations T i

h of Th under ui
h(·) after 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

110, 120, 130, and 140 iterations with Algorithm A (from left to right and top
to bottom).
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κ = h2/2 h = 2−4 h = 2−5 h = 2−6

Alg. A’ 0.4 min (×) 8.5 min (×) 2.9 h (×)
Alg. A” 4.4 min ( √ ) 2.7 h ( √ ) 134.3 h ( √ )
Alg. B 2.7 min ( √ ) 47.5 min ( √ ) 14.7 h ( √ )

Table 4.2: CPU times and stability of various algorithms for the approximation
of the harmonic map heat flow into the unit sphere. The initial u0 was a
perturbation of the identity on S2 in each example.

sufficient to guarantee stability of Algorithm A”. The results and numbers also show that reduced
integration has a stabilizing effect, cf. Remark 1.4.11, and significantly reduces the total CPU times.
The results for the implicit scheme always indicated stability for κ = h2/2, as predicted by the
theory in Section 3.3. The CPU times for Algorithm B are between the corresponding ones for
Algorithms A’ and A”. We note however, that we could have employed a larger termination criterion
in Algorithm Binner such as δ = o(1), which would have presumably led to significantly smaller
CPU times. In this experiment, the explicit scheme with reduced integration, i.e., Algorithm A’,
performs best but we stress that in contrast to Algorithm B, in each time step a saddle-point
formulation has to be solved (which is done efficiently by MATLAB’s backslash operator) and that
the time-step size κ = h2/2 is not sufficient to guarantee convergence of iterates of Algorithm A’
to a weak solution of the L2 flow of harmonic maps into spheres, see [BBFP07]. Table 4.5 displays
the results for Algorithm A” with κ = h2/10. For this choice of the time-step size, the algorithm
provided stable approximations. Not surprisingly, the CPU times are then about 20 and 100 larger
than those for Algorithms B and A’, respectively (with the larger time-step sizes).

κ = h2/10 h = 2−4 h = 2−5 h = 2−6

Alg. A’ 23.0 min ( √ ) 13.4 h ( √ ) 521.3h ( √ )

Table 4.3: Stable numerical results for Algorithm A’ for smaller time-step sizes.
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Appendix A

Implementations

In this appendix we display short MATLAB implementations of Algorithms A, B, and E as well
as a C-Routine for a realization of the nearest-neighbor projection πN for two-dimensional tori.
The routines can easily be modified to realize Algorithms C and D or to implement πN for other
hypersurfaces given by a level set function. Most of the codes employ the following subroutine
which computes the finite element stiffness and mass matrices on a given triangulated surface.

function [S,M,m,area_K] = surf_fe_matrices(n4e,c4n);

for j = 1 : size(n4e,1)

mu_K(j,:) = cross(c4n(n4e(j,2),:)-c4n(n4e(j,1),:),c4n(n4e(j,3),:)-c4n(n4e(j,2),:));

area_K(j) = norm(mu_K(j,:))/2;

mu_K(j,:) = mu_K(j,:) / norm(mu_K(j,:));

mp_K(j,:) = sum(c4n(n4e(j,:),:))/3;

diam_K(j) = norm(c4n(n4e(j,2),:)-c4n(n4e(j,1),:));

end

s = sparse(size(c4n,1),size(c4n,1)); m = s;

for j = 1 : size(n4e,1)

tmp_tetra = [c4n(n4e(j,:),:);mp_K(j,:)+diam_K(j)*mu_K(j,:)];

grads3_K = [1,1,1,1;tmp_tetra’] \ [0,0,0;eye(3)];

P_K = eye(3) - mu_K(j,:)’ * mu_K(j,:);

for k = 1 : 3

for ell = 1 : 3

s(n4e(j,k),n4e(j,ell)) = s(n4e(j,k),n4e(j,ell)) ...

+ area_K(j) * (P_K * grads3_K(k,:)’)’ * (P_K * grads3_K(ell,:)’);

end

m(n4e(j,k),n4e(j,k)) = m(n4e(j,k),n4e(j,k)) + (1/3) * area_K(j);

end

end

S = sparse(3*size(c4n,1),3*size(c4n,1)); M = S;

S(1:3:end,1:3:end) = s; S(2:3:end,2:3:end) = s; S(3:3:end,3:3:end) = s;

M(1:3:end,1:3:end) = m; M(2:3:end,2:3:end) = m; M(3:3:end,3:3:end) = m;

Figure A.1: MATLAB routine to compute the stiffness matrix and the mass
matrix for reduced integration on a given triangulated surface.
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function Algorithm_A % for closed surfaces

eps = 1.0E-3;

r = 1/4; R = 1;

[c4n,n4e] = triang_torus(r,R,4);

Nb = []; Db = [];

[S,M,m,areas] = surf_fe_matrices(n4e,c4n);

h = sqrt(max(areas));

kappa = h;

I1 = reshape(repmat([1:size(c4n,1)]’,1,3)’,3*size(c4n,1),1);

I2 = [1:3*size(c4n,1)];

X_int = sparse(3,3*size(c4n,1));

aver = ones(1,size(c4n,1)) * m;

X_int(1,1:3:end) = aver;

X_int(2,2:3:end) = aver;

X_int(3,3:3:end) = aver;

u = u_0(c4n);

[u,nu] = projection(u,’Torus’,[r,R],eps);

xx = zeros(4*size(c4n,1),1);

norm_corr = inf;

while norm_corr > eps

X_nu = sparse(I1,I2,nu);

X_nu = [X_nu;X_int];

AA = [S,X_nu’;X_nu,sparse(size(X_nu,1),size(X_nu,1))];

bb = [S*u;zeros(size(c4n,1)+3,1)];

xx = AA \ bb;

v = xx(1:3*size(c4n,1));

u = u - kappa * v;

norm_corr = sqrt(v’*S*v);

[u,nu] = projection(u,’Torus’,[r,R],eps);

end

trisurf(n4e,u(1:3:end),u(2:3:end),u(3:3:end),zeros(size(c4n,1),1));

function [u,nu] = projection(u,geom,r,eps)

U = [u(1:3:end),u(2:3:end),u(3:3:end)];

[U,Nu] = projection(U,geom,r,eps);

u = reshape(U’,size(u,1),1);

nu = reshape(Nu’,size(u,1),1);

function val = u_0(X);

pert_fac = .25;

val = zeros(3*size(X,1),1);

for j = 1 : size(X,1)

val(3*j-[2,1,0],1) = X(j,:)’ + pert_fac*(rand(3,1)-.5);

end

Figure A.2: MATLAB implementation of Algorithm A for closed surfaces. The
routine projection realizes the projection onto the employed surface, see Fig-
ure A.5 for an example.
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function Algorithm_B

load surf_triang.dat -mat;

[S,M,m,areas] = surf_fe_matrices(n4e,c4n);

h = sqrt(max(areas));

kappa = h^2/10;

delta = h^4;

eps = 10^-6;

inv_Laplace = -inv(M) * S;

u = u_0(c4n);

norm_dtu = inf;

while norm_dtu > eps

w = u;

diff = inf;

while diff > delta

psi = inv_Laplace * u;

X = skew_sym(n4e,c4n,areas,P1_cross(w,psi));

A = M + (kappa/2) * X;

b = M * u;

w_new = A \ b;

diff = h^(-2) * sqrt((w - w_new)’ * M * (w - w_new));

w = w_new;

end

norm_dtu = (2/kappa) * sqrt((u - w)’ * M * (u - w));

u = 2 * w - u;

end

trisurf(n4e,u(1:3:end),u(2:3:end),u(3:3:end),zeros(size(c4n,1),1));

function X = skew_sym(n4e,c4n,areas,u);

X = sparse(3*size(c4n,1),3*size(c4n,1));

for j = 1 : size(n4e,1)

for k = 1 : 3

X_loc = zeros(3,3);

uu = u(3*n4e(j,k)-[2,1,0]);

for a = 1 : 3

phi_a = zeros(3,1); phi_a(a) = 1;

for b = 1 : 3

phi_b = zeros(3,1); phi_b(b) = 1;

X_loc(a,b) = areas(j)/3 * ...

((uu(2) * phi_a(3) - uu(3) * phi_a(2)) * phi_b(1) ...

+ (uu(3) * phi_a(1) - uu(1) * phi_a(3)) * phi_b(2) ...

+ (uu(1) * phi_a(2) - uu(2) * phi_a(1)) * phi_b(3)) ;

end

end

I = [3*n4e(j,k)-[2,1,0]];

X(I,I) = X(I,I) + X_loc;

end

end

function u = P1_cross(v,w)

u = zeros(size(w));

u(1:3:end) = v(2:3:end).*w(3:3:end) - v(3:3:end).*w(2:3:end);

u(2:3:end) = v(3:3:end).*w(1:3:end) - v(1:3:end).*w(3:3:end);

u(3:3:end) = v(1:3:end).*w(2:3:end) - v(2:3:end).*w(1:3:end);

Figure A.3: MATLAB implementation of Algorithm B for the implicit approx-
imation of the harmonic map heat flow into S2.
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function Algorithm_E % for N = S^2

N_local = 5; N_global = 10;

eps = 1.0E-9;

load triang_surf.dat -mat

[S,M,m,areas] = surf_fe_matrices(n4e,c4n);

tmpDiriNodes = unique(Db);

DiriNodes = [3*tmpDiriNodes-2;3*tmpDiriNodes-1;3*tmpDiriNodes-0;3*size(c4n,1)+tmpDiriNodes];

freeNodes = setdiff(1:4*size(c4n,1),DiriNodes)’;

I1 = reshape(repmat([1:size(c4n,1)]’,1,3)’,3*size(c4n,1),1);

I2 = [1:3*size(c4n,1)];

u = u_0(c4n); lambda = zeros(size(c4n,1),1); xx = zeros(4*size(c4n,1),1);

norm_res = inf;

while norm_res > eps

ctr_global = 0;

while ctr_global < N_global & norm_res > eps

X_u = sparse(I1,I2,u);

AA = [S,-2*X_u’*m;-2*m*X_u,sparse(size(X_u,1),size(X_u,1))];

bb = [S*u;zeros(size(c4n,1),1)];

xx(freeNodes) = AA(freeNodes,freeNodes) \ bb(freeNodes);

v = xx(1:3*size(c4n,1)); lambda = xx(3*size(c4n,1)+1:end);

u = u - v;

norm_u = sqrt(u(1:3:end).^2 + u(2:3:end).^2 + u(3:3:end).^2);

u = u ./reshape(ones(3,1) * norm_u’,3*size(c4n,1),1);

norm_res = comp_norm_res(u,lambda,S,M,m,c4n,freeNodes)

ctr_global = ctr_global + 1;

end

u_old = u;

ctr_local = 0;

while ctr_local < N_local & norm_res > eps

res = zeros(4*size(c4n,1),1);

vec_lambda = reshape(repmat(lambda,1,3)’,3*size(c4n,1),1);

D_lambda = spdiags(vec_lambda,0,3*size(c4n,1),3*size(c4n,1));

F = [u’*S + 2*u’*(D_lambda*M),(norm_u.^2-1)’*m]’;

X_u = sparse(I1,I2,u);

DF = [S + 2*D_lambda*M , 2*X_u’*m ; ...

2*m*X_u , sparse(size(c4n,1),size(c4n,1))];

res(freeNodes) = -DF(freeNodes,freeNodes) \ F(freeNodes);

v = res(1:3*size(c4n,1)); mu = res(3*size(c4n,1)+1:end);

u = u + v; lambda = lambda + mu;

norm_u = sqrt(u(1:3:end).^2 + u(2:3:end).^2 + u(3:3:end).^2);

norm_res = comp_norm_res(u,lambda,S,M,m,c4n,freeNodes)

ctr_local = ctr_local + 1;

end

if norm_res >= eps

u = u_old;

end

end

function norm_F = comp_norm_res(u,lambda,S,M,m,c4n,freeNodes);

vec_lambda = reshape(repmat(lambda,1,3)’,3*size(c4n,1),1);

D_lambda = spdiags(vec_lambda,0,3*size(c4n,1),3*size(c4n,1));

norm_u = sqrt(u(1:3:end).^2 + u(2:3:end).^2 + u(3:3:end).^2);

F = [u’*S + 2*u’*(D_lambda*M) , (norm_u.^2-1)’*m]’;

norm_F = norm(F(freeNodes));

Figure A.4: MATLAB implementation of Algorithm E for N = S2.
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#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include "mex.h"

double Gamma(double p[3], double r[2])

{

return pow(sqrt(pow(p[0],2.0) + pow(p[1],2.0))-r[1],2.0) + pow(p[2],2.0);

}

void dGamma(double val[3], double p[3], double r[2])

{

val[0]= 2.0*( sqrt(pow(p[0],2.0) + pow(p[1],2.0) )-r[1])*p[0]/

sqrt(pow(p[0],2.0) + pow(p[1],2.0));

val[1]= 2.0*( sqrt(pow(p[0],2.0) + pow(p[1],2.0) )-r[1])*p[1]/

sqrt(pow(p[0],2.0) + pow(p[1],2.0));

val[2]= 2.0* p[2];

}

void d2Gamma(double val[3][3], double p[3], double r[2])

{

val[0][0] = 2.0* (1.0 - r[1]/sqrt(pow(p[0],2.0) + pow(p[1],2.0)) *(1.0- p[0]* p[0])/

(pow(p[0],2.0) + pow(p[1],2.0)));

val[0][1] = 2.0* (r[1]/sqrt(pow(p[0],2.0) + pow(p[1],2.0)) *(p[0]* p[1])/

(pow(p[0],2.0) + pow(p[1],2.0)));

val[1][0] = val[0][1];

val[1][1] = 2.0* (1.0 - r[1]/sqrt(pow(p[0],2.0) + pow(p[1],2.0)) *(1.0- p[1]* p[1])/

(pow(p[0],2.0) + pow(p[1],2.0)));

val[0][2] = 0.0; val[1][2] = 0.0;

val[2][0] = 0.0; val[2][1] = 0.0; val[2][2] = 2.0;

}

double f(double p[3],double r[2])

{

return sqrt(Gamma(p,r)) - r[0];

}

void df(double val[3], double p[3], double r[2])

{

double grad[3];

dGamma(grad,p,r);

val[0] = 1.0/(2.0*sqrt(Gamma(p,r)))*grad[0];

val[1] = 1.0/(2.0*sqrt(Gamma(p,r)))*grad[1];

val[2] = 1.0/(2.0*sqrt(Gamma(p,r)))*grad[2];

}

void d2f(double val[3][3], double p[3],double r[2])

{

double grad[3],hesse[3][3];

int m,k;

dGamma(grad,p,r);

d2Gamma(hesse,p,r);

for (m=0;m<3;m++){

for (k=0;k<3;k++){

val[m][k] = -1.0/4.0 * pow(Gamma(p,r),-3.0/2)* grad[m]* grad[k] + hesse[m][k]/

(2.0 * sqrt(Gamma(p,r)));

}

}

}
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void projection(double points[],int nr_points, double r[], double *eps_pi,

double points_new[], double nu[], double res[]){

int ell,n,m,k,i,i1,i2,j;

double lambda, norm;

double d2G[4][4], hesse[3][3];

double dG[4], grad[3], v_new[4], cur_point[3];

for(n =0;n<nr_points;n++){

lambda = 0;

for(k=0;k<3;k++){

cur_point[k] = points[n+ k* nr_points];

dG[k] = 0;

}

d2f(hesse,cur_point,r);

df(grad,cur_point,r);

norm = sqrt(pow(grad[0],2.0) + pow(grad[1],2.0) + pow(grad[2],2.0));

for(k=0;k<3;k++){

nu[n+ k* nr_points] = grad[k]/norm;

}

dG[3] = f(cur_point,r);

res[n] = sqrt(pow(dG[3],2.0));

while(res[n]>eps_pi[0]){

d2f(hesse,cur_point,r);

df(grad,cur_point,r);

for(i1=0;i1<3;i1++){

for(i2=0;i2<3;i2++){

d2G[i1][i2] = lambda*hesse[0][1];

if(i1==i2){

d2G[i1][i2] = d2G[i1][i2] + 2.0;

}

}

}

for(ell=0;ell<3;ell++){

d2G[3][ell] = grad[ell];

d2G[ell][3] = grad[ell];

}

d2G[3][3] = 0.0;

solve_lin_sys(v_new, d2G,dG);

lambda = lambda - v_new[3];

for(m=0;m<3;m++){

cur_point[m] = cur_point[m] - v_new[m];

}

df(grad,cur_point,r);

for(i=0;i<3;i++){

dG[i] = 2*(cur_point[i]-points[n+ i* nr_points])+lambda*grad[i];

}

dG[3] = f(cur_point,r);

res[n] = sqrt(pow(dG[0],2.0)+pow(dG[1],2.0)+pow(dG[2],2.0)+pow(dG[3],2.0));

}

for(k=0;k<3;k++){

points_new[n+ k* nr_points] = cur_point[k];

}

}

}
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void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

double *points, *r, *eps_pi, *dummy;

double *points_new, *res, *D_f, *D2_f, *nu/*, *D_nu*/;

int nr_points,i,j;

if (nrhs!=3)

mexErrMsgTxt("3 input variables required!");

points = mxGetPr(prhs[0]);

r = mxGetPr(prhs[1]);

eps_pi = mxGetPr(prhs[2]);

nr_points = mxGetM(prhs[0]);

if(nlhs<2)

mexErrMsgTxt("At least 2 output variables required!");

plhs[0] = mxCreateDoubleMatrix(nr_points,3,mxREAL);

plhs[1] = mxCreateDoubleMatrix(nr_points,3,mxREAL);

plhs[2] = mxCreateDoubleMatrix(nr_points,1,mxREAL);

if(nlhs>3)

mexErrMsgTxt("At most 3 output variables defined");

points_new = mxGetPr(plhs[0]);

nu = mxGetPr(plhs[1]);

res = mxGetPr(plhs[2]);

projection(points, nr_points,r, eps_pi, points_new, nu, res);

}

Figure A.5: Implementation of a Newton iteration for the approximation of the
nearest-neighbor projection πN for N = Tr1r2 in the programming language C
using the MATLAB to C interface MEX. The routine solve−lin−sys solves a
linear system of equations.
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Appendix B

Frequently used notation

Abbreviated Assumptions

(T) existence of a transfer operator from Mh to M

(O) orientability of N

Real Numbers, Vectors, and Matrices

N non-negative integers

R real numbers

[s, t], (s, t) closed and open interval

R
n n-dimensional Euclidean vector space

R
n×m vector space of n by m matrices

a, A (column) vector and matrix

aT, AT transpose of a vector or matrix

| · | Euclidean length of a vector or Frobenius-norm of a matrix

a · b = aTb scalar product of vectors a and b

a⊗ b = abT dyadic product of vectors a and b

a× b cross product of vectors a, b ∈ R
3

a ⊥ b a is perpendicular to b

In×n n by n identity matrix

SO(n) group of special orthogonal matrices

so(n) n by n skew-symmetric matrices

Λℓ(Rn) space of alternating ℓ-linear forms

∗ Hodge duality operator

∧ wedge product[
x
y

]
,

(
x
y

)
, (x, y) vectors with entries x and y

[
x1 x2

y1 y2

]
,

(
x1 x2

y1 y2

)
matrices with entries x1, x2, y1, y2
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Continuous Submanifolds

M compact, connected, orientable, d-dimensional submanifold in R
m, d =

m−1, either without boundary or M ⊂ R
d×{0} with polyhedral bound-

ary

N compact, parallelizable, k-dimensional Cℓ submanifold in R
n, ℓ ≥ 2, with-

out boundary

µ smooth unit normal on M

ν, νℓ unit normal (possibly discontinuous) on N

AN (p)[·, ·] second fundamental form on N at p

dist(q,N), dN (q) distance and signed distance of q to N

UδN
(N) tubular neighborhood of N

πN orthogonal (or nearest-neighbor) projection onto N defined in UδN
(N)

ΓD ⊆ ∂M possibly empty Dirichlet part of the boundary of M

uD Dirichlet data

TpN tangent space of N at p

XM Euler characteristic of M

νℓ, ei extended unit normals and tangents to a neighborhood of N

ds surface area element on M

Sℓ ℓ-dimensional unit sphere

T
2 = R

2/Z2 2-dimensional torus

Discretized Submanifolds and Transfer Operators

h > 0 parameter h that ranges over a countable set of positive numbers that
accumulate at 0

Mh Lipschitz-continuous, orientable approximation of M

Ph continuous bijection from Mh to M

µh unit normal on Mh (discontinuous, defined almost everywhere)

Th set of d-simplices, triangulation defining Mh

K element in Th

τK , τE unit tangents along ∂K and E

K̂ scaled reference element

FK affine bijection from K̂ to K (parametrization of K)

K̃ image of K under Ph

XK := Ph ◦ FK bijection from K̂ to K̃ (parametrization of K̃)

dsh surface area element on Mh

Q, Qh Gramian determinants on M and Mh defined through FK and XK

ṽ lifting of v : Mh → R onto M , i.e., ṽ = v ◦ P−1
h : M → R

w̌ inverse of lifting, w̌̃= w
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Differential Operators and Function Spaces

∇M tangential gradient on M (column vector for scalar functions and matrix
otherwise); subscript is skipped if M is flat

Dγ component of ∇M

C∞
c (M) smooth, compactly supported functions on M

Lp(M ; Rn) space of p-integrable vector fields on M

W 1,p(M,Rn) weakly differentiable vector fields on M with p-integrable tangential gra-
dient

W 1,p
0 (M), W 1,p

D (M) functions in W 1,p(M) that vanish on ∂M and ΓD

(·; ·) scalar product in L2(M ; Rn)

‖ · ‖ L2 norm on M , induced by (·; ·)
‖ · ‖Lp(M) Lp norm on M

‖ · ‖W 1,p(M) norm in W 1,p(M ; Rn)

Df Jacobian of f

∂t partial derivative with respect to t

Finite Element Spaces

h, hmin maximal and minimal diameter of elements in Th

hK , hE , hz local mesh-sizes

Nh, Eh sets of vertices and edges (also called faces if d = 3) in Th

z, E node (also called vertex) and edge in Th

ϕz nodal basis function (P1 hat function)

ωz, ω̂z patch and enlarged patch of a node

L0(Th) Th-elementwise constant functions on Mh

S1(Th) continuous, Th-elementwise affine functions on Mh

S1
D(Th) functions in S1(Th) vanishing on ΓD
◦
S1(Th) functions in S1(Th) vanishing on ΓD or having zero integral mean

S1,NC(Th) Crouzeix-Raviart non-conforming finite element space on Th

H(Th; Rd+1) space of Th-elementwise constant, discrete harmonic vector fields

Ih nodal interpolation operator on Th

Ah averaging operator Ah : L1(Mh) → S1(Th)

Gh projection onto gradients of functions in S1(Th)

K finite element stiffness matrix defined through the nodal basis of S1(Th)

A(vh) correction factor for discrete product rule

S1
#(Th), S1,NC

# (Th) subspaces of periodic functions

H#(Th; R2) discrete, periodic harmonic fields

Îh nodal interpolant on reference element K̂

∇̂ gradient on reference element K̂
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Differential Operators and Other Quantities on Mh

∇Mh
elementwise tangential gradient on Mh

Dh,γ components of ∇Mh

D2
Mh

second partial derivatives along Mh

(·; ·)h, ‖ · ‖h discrete inner product on Mh and induced norm

βz integral of nodal basis function ϕz

CurlMh
tangential curl operator on Mh, CurlMh

= µh ×∇Mh

∆̃Mh
discrete Laplace operator

κ damping parameter or time-step size

dtu
i+1 backward difference operator, dtu

i+1 :=
(
ui+1 − ui

)
/κ

ui+1/2 average of ui+1 and ui, ui+1/2 :=
(
ui+1 + ui

)
/2

uD,h nodal interpolant of Dirichlet datum uD extended trivially to Mh[
bh

]
jump of Th-elementwise continuous function across edges

∂φ/∂t tangential derivative of φ along an edge or face

Λ1,Λ2,Λ3,Θ1,Θ2 error functionals

Resh residual of an approximate solution

(·; ·), ‖ · ‖ L2 inner product and induced norm on Mh

Frames and Connection Forms

u−1TN pullback bundle, vector fields satisfying v(x) ∈ Tu(x)N(
ei

)
i=1,2,...,k

orthonormal frame for u−1TN (pointwise orthonormal basis of Tu(x)N)

ωij connection form, ωij = ej,T∇Me
i

ϑi coefficients of the projection of ∇Mu onto the span of ei, ϑi = ei,T∇u
u−1

h TN discrete pullback bundle, vector fields vh ∈ S1(Th)n satisfying vh(z) ∈
Tuh(z)N for all z ∈ Nh(

eih
)
i=1,2,...,k

discrete orthonormal frame for u−1
h TN (nodewise basis of Tuh(z)N)

ωij
h , ω

ij
h discrete connection forms

ϑi
h, ϑ

ij
h coefficients for expansion of ∇Mh

uh in
(
eih

)
i=1,2,...,k

Other Notation

c, C,C ′, C ′′ mesh-size independent, generic constants

Hs s-dimensional Hausdorff measure

card cardinality of a set

δx Dirac measure supported at x

O(t), o(t) Landau symbols

supp f support of the function f

diam(A) diameter of the set A

id identity map

B1(0) open ball of radius one centered at the origin
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