
Modeling and Analysis of Non-Diffusive

Structural Phase Transitions in Crystals

Patrick Dondl

December 20, 2002

To my parents

iv

Acknowledgements

I thank Dr. Johannes Zimmer for his outstandingly great supervision and sup-
port in the course of production of this work and for the enormous amount
of enlightening comments, dicussions and corrections. I thank PD Dr. Wal-
ter Schirmacher for his great support and his insightful suggestions. I am very
greatful to Prof. Kaushik Bhattacharya for generous support and encourage-
ment and to the Division of Engineering and Applied Science at California
Institute of Technology for hospitality.

v

Contents

1 Introduction 3
1.1 The Shape Memory Effect . 3
1.2 Models for Shape Memory Alloys 6
1.3 Numerical Computations . 9
1.4 Outline of the Work . 10

2 Derivation of the Equation of Motion 11
2.1 The Continuum Model . 11
2.2 The Energy Function . 12
2.3 The Equation of Motion . 13
2.4 Non-Dimensionalization . 14

3 Existence of a Solution 15
3.1 Introduction . 15
3.2 Semigroups . 16
3.3 The Initial-Boundary Value Problem 17
3.4 Transformation of the PDE . 17
3.5 The Nonlinear Part . 21

4 Zirconia 23
4.1 Introduction . 23
4.2 Reduction to a Two-Dimensional Problem 24
4.3 Derivation of an Energy Function 27
4.4 Discussion . 33

5 Numerics 35
5.1 Introduction . 35
5.2 Variational formulation of the problem 36
5.3 The Discretization . 36
5.4 Introduction of the Finite Element 37
5.5 Boundary Conditions for the Numerical Simulation 40
5.6 Results of the Numerical Computations 40

A Notation 59

1

2 CONTENTS

B Hilbert and Sobolev Spaces 61

C The MATLAB Program “shape” 63

Chapter 1

Introduction

1.1 The Shape Memory Effect

1. Macroscopic Phenomenology
Shape memory alloys are materials that, after they have been plastically de-
formed, return to their original shape when they are heated up above a certain
temperature; they seem to “remember” this shape. Being cooled down again,
the material remains in the original shape. Figure 1.1 illustrates this behavior.
As opposed to this one way effect there also is a two way effect where a later
decrease in thermic energy leads to the deformed state again. More information
on the two way effect which will not be discussed here can be found in [27].

The most commonly known alloys that show the shape memory behavior
are Nickel-Titanium compounds and compounds based on Copper or Nickel,
e.g. Au23Cu30Zn47. Mostly Nickel-Titanium alloys have also found their way
into applications, for they are bio-compatible and not corrosive. These applica-
tions of shape memory alloys often build on the fact that high forces can result
from this behavior. The deformations that can be reverted are comparatively
large, ranging up to 8% length difference. For further applications and material
properties of shape memory alloys see, for example, [40].

2. Stress-Strain Relations
Macroscopically, shape memory alloys can be understood by their highly tem-
perature dependent stress-strain relation. A typical low temperature stress-
strain diagram can be seen in Figure 1.2 (a). After an elastic region (1) below
a certain stress one can see a yield surface as for a plastic material. This is
the horizontal line (2) in the diagram where the strain can increase without in-
creased stress. Other than for a regular plastic material there is another elastic
region (5) when the strain increases even more. For this reason, and the fact
that for a real plastic material the yield would come from dislocations in the
system which one ideally does not have here, this behavior is said to be quasi-
plastic. Another important material property is hysteresis. When the stress

3

4 CHAPTER 1. INTRODUCTION

PSfrag replacements

cooling

deform
ing he

at
in

g

Figure 1.1: Macroscopic illustration of the shape memory effect.

PSfrag replacements

(a)

stress

strain

1

2

3

4

5

(b)

stress
strain

1
2
3
4
5

PSfrag replacements

(a)

stress
strain

1
2
3
4
5

(b)

stress

strain

1

2

34

5

Figure 1.2: Stress-Strain relation at (a) θ < θc and (b) θ > θc

1.1. THE SHAPE MEMORY EFFECT 5

is reduced to zero again, a deformation remains and one obtains a hysteresis
loop. Under pressure this deformation can, after another elastic region (3), be
returned to the original shape (4). The properties change dramatically if the
temperature is increased above a certain critical value θc. A high temperature
diagram is shown in Figure 1.2 (b). One can still see the elastic region (1), the
yielding (2) and the second elastic region (5), but now complete unloading of
the body leads back to zero strain. This behavior is called pseudoelastic. It is
similar to an elastic material because zero stress always leads to zero strain, but
in the course of loading and unloading one goes through a hysteresis loop via
(3) and (4) which does not exist in an elastic material.

Considering these diagrams, the shape memory effect can easily be under-
stood. Starting with an undeformed body below the temperature θc, a load is
applied such that the material undergoes a plasticity like deformation. After
unloading, the body remains strained. Now the temperature is increased above
the transition temperature θc. The material must return to the undeformed
state since, without stress, this is the only stable state.

3. Crystallographic Background
Microscopically, the shape memory effect is a solid-solid phase transition be-
tween phases of different symmetries. In the common case, described above, the
high temperature phase is the phase with the higher symmetry, called austen-
ite. At lower temperature phases with lower symmetry, known as martensites,
become stable. In the load-free situation, due to symmetry properties, there
is always more than one stable martensitic phase. These martensite variants
relate to each other by the symmetry operations of the high symmetry phase,
see, for example [7], Section 4.3.

To illustrate the underlying processes one can for example consider a cubic-
tetragonal phase transition as it is found in Indium-Thallium alloys. This phase
transition has been examined in [4]. Figure 1.3 describes the crystallographic
process. Here, the austenitic phase is cubic, and there are three tetragonal
martensitic variants. In two space dimensions, there are only two variants. In
Figure 1.3 (a), only these two martensitic variants are stable. One of them, vari-
ant 1, is stretched along the x-axis and compressed along the y-axis, compared
to the austenitic phase. For variant 2, the situation is exactly reversed in the
sense that one has a compression along the x-axis and the lattice is stretched
along the y-axis. In the unstrained reference configuration, both variants occupy
an equal volume fraction. They are typically arranged in layers, this behavior
is known as twinning. Now, by applying stress, as in Figure 1.3 (b), one can
transform the variant that is less compatible with the stress to the one that
is aligned with the applied stress. This, due to the hysteresis, macroscopically
leads to the yielding in the plastic strain region. In our example we apply a
pulling stress along the y-axis. This leads to a favoring of variant 2 and the ma-
terial is deformed. After unloading, the body remains, due to its hysteresis, in
this macroscopically deformed state. Then, in Figure 1.3 (c), the temperature is
increased above the critical temperature θc. The high symmetry (cubic) austen-
ite phase is the stable phase and the body macroscopically returns to the shape

6 CHAPTER 1. INTRODUCTION

PSfrag replacements

(a)

(b)
(c)

force
force

PSfrag replacements

(a)

(b)

(c) force

force

PSfrag replacements

(a)
(b)

(c)
force
force

Figure 1.3: Microscopic illustration of the shape memory effect.

where the two martensitic phases were of equal volume fraction. After cooling
the specimen down below the critical temperature, the twinning recurses with
equal mixing of the two variants by the forming of phase boundaries between
the variants and the process can start over again from Figure 1.3 (a).

1.2 Models for Shape Memory Alloys

A natural distinction can be made between macro-, meso- and micro models for
shape memory alloys. In [45] one can find a survey on models for shape memory
alloys that is structured in such a way.

Macro models are based on the principles of thermodynamics. The vari-
ables that are sought after are the temperature and the volume fraction of the
austenite and martensite phases. In particular, these include the models by
Achenbach and Müller [37], [2], [1] which were further developed by Müller and
Seelecke [38]. These models are mainly used to compute macroscopic effects of
the phase transition, i.e., shape changes of specimen. The macro model has also
been extended to a two- or three-dimensional space. A mathematical analysis
does not exist for either of them.

Models to study measure-valued solutions resolve the problem on an inter-
mediate meso-scale. The problems that arise from using a nonconvex energy
functional are treated by giving solutions as a probability (Young-) measure
describing infinitely fine microstructure. See, for example [29] and [39].

1.2. MODELS FOR SHAPE MEMORY ALLOYS 7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

–1.5 –1 –0.5 0.5 1 1.5

x

Figure 1.4: Double well potential in one Dimension, x-axis is strain.

A class of macroscopic models, so-called Frémond models use an energy func-
tion for each phase. These energies are added according to the volume fractions
which gives the total energy. The result is a coupled system of differential equa-
tions for the temperature, displacement and the volume fractions. Existence
and uniqueness have been studied in [17] for one space dimension, and in [16]
for a higher dimensional space.

A different approach using Landau- and Landau-Ginzburg theory is to create
a multi-well free energy, depending on an order parameter of the phase tran-
sition. In shape memory alloys this order parameter can be taken to be the
strain. A one-dimensional illustration of such an energy can be found in Fig-
ure 1.4. Additionally, the energy of the system can have a higher order term to
represent a surface energy. An early reference for these models is Falk [22]. The
equations of motion describing dynamics of such a system then can be found
as the Euler-Lagrange equations for this potential and a kinetic energy. For
a displacement u and the temperature θ, a Landau-Ginzburg potential Φ can
have the form

Φ(ux, uxx, θ) := Φ0(θ) + αθΦ1(ux) + Φ2(ux) +
γ

2
u2

xx,

and σ is defined as

σ(ux, θ) :=
∂Φ(ux, uxx, θ)

∂ux

.

The resulting equations describing the dynamics of the system are

ρutt = (σ(ux, θ))x − γuxxxx + f,

−θΦ′′
0 (θ)θt = κθxx + θσθ(ux)uxt + g.

8 CHAPTER 1. INTRODUCTION

with material constants α, ρ, γ and κ. For this one dimensional problem,
adding suitable initial and boundary conditions, existence and uniqueness have
been shown in [49].

The same Landau strain energy functionals can be used in a theory without
the Ginzburg surface energy term γ

2 u2
xx but with viscosity added to the equation

of motion. Using the material parameter β for the viscosity such a system of
equations has the form

ρutt = (σ(ux, θ) + βuxt)x + f

−θΦ′′
0(θ)θt = κθxx + θσθ(ux)uxt + βu2

xt + g.

Existence and uniqueness for this system have been studied, for example, in [14],
[19] and [28]. Similar equations for a wider range of systems—not only shape
memory alloys—have been studied in [53]. In [43], one can find results on the
asymptotic behavior of a one dimensional system. It is also possible to add
the Ginzburg surface energy term γ

2 u2
xx to the model again. For such a system

existence and uniqueness have been proven in [26]. In [13], the asymptotics for
γ → 0 are examined. All these models consider only one space dimension.

Fewer results exist for the two- or three-dimensional case of these systems.
First of all, due to symmetry constraints, the creation of a two- or three-
dimensional multiwell Landau potential becomes a non trivial task, especially
if a triple point is considered (see [52], [21]). A solution of this problem, based
on a theory by Zimmer (see [56], [55]) is presented in Chapter 4.

In [41], a three dimensional generalization of the Falk model is presented by
Paus. Local existence and uniqueness are proven for the system

utt = Div(σ(∇u, θ)) − γ42u + f,

−θΦ′′
0(θ)θt = κ4θ + θσθ(∇u) · ∇ut + g,

an energy of the form

Φ(∇u,4u, θ) := Φ0(θ) + αθΦ1(∇u) + Φ2(∇u)+
γ

2
|4u|2,

and homogeneous boundary conditions for u and 4u and general Dirichlet
boundary conditions for θ on a bounded spatial region Ω and initial data for u,
ut and θ.

Paw low and Żochowski prove existence and uniqueness for a two- and three-
dimensional system with viscosity and surface energy in [42] using a parabolic
decomposition of the differential equations. This method makes an added vis-
cosity necessary, it does not work for a system without dissipation.

A two or three dimensional system without the Ginzburg surface energy term
but with viscosity is examined by Zimmer in [56] where existence of a solution
is proved.

In this work we present a generalization of the work by Spies (see [48]) to
two or three space dimensions. As there, the proof is built on a more general
work by Chen and Triggiani presented in [12]. It was possible to obtain a global

1.3. NUMERICAL COMPUTATIONS 9

existence and uniqueness result for systems both with and without viscosity.
The system examined here is assumed to be isothermal, even if a time depen-
dent temperature field could easily be added. As in [48] the linear part of the
equations would decouple and the proof would not change substantially.

1.3 Numerical Computations

One dimensional numerical examinations of the systems of differential equations
for Landau and Landau-Ginzburg models are presented in [11] and [3].

In the field of two- or three-dimensional simulations of elastic bodies with
microstructures one has to distinguish anti-plane shear models and “true” two-
or three-dimensional computations. Anti-plane shear simulations consider a
displacement u: Ω → R, where Ω ⊂ R

2. The displacement is assumed to be
orthogonal to the plane in which Ω lies. A simulation using this model showing
formation of microstructure can be found in [51]. There, a finite difference
scheme is used to compute the dynamics of a system with viscosity but without
surface energy.

Of course, true two- or three-dimensional simulations regarding a displace-
ment field u: Ω → R

n with Ω ⊂ R
n and n = 2, 3 are computationally much

more expensive. A finite difference scheme with viscosity and capillarity is im-
plemented in [44]. They use a polynomial three well energy for a system in two
space dimensions. The time development of the formed microstructure is also
evaluated.

A more common approach for computations in elasticity is the use of finite
elements. In [32], this method is used to study a fully three-dimensional system
with the Erickson-James energy density (see [20]). There, viscosity is used to
dissipate energy from the system, but no surface energy is considered. This
is changed in the later work [31]. There, the regularity of the finite elements
used is increased—this is necessary because the surface energy term has higher
derivatives—but they are still not fully C1, the displacement field is not ev-
erywhere continuously differentiable. This means that the finite elements are
nonconforming and convergence is not necessarily guaranteed. In [30] the same
approach is applied, but a temperature field is introduced and the elastic energy
is made temperature dependent.

In this work, a two dimensional finite element approach is used. As opposed
to the referenced finite element simulations a fully conformal C1 element has
been implemented. This allows to conduct computations without a priori as-
sumptions on the alignment of phase boundaries where the surface energy then
has to be treated separately as in [5]. Great care was taken to make the sim-
ulation code as easily understandable as possible using the WEB documentation
system (see [33]). The program is also very flexible and can be used for a wide
variety of dynamic systems by making it very convenient to plug in different
elastic energies. This shows in the different types of simulations carried out, in-
cluding a traveling phase boundary obstructed by a non-transforming element,
the relaxation of a triple point material and the examination of the dependence

10 CHAPTER 1. INTRODUCTION

of the length scale of microstructure on the surface energy and specimen size.

1.4 Outline of the Work

First, in Chapter 2, a potential and kinetic energy is presented for the elas-
tic system and the equation of motion is derived from that. Also, a non-
dimensionalization of the equation of motion is carried out there. Then, for the
initial-boundaryvalue problem belonging to this differential equation, existence
and uniqueness of a solution are proved in Chapter 3. For a special material
with a triple point, namely zirconia (ZrO2), an energy functional is constructed
in Chapter 4. The numerical part of this work is presented in Chapter 5. Some
remarks on notation can be found in Appendix A. In Appendix B there is an
explanation concerning the function spaces used in this work. The program
code together with its documentation is presented in Appendix C.

Chapter 2

Derivation of the Equation

of Motion

2.1 The Continuum Model

We will be concerned with the dynamics in crystals, therefore it is natural to
start with a lattice model. Given a single point o, an n-dimensional lattice
(n = 2, 3) can be generated by translation with a set of n vectors {ei}1≤i≤n in
R

n. The lattice then consists of the points

{
x

∣∣∣∣∣x = o +
∑

i

νiei, with νi ∈ N

}
.

One can now turn from the lattice description of the crystal to a continuum
model. To study the dynamics of a body in R

n(n = 2, 3), we first choose a
reference configuration Ω ⊂ R

n. The position of the material body at time t is
described by the function

y: Ω × R → R
n

y: (x, t) 7→ y(x, t).

To avoid physically impossible situations like self-penetration it is necessary for
y to be injective and orientation conserving. Furthermore, if one assumes y
to be sufficiently smooth, then it is possible to compute the spatial derivative
F = ∇y, Fij =

∂yj

∂xi
. The tensor F is called the deformation gradient. The

orientation conservation then transforms into the condition det(F) > 0. Assume
that underlying each point x ∈ Ω there is a lattice with lattice vectors {ei(x)}.
The Cauchy-Born assumption states that locally the lattice vectors transform
according to the deformation gradient F such that

ei(x) 7→ F (x)ei(x).

11

12 CHAPTER 2. DERIVATION OF THE EQUATION OF MOTION

In the further calculations, it will be more convenient to use the displacement

u(x) := y(x) − x.

It is also necessary to introduce the variables ut(x, t) (the velocity) and utt(x, t)
(the acceleration).

2.2 The Energy Function

We will now turn to the task of constructing a kinetic and potential energy
depending on u whose Euler-Lagrange equations will describe the dynamics of
our elastic system.

Kinetic Energy: The kinetic energy term obviously has to be the integral

Ekin =

∫

Ω

ρ(x)

2
|ut(x, t)|2dV, (2.1)

with ρ(x) being the mass density of the specimen.

Strain Energy: The deformation gradient F (x) at a certain point x ∈ Ω lo-
cally describes the strain of the specimen, therefore the lattice parameters.
For hyperelastic materials the strain energy density locally only depends
on the value of F . Therefore the strain energy term for the specimen has
to be of the form

Estrain =

∫

Ω

W (∇u(x, t))dV =

∫

Ω

W (F (u(x, t))dV, (2.2)

where W (F) is the strain energy. Now one can also define the stress tensor
σ,

σ(F) :=
∂W (F)

∂F
(2.3)

or, in components, σij(F) =
∂W (F)

∂Fij

.

For the description of phase transformations this energy must have mul-
tiple minima. We will take a closer look at the properties of this function
in Chapter 4.

Surface Energy: Up to this point the energy would provoke the formation
of infinitely fine microstructure, because, considering a differentiable de-
formation u, in general the infimum of the energy is not attained—not
even if one considers weak differentiability (see Appendix B). This leads
to the lack of an inherent length scale in the solutions. The use of Young
measure solutions (see [29], [39]) would be necessary. To avoid this, one

2.3. THE EQUATION OF MOTION 13

must penalize the creation of phase boundaries, that is penalize the spatial
change in ∇u. A commonly used surface energy term

Esurface =

∫

Ω

γ

2
|4u(x, t)|2dV (2.4)

will provide this property.

2.3 The Equation of Motion

Now one can write down the Lagrange function for this system, which is

L(x, t) = Ekin − Epot

=:

∫

Ω

L(x, t)dV

=

∫

Ω

ρ(x)

2
|ut(x, t)|2 − W (∇u(x, t)) − γ

2
|4u(x, t)|2dV

The Lagrange density L in this function leads to the equation of motion (see [23],
the Div operator used in the third line is explained in Appendix A)

0 =
d

dt
Lut

+
∑

i

d

dxi

Luxi
−
∑

i,j

d2

dxixj

Luxixj

⇔ 0 = ρ(x)utt −
∑

i

d

dxi

∂W (F)

∂uxi

+ γ
∑

i

d

dx2
i

uxixi

⇔ 0 = ρ(x)utt(x, t) − Div(σ(F (x))) + γ42u(x, t).

Phenomenologically, another term can be added in order to get dissipation is a
viscosity . Obviously, this can not easily be written in a potential form, therefore
it is necessary to introduce this term directly in the equation of motion. The
viscosity that will be used here is of the form

β4ut(x, t).

The term does not really describe any physical process. Instead it is an artifi-
cial dissipative term in the equation that nevertheless is widely used. Another
disadvantage of this term is that it is not frame invariant.

It is also possible to add a body force f(x, t) to the equation of motion.
Therefore, the entire dynamics of the system we want to examine is governed
by the equation

ρ(x)utt(x, t) = Divσ(F (x)) − γ42u(x, t) + β4ut(x, t) + f(x, t).

As usual the reference configuration Ω will be taken to be an unstrained austen-
ite material. Therefore it is a reasonable assumption that the mass density is
homogeneous throughout the body,

ρ(x) = ρ = const.

14 CHAPTER 2. DERIVATION OF THE EQUATION OF MOTION

Even if a different reference configuration was chosen, the mass density is not
essential for the dynamics of the systems investigated here.

2.4 Non-Dimensionalization

It is possible to choose a scale for the units kilogram, meter and second in the
differential equation. A suitable normalization of these units will give us the
opportunity to set most of the coefficients in the differential equation equal to
1. Consider the transformation

ρ 7→ ρ̃ := aρ

t 7→ t̃ := bt

x 7→ x̃ := cx.

This leads after a division by a to the transformed equation of motion (differen-
tial operators with tilde denote differentiation with respect to the transformed
coordinates)

ρ

b2
ut̃t̃

(
x̃

c
,
t̃

b

)
= D̃iv

1

a
σ

(
1

c
F

(
x̃

c

))
− γ

ac4
4̃2u

(
x̃

c
,
t̃

b

)

+
β

abc2
4̃ut̃

(
x̃

c
,
t̃

b

)
+

1

a
f

(
x̃

c
,
t̃

b

)
.

So first one can include the factor 1
a

in the strain energy density W , for example,
to normalize the elastic moduli, and also in the additional body force term f .
Then one can obviously choose the parameters b and c such that ρ

b2
= γ

ac4 = 1.

Then, the quantity β
abc2 is fixed and cannot be normalized. From now on, this

transformation is implicitly assumed, and for simplicity, the original notation
without the tilde is used. This leads to the non-dimensionalized equation of
motion

utt(x, t) = Divσ(x, t) −42u(x, t) + β4ut(x, t) + f(x, t)

which will be used from now on.

Chapter 3

Existence of a Solution

3.1 Introduction

We want to prove the existence and uniqueness of a solution for the system de-
rived in Chapter 2 in three steps. First, in Section 3.3, the equation of motion
derived in Section 2.3 is used to formulate the initial-boundary value problem.
In Section 3.4, the partial differential equation is transformed into an ordinary
differential equation on a suitable function space. Some properties of the re-
sulting linear differential operator are shown there. By transforming the partial
differential equation (PDE) into an ordinary differential equation (ODE) one
can deal with it a lot easier—for a regular ODE on a finite dimensional space,
the existence of a solution is known, provided the possible nonlinear part is Lip-
schitz continuous. Our equation, however, is defined on an infinite dimensional
Banach space and one has to invoke some more functional analysis to solve this
problem. To achieve this the notion of semigroups has to be introduced.

The results presented here generalize those obtained in the first part of [48]
to the higher dimensional case (space dimension n = 2, 3). The proof given here
follows the lines of the one in [48]. However, the method used here has so far
not been used in the higher dimensional case, where few existence results are
known. Additionally, more sophisticated estimates are needed to control the
nonlinearity. The deepest existence result for nonconvex energies and the non
isothermal case with capillarity is the recent one in [42]. There, a parabolic
decomposition of the equation of motion is used. This technique requires an
added viscosity and does therefore not completely cover our case. The system
considered by Paw low and Żochowski in [42] is more complex than our model
and they include a temperature field. It would be worthwhile to investigate
whether our methods apply to their system. However, the main assumption
in our theorem is stronger than that in [42], as we need quadratic growth rate
for the energy functional W in the region of large strains. From the physical
point of view, such an assumption is not restrictive, because—with physically
reasonable initial conditions—it is not possible to get into the region of strains

15

16 CHAPTER 3. EXISTENCE OF A SOLUTION

where this behavior of W would show. Another advantage of the proof presented
here is that it allows to derive eigenvectors and -values of the linear part of the
equation for suitable domains. This eigenvalue expansion can, for example, be
used in a numerical computation.

Finally, one has to consider the nonlinear part of the differential equation
and show that this function is Lipschitzian with respect to a suitable norm.
This is achieved in Section 3.5.

3.2 Semigroups

Consider the ODE
ẋ(t) = Ax(t)

in R
n, with A being a linear map from R

n to R
n and x(0) = x0. This Cauchy

problem obviously has the solution

x(t) = exp(At)x0

for t ∈ R. The mappings exp(At), t ≥ 0, have the properties

exp(At1) ◦ exp(At2) = exp(A(t1 + t2))

and
exp(A0) = Id = exp(A(−t)) ◦ exp(At).

Definition 1 Let S(t) for t ∈ R a family of operators over a Banach space X.
S(t) is called a one-parameter group if the following conditions are satisfied:

S(t + s) = S(t)S(s) for all t, s ∈ R,

S(0) = 0.

Note that the existence of the inverse element is thus inherited from the additive
group of real numbers. One can now see that S(t) := exp(At) for t ∈ R has the
properties of a one-parameter group. The operator A is called the generator of
{S(t)}t∈R.

However, it is not necessarily the case that a definition of S(t) makes sense
for t < 0. But, given the existence of a solution for the ODE, one can speak of
{S(t)}t≥0 as a semigroup.

Definition 2 A one-parameter semigroup over a Banach space X is a family of
bounded linear operators S(t), t ≥ 0, each mapping X → X, with the following
properties:

S(t + s) = S(t)S(s) for all t, s ≥ 0,

S(0) = 0.

S(t) is called strongly continuous if it is a strongly continuous function of t.
S(t) is called analytic if it is analytic in t.

3.3. THE INITIAL-BOUNDARY VALUE PROBLEM 17

For a differential linear operator A the situation is more difficult, because it is
a priori not clear if operators that are defined to act on infinite dimensional
Banach spaces generate a semigroup in a similar way. But as we will see there
are theorems in functional analysis that help us to achieve exactly that and also
define {S(t)}t≥0 in a useful way.

3.3 The Initial-Boundary Value Problem

The problem that has been motivated in the previous sections can be summa-
rized to the following equations. Let Ω an open, bounded and nonempty region
in R

n, with n = 2 or n = 3 with C2 boundary ∂Ω. Further let g: ∂Ω → R
n and

u0, v0: Ω → R
n given functions of specified regularity, T ∈ R

+ a fixed but finite
final time and f = f(u, t) a Lipschitzian function.

Now for a function u: Ω × [0, T] one can consider the initial-boundary value
problem

utt = β4ut −42u + Div(σ(Du)) + f, (3.1)

u = 0 on ∂Ω × [0, T], (3.2)

4u = g on ∂Ω × [0, T], (3.3)

u = u0 on Ω × 0, (3.4)

ut = v0 on Ω × 0. (3.5)

Here, equation (3.1) is the differential equation of motion, (3.2) and (3.3) de-
scribe the boundary values for u and 4u. The initial conditions for the value of
u and its time derivative are given in (3.4) and (3.5). A temperature field can be
added to the set of equations. In this case the temperature dependence would
essentially decouple from the equations here and the results would be similar.

3.4 Transformation of the PDE

In order to formulate the system (3.1)–(3.5) as a Cauchy problem one defines
the state space Z := H1

0 (Ω) ∩ H2(Ω) × L2(Ω) (see Appendix B),

z(t) :=

(
u(t)
v(t)

)
=

(
u(t)
u̇(t)

)
.

The inner product 〈·, ·〉 in Z is

〈z1, z2〉 =

〈(
u1

v1

)
,

(
u2

v2

)〉
:=

∫

Ω

4u14u2dV +

∫

Ω

v1v2dV.

It can be shown that Z endowed with this inner product is a Hilbert space
(see Appendix B). The corresponding norm in Z is denoted || · || :=

√
< ·, · >.

This choice of the inner product has been made to ensure that the norm on Z

18 CHAPTER 3. EXISTENCE OF A SOLUTION

actually is the square root of the sum of Ekin and Esurface, the kinetic and the
surface energy for a given u. Now let

A(β)z = A(β)

(
u
v

)
:=

(
v

β4v −42u

)
(3.6)

=

(
0 Id

−42 β4

)(
u
v

)
(3.7)

for z ∈ dom(A), the domain of definition of A (defined below). The β depen-
dence will not be explicitly stated from now on. The domain of A is

dom(A) :=

{(
u
v

)
∈ Z

∣∣∣∣
u ∈ H4(Ω), u|∂Ω = 4u|∂Ω = 0,

v ∈ H1
0 (Ω) ∩ H2(Ω)

}
. (3.8)

The function g in (3.3) therefore has to be in H2 and g|∂Ω = 0. Now it is
possible to write the initial-boundary value problem system (3.1)–(3.5) as

ż(t) = Az(t) + F(z(t), t) for 0 ≤ t ≤ T, (3.9)

z(0) = z0 (3.10)

for z(t) ∈ dom(A). The nonlinear part has been collected in the function
F(t, z(t)), which is defined as

F(z(t), t) :=

(
0

f2(z(t), t)

)
, (3.11)

where

f2(z(t), t) = f2

((
u(t)
v(t)

)
, t

)
:= Div(σ(Du(t))) + f(u(t), t).

It can be shown that the domain of definition of A is dense in the space Z. This
means that the linear differential operator A is densely defined in Z. Now it is
possible to proof three theorems concerning the properties of the operator A.

Theorem 1 The operator A is dissipative, that means that 〈Az, z〉 ≤ 0 for all
z ∈ dom(A).

Proof: Let z =

(
u
v

)
∈ dom(A). Then, by integration by parts and by using

the fact that the boundary terms vanish due to the choice of boundary conditions
u|∂Ω = 4u|∂Ω = v|∂Ω = 0,

〈Az, z〉 =

〈(
v

β4v −42u

)
,

(
u
v

)〉

=

∫

Ω

4v4udV +

∫

Ω

β4v · vdV −
∫

Ω

42u · vdV

= −β

∫

Ω

(∇v)2dV.

3.4. TRANSFORMATION OF THE PDE 19

Thus, A is dissipative. Note that the equality holds if β = 0. �

The notion of dissipativity becomes understandable if one considers that the
norm ||·|| on Z is an energy norm. Since β is the coefficient of the viscosity term,
it is also clear that the energy should be conserved if β = 0. Some properties of
the adjoint operator A∗ of A will be needed in the later proofs. It is especially
important that A∗ is defined on the same set as A is. Therefore, we collect some
properties of A∗.

Theorem 2 The domain dom(A∗) of the adjoint A∗ of A is given by dom(A∗) =
dom(A), and for

z =

(
u
v

)
∈ dom(A∗), one has

A∗z =

(
−v

β4v + 42u

)
=

(
0 −Id
42 β4

)(
u
v

)
.

Proof: The proof will be divided into two steps. First it is shown that dom(A) ⊂
dom(A∗) and that A∗z =

(
0 −Id
42 β4

)
z. Then the opposite inclusion dom(A∗)-

⊂ dom(A) is shown.

i) We start with 〈Az1, z2〉 for z1, z2 ∈ dom(A) and show that this equals

〈z1, A
∗z2〉, with A∗ from the theorem. Let z2 =

(
u2

v2

)
∈ dom(A). This yields

for any z1 =

(
u1

v1

)
∈ dom(A), using partial integration with the boundary

conditions u|∂Ω = 4u|∂Ω = v|∂Ω = 0

〈Az1, z2〉 =

〈(
v

β4v1 −42u1

)
,

(
u2

v2

)〉

=

∫

Ω

4v1 · 4u2 +

∫

Ω

(
β4v1 −42u1

)
v2

=

∫

Ω

4u1(−4v2) +

∫

Ω

v1

(
β4v2 + 42u2

)

=

〈(
u1

v1

)
,

(
−u2

β4v2 + 42u2

)〉
.

Therefore, if z ∈ dom(A) then z ∈ dom(A∗) and

A∗z =

(
−v

β4v + 42u

)
.

ii) Now let

z =

(
u
v

)
∈ dom(A∗).

20 CHAPTER 3. EXISTENCE OF A SOLUTION

By definition of A∗ there exists

z̃ =

(
ũ
ṽ

)
∈ Z

such that for all

ζ =

(
ζ1

ζ2

)
∈ dom(A)

one has

0 = 〈Aζ, z〉 − 〈ζ, z̃〉

=

∫

Ω

4ζ24u +
(
β4ζ2 −42ζ1

)
vdV −

∫

Ω

4ζ14ũ + ζ2ṽdV.

By rearranging terms and integration by parts (considering boundary conditions
as usual), this is leads to

0 =

∫

Ω

−(4ũ4ζ1 + v42ζ1)dV +

∫

Ω

(−ṽζ2 + (4u + βv)4ζ2dV.

Since this equality must hold for all ζ ∈ dom(A), both terms in the above
equation must vanish. Therefore,

∫

Ω

(4ũ4ζ1 + v42ζ1) = 0 and

∫

Ω

(−ṽζ2 + (4u + βv)4ζ2 = 0.

These integrals can be used to define the second weak derivatives of v and 4u.

We need the existence of those derivatives to make sure that z =

(
u
v

)
is in

dom(A). Formally, an integration by parts yields (3.12) and (3.13). Instead, we
use these two equations as a definition. For uniqueness of this definition see, for
example, [10], Chapitre VIII.

4v := −4ũ a.e. and (3.12)

42u := ṽ − β4v. a.e. (3.13)

Therefore, u ∈ dom(42) = H4 and v ∈ dom(4) = H2. This proves the
inclusion dom(A∗) ⊂ dom(A).

Note that A is skew-selfadjoint (A∗ = −A) for β = 0. �

Theorem 3 i) For β > 0 the linear differential operator A, as defined in equa-
tions (3.6) and (3.8) generates an analytic contraction semigroup.
ii) For β = 0, A generates a group of unitary operators.

Proof: i) To prove this one can use Theorem 1.2 in [12]. The way to achieve the
necessary conditions to apply this theorem will be very similar to [48], Theorem

3.5. THE NONLINEAR PART 21

3.5. Let A = 42 and B = 4. Both of these operators are selfadjoint, and so
A has a unique fractional power A 1

2 . Since B2 = A, it is obvious that A 1

2 = B.

One can now see that the operator A =

(
0 Id

−A B

)
corresponds to the elastic

system treated in [12] and that Theorem 1.2 there applies. Therefore A is the
generator of an analytic semigroup.
ii) Since A is a skew-selfadjoint operator, 1

i
A = −iA (i being the imaginary

unit) is a self-adjoint operator. Therefore, by Stone’s Theorem, (see [36], The-
orem 35.1) one can see that A generates a strongly continuous group of unitary
operators. �

3.5 The Nonlinear Part

To conclude the proof of existence of a solution it remains to show that the
function F(z, t) as defined in (3.11) is Lipschitzian in t and Lipschitzian with
respect to the graph norm ||z||A := ||z||+ ||Az|| in z. This property is obviously
dependent on the properties of the potential energy W (F) (with F = ∇u),
namely on its growth rate in the region of large strains.

Theorem 4 Let W : F 7→ W (F) ∈ R a C2 function and R a compact re-
gion containing the identity in Mat(n, R). Further let W (F) = |F |2 for F /∈
R. Then F(z, t) :=

(
0

f2(z(t), t)

)
with f2(z(t), t) = f2

((
u(t)
v(t)

)
, t

)
:=

Div(σ(F (u))) + f(u(t), t) and σ(F (u)) = ∂W (F (u))
∂F

is Lipschitzian in t and Lip-
schitzian in z with respect to the graph norm of A.

Proof: Since it was assumed that f(u(t), t) is Lipschitzian in u and t, this part
of the function F is Lipschitzian. We only have to prove that Div(σ(F (u))) is

Lipschitzian with respect to the graph norm

∣∣∣∣
∣∣∣∣
(

u
v

)∣∣∣∣
∣∣∣∣
A

. To achieve this, we

first have to make sure that all derivatives of all the components of the tensor
σ with respect to the elements of F are bounded. They are, being continuous
functions on a compact set, certainly bounded in R. Outside of R, the function
W is quadratic in the components of F , therefore σ is a linear function. So,
the derivatives of σ are constant for F /∈ R. Therefore, their absolute value is
bounded on Mat(n, R). We denote the bound Cσ′ .

Now one can examine the term Div(σ(F (u))). Denoting the columns of the
tensor σ with σi, one can find

||Div(σ(F (u))) − Div(σ(F (ũ)))|| =

∣∣∣∣∣

∣∣∣∣∣
∑

i

σi,xi
(F (u)) − σi,xi

(F (ũ))

∣∣∣∣∣

∣∣∣∣∣

=

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

i

∑

j

∑

k

σi,uj,xk
(F (u))uj,xkxi

− σi,ũj,xk
(F (ũ))ũj,xkxi

∣∣∣∣∣∣

∣∣∣∣∣∣

22 CHAPTER 3. EXISTENCE OF A SOLUTION

≤ Cσ′

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

i

∑

j

∑

k

uj,xkxi
− ũj,xkxi

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ Cσ′ ||u − ũ||H2 .

From [24] (Theorem 8.12) one can obtain that, for u|∂Ω = ũ|∂Ω and ∂Ω of class
C2 one has

||u − ũ||H2 ≤ CΩ(||4u −4ũ||L2 + ||u − ũ||L2 .

Since
||4u −4ũ||L2 ≤ ||u − ũ||A

the proof is completed. �

Chapter 4

Zirconia

4.1 Introduction

This chapter is concerned with modeling of the energetic landscape of a material
with a triple point. Specifically, we carry out calculations for zirconia (ZrO2).
In this case, the three coexisting phases are tetragonal, orthorhombic and mon-
oclinic, respectively. Figure 4.1 reproduces phase diagrams collected in [47].
The traditional approach to derive energy functions for such a material is to use
polynomials with the proper invariance. Following a widespread terminology,
we will call this approach Landau theory, even if Landau’s original work was
broader in scope, pointing out the necessity of multiwell energies. Truskinovsky
and Zanzotto recently presented in [52] an energy function for ZrO2. They use a
Landau ansatz of lowest order. In [55] some inherent difficulties of the Landau
approach are mentioned. This can be explained with an example which will
show that even in the simplest case, polynomials are too rigid to derive energies
with prescribed elastic moduli, energy barriers between the wells and growth
rates. The lowest order polynomial for a one-dimensional function f(x) with
two minimizers x = ±1 and a maximum at x = 0 is given by f(x) := C(x2−1)2.
Now, fitting the elastic modulus fixes the parameter C and therefore automati-
cally determines the height of the energy barrier between the two minima. Vice
versa, adjusting the energy barrier determines the elastic moduli. Of course, in
reality, these two quantities are unrelated. One could use a higher-order poly-
nomial ansatz to overcome these difficulties. But then, minima and maxima are
usually degenerate, and the growth rate of the energy for large deformations,
that already poses a problem for lowest order polynomial energies with many
wells, will be even larger. The high forces associated with such a growth rate
can easily lead to stability problems in numerical simulations. For these reasons,
polynomials energy functions are usually too rigid for numerical simulations (see
the discussion in Section 4.4).

Non-polynomial functions, such as splines, are suitable to resolve these prob-
lems, as long as they have the right symmetry. However, constructing such a

23

24 CHAPTER 4. ZIRCONIA

function is difficult if one works on the strain space. This problem is addressed
in [55], where the orbit space method is presented as an alternative approach.
The precise definition of the orbit space will be given later; intuitively, the orbit
space takes care of all the symmetry requirements. It allows to define the es-
sential part of the energy function in a convenient, geometric way on the orbit
space. Here, we use a modular approach using piecewise defined functions.

We construct the function in three steps: First, we take special local func-
tions to create the minima and allow for fitting of the elastic moduli. Second,
the space between the minima is filled. One could use splines, but we use the
solution of a finite element simulation that results in a piecewise defined C1 func-
tion, giving control over the height of the energy barriers. Third and finally, we
define the behavior for large strains with a third function. Note that all steps
are independent of each other. Fitting of parameters, such as elastic moduli,
will be comparatively simple, since one has a distinguished set of parameters for
each minimum. The fitting will not influence the height of the energy barriers
and the growth of the function for large strains, as it would for a polynomial
(Landau) energy function. It is easy to change the height of energetic barriers
and growth conditions for large strains.

This shows an advantage of the orbit space method. With this method, it
is possible to use a variety of different techniques to construct energy functions.
One could for example use splines instead of our finite element approach to fit
the parameters. In this case, one would get an explicit representation of the
energy as for a polynomial ansatz. Most of the computations would remain
unchanged. However, we decided to present the finite element approach since it
is a simple way to find energy functions. The idea of constructing surfaces by
solving partial differential equations has been used in geometric modeling for
some time, see for example [8].

Although the computations carried out are specific to the phase transforma-
tions in zirconia (or, apart from the fitting, any other material with a tetragonal-
orthorhombic-monoclinic phase transition), the orbit space method can be ap-
plied to other phase transitions, as shown in [55].

The problem of fitting experimental data is addressed in [21], where the
transformation mechanism is also carefully discussed. This chapter will build
on [52] and [21]. In particular, we will make use of the data collected there.

The Chapter is organized as follows: In Section 4.2, it is shown that the phase
transition can be analyzed in a two-dimensional framework. In Section 4.3, an
energy function is constructed and fitted to the elastic moduli of the different
phases. We close with a discussion in Section 4.4.

4.2 Reduction to a Two-Dimensional Problem

As usual, we take the high symmetry phase as reference configuration. For
zirconia, this is the tetragonal phase, denoted T3. To fix the notation, we list
the elements of T3, following [52] (the axes are shown in Figure 4.2; Rα

a stands

4.2. REDUCTION TO A TWO-DIMENSIONAL PROBLEM 25

Figure 4.1: Phase diagrams, reproduced from [47]. Shown are regions of stability
of tetragonal, orthorhombic and monoclinic phases of zirconia in temperature-
pressure space, gathered from 5 references.

PSfrag replacements

a
a

b

c1

c2

c3

Figure 4.2: Tetragonal reference configuration. The axes c1, c2 and c3 of rota-
tions in the tetragonal point group are shown.

26 CHAPTER 4. ZIRCONIA

for the rotation with angle α and axis a):

T3 =
{

1, Rπ
c1

, Rπ
c2

, Rπ
c3

, Rπ
c1+c2

, Rπ
c1−c2

, R
π
2

c3
, R

3π
2

c3

}
.

In zirconia, besides the tetragonal phase, both orthorhombic and monoclinic
phases can be stable. This corresponds to orthorhombic and monoclinic sub-
groups of the tetragonal point group T3. The orthorhombic subgroups are

O1,2,3 :=
{

1, Rπ
c1

, Rπ
c2

, Rπ
c3

}

and
O3,1±2 :=

{
1, Rπ

c3
, Rπ

c1+c2
, Rπ

c1−c2

}

(see [52]. Both orthorhombic groups form their own conjugacy class in T3.
There are three conjugacy classes of monoclinic subgroups, from which we

list one representative each:

M1,2 :=
{

1, Rπ
c1

}
, M1±2 :=

{
1, Rπ

c1+c2

}
, M3 :=

{
1, Rπ

c3

}
.

Of course, there is also the trivial triclinic subgroup {Id}. A schematic repre-
sentation of the point groups can be found in fig. 3 of [52].

As in [52], we assume the symmetry breaking in ZrO2 occurs along the path

T3 −→ O123 −→ M3. (4.1)

Experimental evidence for this assumption is collected in [52] and [21].
First let us take a closer look at symmetry breaking deformation gradients

that, when applied to the tetragonal reference configuration, result in the desired
phases with lower symmetry. According to (4.1), these are phases with point
groups conjugate to O123 and M3.

If F is a symmetry breaking deformation gradient generating a certain sub-
group, all deformations

RT FR for R ∈ T3 (4.2)

generate a crystal of the same subgroup. Therefore, these are different variants
of the lower order phases. This means these variants are related to each other by
elements of the symmetry group of the high symmetry phase. It is well known
that the number of variants is given by the quotient of the order of the high
symmetry phase and the order of the low symmetry group (see, for example, [7],
Section 4.3).

For O123, there are two variants. It is easy to read off the associated defor-
mation gradients from Figure 4.3 (see also [52]). They are

F =




1 + u11

1 + u22

1 + u33


 (4.3)

and

F =




1 + u22

1 + u11

1 + u33


 . (4.4)

4.3. DERIVATION OF AN ENERGY FUNCTION 27

Similarly, for M3, there are four variants. It is easy to see that the corre-
sponding deformation gradients F are given by the following four matrices:




1 + u11 ±u12

±u12 1 + u22

1 + u33


 (4.5)

and 


1 + u22 ±u12

±u12 1 + u11

1 + u33


 . (4.6)

Finally, deformation gradients preserving the tetragonal symmetry are of the
form

F =




1 + u11

1 + u11

1 + u33


 . (4.7)

From (4.3)–(4.7), it is immediate that the symmetry breaking takes place
only in the two-dimensional subspace spanned by c1 and c2 (see Figure 4.2). In
this plane, the tetragonal phase T3 is characterized by a C4 symmetry (the sym-
metry of a square). The two orthorhombic phases have a planar C2 symmetry,
since their restriction to the c1-c2 plane is a rectangle. Finally, parallelograms
correspond to monoclinic variants. The planar point group of the parallelogram
is again C2. But now there are no longer three-dimensional rotations by 180 de-
grees along any axis in the c1-c2 plane that are a self-mapping of the monoclinic
phase. This can be seen in Figure 4.3, since such a three-dimensional rotation
acts as a reflection when restricted to the c1-c2 plane. The planar symmetry
group C4 is generated by a counterclockwise rotation by 90o. This generator
will be denoted by σ,

σ :=

(
0 −1
1 0

)
.

In summary: the preceding considerations have shown that the relevant part
of the free energy density can be written as a function of an in-plane deformation
in the c1-c2 plane.

4.3 Derivation of an Energy Function

We will use the orbit space approach, as presented in [55]. The key idea of
this method is that the energy function can be written as a function defined on
the ‘orbit space’. Intuitively, the orbit space identifies all variants of the same
phase, while separating unrelated variants. The precise definition is given later.
This property of the orbit space automatically induces the right symmetries for
the energy landscape, if the energy is defined on the orbit space (see below).
In the special case considered here, where the symmetry breaking occurs in a
two-dimensional subspace of R

3, the derivation will be particularly easy.

28 CHAPTER 4. ZIRCONIA

PSfrag replacements

a) b)

c)

Figure 4.3: Variants: a) Tetragonal phase. b) Orthorhombic phase. c) Mono-
clinic phase.

It is a well known consequence of the axiom of frame indifference and the
polar decomposition theorem that the energy function can be written as a func-
tion of E := 1

2

(
F T F − Id

)
∈ Sym(2, R)+. Here, E is the Green-St. Venant

strain tensor, a symmetric real matrix with positive determinant. Point groups
act on this set by conjugation:

P × Sym(2, R)+ → Sym(2, R)+

(P, E) 7→ PEP−1.

It will be useful to see how the generator σ of the high symmetry point
group operates on the strain tensor E. Sym(2, R)+ is not a vector space, but,
concerning conjugation with the point group P , is an invariant subset of the
vector space Sym(2, R). So, the operation can be extended to this vector space.
Let us write the matrix E as

E =

(
e1

1
2e6

1
2e6 e2

)

with ei ∈ R. This is the upper left 2× 2 submatrix of the 3× 3 strain tensor of

a three-dimensional deformation. The conjugation with σ =

(
0 −1
1 0

)
yields

σEσ−1 =

(
e2 − 1

2e6

− 1
2e6 e1

)
.

4.3. DERIVATION OF AN ENERGY FUNCTION 29

We now use the fact that Sym(2, R) is isomorphic to R
3, with components e1,

e2, e6. Then, the representation of σ is given by

σ̃ =




0 1 0
1 0 0
0 0 −1


 .

Considering that σ̃2 = Id, it is immediate that the action of the point group on
E is isomorphic to C2. The orthorhombic and monoclinic subgroups coincide
on this space and both act as identity.

The next step is to find the invariant polynomials in e1, e2 and e6 under the
action of the high symmetry point group. Instead of considering the infinite-
dimensional vector space of invariant polynomials, we consider the algebra of
invariant polynomials (that is, the multiplication of invariant polynomials is de-
fined). It is a classic theorem due to Hilbert that this algebra is finitely generated
(see, for example, Theorem 2.1.3 in [50], or [54] as the classical reference).

Here, the computation of a set of generators is particularly easy: By Theorem
(A) in [15], for reflection groups in an n-dimensional space, there is a basis of
the algebra of invariant polynomials that consists of n elements.

In principle, these invariants can be computed with special software pack-
ages, such as Singular, see [25]. Here, the situation is so easy that one can
compute a basis by hand. First, one can literally guess 3 invariants:

ρ1(e1, e2, e6) := e1 + e2 (the trace of E),

ρ2(e1, e2, e6) := e2
1 + e2

2 (the radius squared),

ρ3(e1, e2, e6) := e2
6.

It is immediate that none of them can be expressed as a combination of the two
remaining invariants. Therefore, they are independent. We only have to show
that they form a basis. According to Chevalley’s Theorem, there is a basis of 3
invariants. Since the polynomials listed above are of the lowest possible degree,
they constitute this basis.

The fact that these three polynomials form a basis of the algebra of poly-
nomials invariant under C2 means that every such polynomial ρ̃ = ρ̃(e1, e2, e6)
can be written as ρ̃ = P (ρ1, ρ2, ρ3), where P is a polynomial.

The Hilbert map ρ is defined as

R
3 → R

3

(e1, e2, e6) 7→ (ρ1(e1, e2, e6), ρ2(e1, e2, e6), ρ3(e1, e2, e6)).

We will call the image of R
3 under the Hilbert map the orbit space. The

reason is that the Hilbert map identifies exactly the points corresponding to
related variants, while separating points corresponding to other variants (see [55]
for more details). One could say that the Hilbert map strips off the symmetry;
the image is similar to a fundamental domain for the given group. The advantage
of the orbit space, compared to a fundamental domain, is that no care has to
be taken about identifications on the boundary.

30 CHAPTER 4. ZIRCONIA

To familiarize ourselves with the orbit space, and to proceed with the con-
struction of the energy function, we locate the position of the different phases
of zirconia in the orbit space ρ(Sym(2, R)).

The tetragonal reference configuration is particularly simple. Here, obviously
e1 = e2 = e6 = 0. Consequently, the tetragonal phase is mapped to the origin
(ρ1(0, 0, 0), ρ2(0, 0, 0), ρ3(0, 0, 0)) = (0, 0, 0) of the orbit space.

Next, consider the orthorhombic phase. In Table 4.1, the data of one or-
thorhombic variant is given as e1 = 0.01, e2 = 0, e6 = 0. By applying the
tetragonal generator σ to this element, we find the other variant as e1 = 0, e2 =
0.01, e6 = 0. The key point of the orbit space method is: both variants are
mapped to the same point in the orbit space,

(0.01, 0, 0) 7→ (0.01, 0.0001, 0) (4.8)

(0, 0.01, 0) 7→ (0.01, 0.0001, 0) .

One can prove that this is always true: the Hilbert map collapses corresponding
variants to one point in the orbit space, and no other variant is mapped to
that point (see [55]) for more details). Therefore, the simple idea to construct
energy functions is as follows: determine the image of the stable variants in the
orbit space; define a function Φ on the orbit space with minimizers precisely at
these points. The function Φ (ρ(E)) will be an energy function with the correct
symmetry. We will later address the question of how to fit elastic moduli and
how to create energy barriers between stable phases.

The previous considerations motivate the idea to construct a function on the
orbit space that has minima at the right places and fits the elastic moduli from
experimental results. The locations of the minima in the strain space and in the
orbit space can be found in Table 4.1. The values we used are taken from [21].
In Table 4.1, only one variant is shown (in the strain space; in the orbit space,
corresponding variants are collapsed to one point). All other variants can be
found by applying the generator σ̃ of the tetragonal symmetry group to the
given variant. To create precisely one minimum in this three dimensional orbit
space, one can use a C1 function fα = fα(x1, x2, x3), with α being a given
symmetric 3 × 3 matrix, as follows: If

∑
i,j αijxixj < 1, set

fα(x1, x2, x3) :=
1

500


2


∑

i,j

αijxixj


−


∑

i,j

αijxixj




2

− 1




and fα(x1, x2, x3) := 0 otherwise.
Since zirconia has at the critical temperature not only one, but three stable

phases, we define a function on the orbit space as

Φminima(ρ1, ρ2, ρ3) := fα (ρ1,
√

ρ2,
√

ρ3)

+fβ (ρ1 − 0.01, ρ2 − 0.0001,
√

ρ3)

+fγ (ρ1 − 0.0534, ρ2 − 0.00232, ρ3 − 0.0256)

4.3. DERIVATION OF AN ENERGY FUNCTION 31

(We will use this function to fit the experimental data available for the three
phases). This function obviously has minimizers precisely at the locations where
the three phases can be found in the orbit space. Since ρ1 and ρ2 are quadratic
terms, one has to take the square root of the respective parameter for min-
ima where this parameter is zero, since otherwise the second derivatives would
vanish. Obviously, care has to be taken that the resulting function is still differ-
entiable. Here the square root will cancel with the quadratic minimizer function
fα, as long as α is diagonal.

It is straightforward to choose the parameters in this function such that the
function Φminima (ρ(e1, e2, e6)) defined as the composition of Φminima and the
Hilbert map ρ fits the elastic moduli. Tables 4.2 and 4.3 show the values we
used for the coefficients and the resulting elastic moduli. The values we fitted
to are taken from [21]. As we can see, all the elastic moduli for deformations
in the two dimensional subspace where the symmetry breaking occurs could be
exactly reproduced. The function could also easily be extended to the entire
three dimensional space.

So far, we have found an energy function with minimizers exactly at the
right positions. Yet, it still looks phenomenologically wrong: there are no en-
ergy barriers between the minima. In the next step, we will glue in humps.
The advantage of this cut-and-paste approach is that the height of the barrier
can be arbitrarily chosen. When filling in a hump, care has to be taken: First,
the resulting function has to be C1. Second, we may not create an additional
minimum. Third, the hump must not interfere with the neighborhoods of the
minima where we already defined the energy function. Of course, it is cumber-
some to construct such a function on the three dimensional orbit space. But
since a triple point is characterized by three minima on the orbit space, there is
a common plane in which the minima lie. Therefore, we first construct a linear
function that maps the location of the tetragonal minimum to the origin, the
orthorhombic minimum to the point (1, 0, 0), the monoclinic minimum to the
point (0, 1, 0) and the direction orthogonal to the plane to the third direction.
A short calculation shows that the matrix representing this linear function is
given by

A :=




100.1 −13.49 −207.7
−0.02712 2.712 38.87

38.87 −3887 271.2


 . (4.9)

The new coordinates obtained by this transformation will be denoted x̄i. As-
sume for the moment that a function Φfill in the x̄1-x̄2 plane, defining energy
barriers between the minima, is given. Then we can deal with the third direction
x̄1 by setting

Φ3dfill(x̄1, x̄2, x̄3) := Φfill(x̄1, x̄2) + δx̄2
3.

The parameter δ does affect the elastic moduli. Its numerical value can be
found in Table 4.2. To construct a hump-function Φfill meeting all of the above
requirements, we use a finite element method to solve the Laplace equation with
appropriate boundary conditions and a few constrained degrees of freedom. The
idea behind this is that the third requirement for the energy barriers, namely

32 CHAPTER 4. ZIRCONIA

C1 smoothness, is the most restrictive one; by solving Laplace’s equation, one
has the maximum principle at hand to ensure that there are no minimizers or
maximizers in the interior of the domain. Strictly speaking, one had to check
whether the assumptions of the maximum principle are met; but here—in the
two-dimensional space—it is easy to inspect the solution once it is found (Note
that this is the only step in the construction where we do not write down an
explicit expression for the function; if one wants to do so, splines or Bézier
functions would be a natural choice to define an energy barrier).

To get a continuously differentiable solution, one can use the Bogner-Fox-
Schmit rectangle (see for example [9], II.5.10) as element. Here a 8× 8 element
grid defining a rectangular region R with corner coordinates (−1,−1), (−1, 2),
(2,−1), (2, 2) in the plane containing the minima constructed above is used.
Note that all three minima are contained in the rectangular region R. We chose
Dirichlet conditions on the entire boundary such that the function value is set
to 0.004; partial derivatives are set to zero. All degrees of freedom for the three
elements containing the coordinates (0, 0), (1, 0) and (0, 1) (the location of the
minima) are set to be zero (i.e., there are no degrees of freedom for these nodes).
These elements have also been carefully sized so that their boundaries are still
inside the region where the Φminima function is nonzero, to avoid the creation of
plateaus. Finally, the function values for a few nodes between the minima are
set to a positive value. In this way, we create the humps in Φfill. This results in
a function with the desired properties. Our example can be seen in Figure 4.4.

–1
–0.5

0
0.5

1
1.5

2
x

–1
–0.5

0
0.5

1
1.5

2

y

0

0.01

0.02

0.03

0.04

Figure 4.4: Plot of the function Φfill

In the last step, the growth of the energy function for large strains is con-
trolled. To do so, we define a C1 function

g(x̄1, x̄2) :=

{
1

500 (−2(x̄2
1 + x̄2

2) + (x̄2
1 + x̄2

2)2 + 1) for x̄2
1 + x̄2

2 > 1
0 otherwise

.

4.4. DISCUSSION 33

Table 4.1: Locations of the minima: The minima in the e1-e2-e6 space are taken
from [21]. The values in the orbit space follow by evaluating the Hilbert map
ρ = (ρ1, ρ2, ρ3) at these points.

tetragonal orthorhombic monoclinic
e1 0 0.01 0.0479
e2 0 0 0.0055
e6 0 0 0.1600

ρ1(e1, e2, e6) 0 0.01 0.0534
ρ2(e1, e2, e6) 0 0.0001 0.00232
ρ3(e1, e2, e6) 0 0 0.0256

Table 4.2: Choice of parameters to fit the elastic moduli

parameter value parameter value
α11 3936 α22 38377 α33 11881
α12 0 α13 0 α23 0
β11 12100 β22 12100 β33 12100
β12 0 β13 0 β23 0
γ11 54896 γ22 8381025 γ33 71717
γ12 −556900 γ13 415.3 γ23 126900
δ 5 · 10−4

This function will be added to Φfill. When we move the center of this function
from (0, 0) to (0.5, 0.5), it does not interfere with the minima and still starts
to grow inside the area where Φfill is defined. This function thus controls the
growth of the potential in the plane toward infinity. So we have

Φ3dfill(x̄1, x̄2, x̄3) := Φfill(x̄1, x̄2) + δx̄2
3 + g(x̄1 − 0.5, x̄2 − 0.5)

The total energy then has the following form:

Φ(E) := Φorbit(ρ(E)), (4.10)

where
Φorbit := Φminima(ρ1, ρ2, ρ3) + Φ3dfill(A(ρ1, ρ2, ρ3)). (4.11)

4.4 Discussion

The energy derived in Section 4.3 meets the symmetry requirements of the
tetragonal-orthorhombic-monoclinic phase transition in zirconia, and it inter-
polates experimental data that is available for this material. The energy con-
structed here will be used in the finite element simulation presented in the next

34 CHAPTER 4. ZIRCONIA

Table 4.3: Elastic Moduli: The values resulting from our energy function are,
modulo round off errors in the parameters, the same as in [21], Tables IIb, IIIb.
Note also the re-labeling of the indices in the monoclinic phase, Table IV. Here,
the tetragonal phase’s labeling is always used.

tetragonal orthorhombic monoclinic
C11 340 98.3 312
C22 340 98.3 350
C66 95.0 96.8 66.3
C12 33.0 95.3 35.2
C16 0 0 3.2
C26 0 0 4.3

Chapter; in particular, the energy barriers between different wells are of a rea-
sonable height, and the growth of the function for large strains can be controlled
easily.

It was not only the aim to derive a specific energy function for zirconia; one
goal was to present the orbit space approach as an alternative to the polynomial
ansatz in Landau theory because polynomials tend to be too rigid to be used
in numerical simulations when they are constrained to have minimizers only
at preassigned spots. Often, the minima tend to be degenerate, or the region
between the minima is too shallow to be distinguishable from a true minimum
in a finite element simulation; the rapid growth of polynomials for large values
(strains) poses another problem in simulations. One possibility to avoid this
would be to work in a fundamental domain (see [18] for this approach on an
atomistic level). The orbit space presents an alternative. The fact that the
generating polynomials can be computed automatically provides a convenient
way to deal with the symmetry constraints.

To advocate this approach, it was the aim to present the orbit space method
in a toolbox-like style so it should prove to be applicable in other situations as
well.

The idea to derive energy functions by using a finite element simulation
seems to be new in this field; in geometric modeling, these ideas have been
used successfully to construct surfaces without unwanted minimizers (by solv-
ing Laplace’s equation), or surfaces with minimal curvature (by solving the
biharmonic equation); see, e.g., [8] for the use of partial differential equations
in geometric modeling.

Chapter 5

Numerics

5.1 Introduction

The main focus in the finite element simulation implemented in this work has
been laid on flexibility and robustness. Since the equation of motion for the
systems regarded here includes a capillarity term coming from the surface en-
ergy, the Galerkin formulation (see [46], Chapter 1) of the variational problem
introduced in Section 5.2 formally needs a continuously differentiable displace-
ment function u. In many other works (for example in [5]), however, the finite
elements are not conforming (C1). This makes special treatment of the gradi-
ents necessary, therefore usually the elements used are aligned according to the
phase boundaries that one would expect. In this work we make no a priori as-
sumptions on the formation of phase boundaries. This was be achieved by using
the fully conformal Bogner-Fox-Schmit element (see, for example, [9], II.5.10).

To make the simulation code written in MATLAB easily applicable to a
wide variety of problems, the MATLAB symbolic math package has been used
on several occasions. This makes it, for example, possible to change the strain
energy in the system easily since the stress tensor σ is automatically computed
from the energy. Also, setting of the initial conditions is simplified by this
approach.

To make the program readily understandable, the WEB documentation system
(see [33]) has been used. The program code is divided into small sections that
have individual LATEX documentation. The code can be found in Appendix C.

This part of the work is organized as follows: First, in Section 5.2 the varia-
tional formulation of the differential equation is introduced. Then the discretiza-
tion of the displacement u is formally made in Section 5.3 and the spatial part of
the partial differential equation is turned into a system of linear equations. The
finite element is introduced in Section 5.4 and the various boundary conditions
for the finite element simulation are discussed in Section 5.5. The results of the
numerical simulations carried out are shown in Section 5.6.

35

36 CHAPTER 5. NUMERICS

5.2 Variational formulation of the problem

We will again start with the equation of motion that we want to solve,

utt(x, t) = Div(σ(∇u(x, t))) + β4ut(x, t) −42u(x, t) + f(x, t) (5.1)

equipped with appropriate initial and boundary conditions. To obtain the finite
element formulation of this problem, it is first necessary to turn to the equivalent
variational formulation. One has to find a function

u: Ω × R → R
n

u: (x, t) 7→ u(x, t).

such that for all test functions

ζ: Ω → R
n

with ζ ∈ C∞
0 (Ω)1 the following condition, together with the boundary conditions

for u, holds:
∫

Ω

utt(x, t)ζdV =

∫

Ω

(
Div(σ(∇u(x, t)))ζ + β4ut(x, t)ζ −42u(x, t)ζ + f(x, t)ζ

)
dV.

Since ζ has compact support, integration by parts yields
∫

Ω

4u4ζdV +

∫

Ω

uttζdV = (5.2)

−
∫

Ω

σ(∇u(x, t)) · ∇ζdV −
∫

Ω

β∇ut · ∇ζdV +

∫

Ω

f(x, t)ζdV.

5.3 The Discretization

Equation (5.2) is formulated in an infinite-dimensional function space. We ap-
proximate the solution by approximating this space with a finite dimensional
space, spanned by ξ1(x), . . . , ξK(x) with K ∈ N. Let

u(x, t) =
∑

i

ui(t)ξi(x)

with coefficients ui and a finite basis B = {ξi}1≤i≤K , K ∈ N and restrict the test
functions to be the elements ξi of B, too. This yields the following equation:

∫

Ω

∑

i

ui4ξi4ξjdV +

∫

Ω

∑

i

(ui,ttξi)ξjdV = −
∫

Ω

σ

(
∑

i

ui∇ξi

)
· ∇ξjdV

−
∫

Ω

∑

i

ui,t∇ξi · ∇ξjdV +

∫

Ω

fξjdV

1See Appendix A for the notation.

5.4. INTRODUCTION OF THE FINITE ELEMENT 37

which is equivalent to (by exchanging the summation and the integration)

∑

i

ui

∫

Ω

4ξi4xijdV +
∑

i

ui,tt

∫

Ω

ξiξjdV = (5.3)

−
∫

Ω

σ

(
∑

i

ui∇ξi

)
· ∇ξjdV −

∑

i

ui,t

∫

Ω

∇ξi · ∇ξjdV +

∫

Ω

fξjdV.

Now define the matrices

Kij :=

∫

Ω

4ξi4ξjdV

and

Mij :=

∫

Ω

ξiξjdV.

The matrix K will be called the stiffness matrix and M is the mass matrix.
Furthermore, let

u(t) =




u1(t)
u2(t)

...
uN(t)


 .

Then one can write equation (5.3) as

Ku + M ü = g (5.4)

with

gj := −
∫

Ω

[
σ

(
∑

i

ui∇ξi

)
+
∑

i

ui,t∇ξi

]
· ∇ξj + fξjdV.

The spatial derivatives of the PDE have been transformed to a system of lin-
ear equations. The partial differential equation has, by this method, thus been
transformed into an ordinary differential equation in time, and a regular numer-
ical time integration scheme can be used to solve this problem.

5.4 Introduction of the Finite Element

Now one has to find a convenient form of the discretized displacement u. Take
a rectangular material domain

[
−a

2 , a
2

]
×
[
− b

2 , b
2

]
and divide this domain into

N × M rectangular subdomains of size r × s (r = a
N

, s = b
M

),

Ωij := [(i − 1)r, ir] × [(j − 1)s, js]

for i, j ∈ N, 1 ≤ i ≤ N, 1 ≤ j ≤ M . These subdomains will be the domains
of the finite elements that are to be introduced. On the corner points of the
subdomains Ωij are the 4 nodes of each element, numbered counterclockwise
starting on the lower left corner. For each of these nodes we introduce four

38 CHAPTER 5. NUMERICS

degrees of freedom. These will be named dk (k = 1, . . . , 16 or more precisely
k = 4(n − 1) + m with the node number n and the number of the degree of
freedom m). Now define the polynomials

p1(x) := (1 − x2)(1 + 2x),

p2(x) := x(1 − x2),

p3(x) := x2(3 − 2x),

p4(x) := −x2(1 − x)

for x ∈ [0, 1]. These polynomials form a basis for the polynomials up to order 3
on [0, 1]. On the end point x = 0, one has p1 = 1, p1,x = 0, p2 = 0 and p2,x = 1.
The values and the first derivatives of p3 and p4 vanish there. At x = 1, both
the function value and the value of the derivative of p1 and p2 are equal to zero,
but there p3 and p4,x are equal to 1. Therefore, one can control the function
value and the value of the derivative at x = 0 and x = 1 very easily by a linear
combination of these polynomials. On the domain [0, r] × [0, s] one can now
define the polynomials

ϕ1(x1, x2) := p1

(x1

r

)
p1

(x2

s

)
,

ϕ2(x1, x2) := p2

(x1

r

)
p1

(x2

s

)
,

ϕ3(x1, x2) := p1

(x1

r

)
p2

(x2

s

)
,

ϕ4(x1, x2) := p2

(x1

r

)
p2

(x2

s

)
,

ϕ5(x1, x2) := p3

(x1

r

)
p1

(x2

s

)
,

ϕ6(x1, x2) := p4

(x1

r

)
p1

(x2

s

)
,

ϕ7(x1, x2) := p3

(x1

r

)
p2

(x2

s

)
,

ϕ8(x1, x2) := p4

(x1

r

)
p2

(x2

s

)
,

ϕ9(x1, x2) := p1

(x1

r

)
p3

(x2

s

)
,

ϕ10(x1, x2) := p2

(x1

r

)
p3

(x2

s

)
,

ϕ11(x1, x2) := p1

(x1

r

)
p4

(x2

s

)
,

ϕ12(x1, x2) := p2

(x1

r

)
p4

(x2

s

)
,

ϕ13(x1, x2) := p3

(x1

r

)
p3

(x2

s

)
,

ϕ14(x1, x2) := p4

(x1

r

)
p3

(x2

s

)
,

ϕ15(x1, x2) := p3

(x1

r

)
p4

(x2

s

)
,

5.4. INTRODUCTION OF THE FINITE ELEMENT 39

2 i

N−1+i

Element Index: Gray

(N−1)+1 (N−1)+2

1

PSfrag replacements

1 2 3 i i + 1 N

N + 1 N + 2 N + 3 N + i N + i + 1 N + N

2N + 1 2N + 2 2N + 3 2N + i 2N + i + 1 2N + N

NMΩ

Node Index: Black

Figure 5.1: The numbering of the nodes and elements for the finite element
simulation

ϕ16(x1, x2) := p4

(x1

r

)
p4

(x2

s

)
.

These are the so called shape functions for the Bogner-Fox-Schmit finite element
(see, for example, [9], II.5.10). Being the tensor product of the four polynomials
pi from above, one can see that this is a complete bicubic basis for the rectangle
[0, r] × [0, s]. Now for each corner point of this rectangle, only one function
ϕi has a nonvanishing function value, x-derivative, y-derivative or xy-derivative
respectively. These four values are, for the first corner point controlled by the
first four polynomials, for the second corner point by the next four polynomials
and so on.

Now we can define the displacement uij(x1, x2) on one subdomain Ωij to be

uij(x1, x2) :=

16∑

i=1

diϕi(x1 − ir, x2 − js).

with di being the 16 degrees of freedom for the element with the domain Ωij .
In Figure 5.1 one can see how adjectant elements share the same nodes and the
degrees of freedom that belong to those nodes. The total number of nodes in
this system is (N + 1)(M + 1). So the total number of degrees of freedom is
4(N +1)(M +1). One can easily check that the displacement u is a continuously
differentiable function on Ω. Since u has been constructed from base functions
that have been moved to each element one can write u as

u(x1, x2) =
∑

i

uiξi,

40 CHAPTER 5. NUMERICS

with coefficients ui and all the base functions for the whole domain, constructed
by moving the base functions from [0, r] × [0, s] to each element. The arrange-
ment of the degrees of freedom in the vector u is done by node, so the first 4
entries belong to node 1, the next 4 entries belong to node 2, and so on. The
arrangement of the nodes can be seen in Figure 5.1. Since we want a displace-
ment with values in R

2, we have introduce two vectors u1 and u2 as described
above. With this discretization one can compute the matrices K and M from
equation (5.4). The integrations for the remaining vector g in this equation can
now be done by working with one element at a time because every base function
ξi is nonzero only on the four elements that share its corresponding node.

5.5 Boundary Conditions for the Numerical Sim-

ulation

For the finite element simulation one has to specify conditions for the degrees
of freedom of the boundary nodes. The Dirichlet boundary conditions for the
differential equation, however, namely u and 4u on ∂Ω, can not be directly
transferred to the degrees of freedom that one has available on the nodes, which
are u, ux, uy and uxy. One can see that Dirichlet boundary conditions for the
value of u can be set by prescribing the degrees of freedom for u and for the
value of the derivative tangential to the boundary in question (automatically,
if u is fixed on the boundary, the tangential derivative of u is fixed, too). Ad-
ditionally, it is possible to prescribe the derivatives normal to the boundary. If
nothing is set for a certain part of the boundary, this boundary is said to have
free boundary conditions. Simply supported boundary conditions mean a pre-
scribed value of u at the boundary (and therefore also the tangential derivative
is fixed). Clamped condition means that also the value for the normal deriva-
tive is prescribed. For the Bogner-Fox-Schmit element used here one does not
prescribe the values of the mixed derivative uxy on the boundary nodes.

5.6 Results of the Numerical Computations

Generally, due to our non dimensionalization of the system, one can not really
compare the absolute times from our simulation to other simulations. We will
in this work speak of the “time step” from the time integration loop. For all
simulations the initial condition for the velocity ut(0) was chosen to be equal
to zero. Also, in the figures, the coordinates are labeled as the element coor-
dinates. The x- and y-coordinates in the simulation range from − 1

2 the size of
the specimen to 1

2 the size of the specimen. The end points of the coordinates
will be denoted xmin and xmax (same for y).

1. Reproduction of the Simulations by Swart and Holmes
To test the validity of the results of the program code two, of the anti-plane
shear simulations presented in [51] were reproduced. In Section 6.3 of [51], an

5.6. RESULTS OF THE NUMERICAL COMPUTATIONS 41

0

20

40

60

80

100

0
10

20
30

40
50

60
70

80
90

100
−0.1

0

0.1

x
y

Figure 5.2: Displacement for the reproduction of [51], Section 6.3. Relaxed
state.

Figure 5.3: Original image from [51], Section 6.3

42 CHAPTER 5. NUMERICS

0
20

40
60

80
100

0

20

40

60

80

100
−0.1

0

0.1

xy

Figure 5.4: Displacement for the reproduction of [51], Section 6.3 with added
capillarity. Time step 600.

0
20

40
60

80
100

0

20

40

60

80

100
−0.1

0

0.1

xy

Figure 5.5: Displacement for the reproduction of [51], Section 6.3 with added
capillarity. Time step 1600.

5.6. RESULTS OF THE NUMERICAL COMPUTATIONS 43

0
20

40
60

80
100

0

20

40

60

80

100
−0.1

0

0.1

xy

Figure 5.6: Displacement for the reproduction of [51], Section 6.3 with added
capillarity. Time step 3000.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2

0.25

time

E

Energy Plot

Figure 5.7: Energy versus time for the reproduction of [51], Section 6.3 with
added capillarity. The thick black line is the total energy, the thick dashed
line below strain energy. Close to zero start the surface energy (solid) and the
kinetic energy (dashed).

44 CHAPTER 5. NUMERICS

10

20

30

40

50

60

70

10

20

30

40

50

60

70
−0.1

0

0.1

xy

Figure 5.8: Displacement for the reproduction of [51], Section 6.4.

Figure 5.9: Original image from [51], Section 6.4

5.6. RESULTS OF THE NUMERICAL COMPUTATIONS 45

energy function of the form

W (F) = 4||F ||2(||F || − 1)2

is used. With this energy function, a 100×100 element grid, no capillarity and a
viscosity factor of 0.02 we repeated this simulation. The initial conditions were
the same as in [51], namely

u0(x, y) = 0.05 sin(5πx) sin(3πy).

The result is optically indistinguishable the one that Swart and Holmes obtain
and can be seen in Figure 5.2. The image from [51] has been included for
comparison. It can be seen in Figure 5.3. The parameters for the reproduction
of the simulation [51], Section 6.3, were

Grid 100 × 100,
Element Size 0.01 × 0.01,
Boundary Conditions Clamped everywhere, values are from initial

conditions on the boundary,
Initial Conditions u0(x, y) = 0.05 sin(5πx) sin(3πy),
Strain Energy W (F) = 4||F ||2(||F || − 1)2,
Capillarity γ = 0,
Viscosity β = 0.02.

However, the piecewise almost-constant gradients found in their and our
work seem to be a result of the spatial discretization, since a simulation with
the exact same parameters, but with capillarity (Factor 10−4) reveals a different
picture. Figures 5.4, 5.5 and 5.6 show similar, but rounded humps that oscillate
and the ones that are not “held up” by the clamped boundary conditions vanish
with time. The rounding of the humps seems reasonable, since the energy
itself does not favor any specific value of F as long as the norm of it is a
minimizer, i.e., if F = 0 or ||F || = 1. The humps at the boundary remain—
they become smaller, though—because clamped boundary conditions means
that the value of the normal derivative of u is prescribed on the boundary. With
the boundary conditions taken to be the initial conditions on the boundary,
these normal derivatives are not zero everywhere on the boundary. The time
dependence of the potential-, surface-, kinetic- and total energy can be seen in
Figure 5.7. There, also an approximately equipartitioning of the total energy
in the potential- and surface energy in the fully relaxed state can be seen. The
parameters for the reproduction of the simulation [51], Section 6.3, with added
capillarity, were

46 CHAPTER 5. NUMERICS

Grid 100 × 100,
Element Size 0.01 × 0.01,
Boundary Conditions Clamped everywhere, values are from initial

conditions on the boundary,
Initial Conditions u0(x, y) = 0.05 sin(5πx) sin(3πy),
Strain Energy W (F) = 4||F ||2(||F || − 1)2,
Capillarity γ = 10−4,
Viscosity β = 0.02.

In Section 6.4 of [51], a simulation using an anisotropic energy function,
depending on F = (ux, uy), of the form

W (F) =
1

2
u2

x +
1

4
(u2

y − 1)2

is used. We carried out a simulation using this energy function and the same
domain as in the previous simulation. The factor for the capillarity was again
set to 10−4. Starting with a small hump

u0(x, y) = 0.1 exp(−30x2 − 30y2),

a similar result as Swart and Holmes have is obtained (Figure 5.8—compare with
the original result in Figure 5.9—our figure shows a not fully relaxed state, one
can see this by the “extra” edge on the central peak). The important feature of
this result is the refinement of the microstructure at the incompatible boundaries
This will be examined in greater detail in the simulation “Energy Scaling of
Microstructure”. The parameters for the reproduction of the simulation found
in [51], Section 6.4, were

Grid 100 × 100,
Element Size 0.01 × 0.01,
Boundary Conditions Clamped everywhere, values are from initial

conditions at the boundary,
Initial Conditions u0(x, y) = 0.1 exp(−30x2 − 30y2)
Strain Energy W (ux, uy) = 1

2u2
x + 1

4 (u2
y − 1)2,

Capillarity γ = 10−4,
Viscosity β = 0.02.

2. Reproduction of the Reid and Gooding Simulation
Reid and Gooding present in [44] a true two dimensional (u has values in R

2,
therefore the deformation gradient F is a 2 × 2 matrix) numerical simulation
using a three well energy. The energy has the form

W (q2, q3) = −1000(q2
2 + q2

3) + 5515.9(q3
2 − 3q2q

2
3) + 29583(q2

2 + q2
3)2

5.6. RESULTS OF THE NUMERICAL COMPUTATIONS 47

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x

y

Figure 5.10: Strain energy density for the Reid and Gooding simulation at time
step 100. Darker means less energy.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x

y

Figure 5.11: Strain energy density for the Reid and Gooding simulation at time
step 1500. Darker means less energy.

48 CHAPTER 5. NUMERICS

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x

y

Figure 5.12: Strain energy density for the Reid and Gooding simulation at time
step 4500 (Fully Relaxed State). Darker means less energy.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x

y

Figure 5.13: The variable q2 at time step 4500. Black: q2 = −0.1, White:
q2 = 0.2.

5.6. RESULTS OF THE NUMERICAL COMPUTATIONS 49

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x

y

Figure 5.14: The variable q3 at time step 4500. Black: q3 = −0.2, Gray: q3 = 0,
White: q3 = 0.2.

with q2 := E11 − E22 and q3 := E12, the entries in the Green-St. Venant strain
tensor E := 1

2 (F tF − Id) already introduced in Section 4.3. The variable q1 =
E11 +E22 is also used in [44], but the strain energy does not depend on it. This
energy function has minimizers at the points (q2, q3) = (−0.1, 0.2), (q2, q3) =
(−0.1,−0.2) and (q2, q3) = (0.2, 0) (values are rounded). The simulation was
carried out using a 50×50 element grid with a specimen size of 1×1. The factor
for the capillarity was chosen very high, in rough agreement with the Reid and
Gooding simulation, namely 0.05. The exact value of the capillarity used by
Reid and Gooding could not be reproduced, because they do not directly use
a capillarity term, but instead penalize gradients in their derived variables qi.
Viscosity was not included in the system. Figures 5.10, 5.11 and 5.12 show the
strain energy of the system at various times. One can see the time development
of the phase boundaries, they are the areas with higher strain energy (white
lines in the Figures). Figures 5.13 and 5.14 show the variables q1 and q2 at the
final relaxed state. The values of the variables q2 and q3 correspond to minima
of the strain energy function. All 3 minima can be seen. The fully relaxed
state obtained here does, however, look different from the one that Reid and
Gooding compute. They have only two phases in the fully relaxed state. This is
obviously due to the fact that the shape of our specimen is not compatible with
the symmetry of the strain energy, and theirs was chosen diamond shaped to
favor exactly the result with two phases. The alignment of the phase boundaries
is the same, though. The parameters for our simulation were

50 CHAPTER 5. NUMERICS

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

900
Energy Plot

(Time Step)/100

E

Figure 5.15: Energy versus time step for the Müller/Kohn Simulation. The
thick black line is the total energy, dashed line below the strain energy. Close
to zero start the surface energy (solid) and the kinetic energy (dashed).

Grid 50 × 50,
Element Size 0.02 × 0.02,
Boundary Conditions Clamped everywhere,

(u, utangential, unormal)|∂Ω = 0,
Initial Conditions Small amplitude random noise
Strain Energy −1000(q2

2 + q2
3) + 5515.9(q3

2 − 3q2q
2
3) +

29583(q2
2 + q2

3)2,
Capillarity γ = 10−4,
Viscosity β = 0.

3. Energy scaling of Microstructure
In [34] Kohn and Müller study a variational problem involving a nonconvex
energy function analytically. They obtain a scaling law depending on ε for the
minimum of the strain- and surface-energy at the relaxed state for an energy
density of the form

Eε(u) :=

∫

Ω

u2
x + (u2

y − 1)2 + ε2u2
yydV (5.5)

in an anti-plane shear system subject to the boundary condition u|x= = 0.
Previous work has always assumed that the twinning which results from such

5.6. RESULTS OF THE NUMERICAL COMPUTATIONS 51

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

x

y

Figure 5.16: Relaxed state for the Kohn/Müller simulation. Shown is the vari-
able uy. Black: uy = −1, White: uy = +1.

Table 5.1: The energy results for the Kohn/Müller simulation

Grid ε Potential Energy

50 × 50
√

0.5 215
50 × 50 1 210

50 × 50
√

2 272

70 × 50
√

0.5 220
70 × 50 1 285

70 × 50
√

2 361

90 × 50
√

0.5 257
90 × 50 1 223

90 × 50
√

2 293

52 CHAPTER 5. NUMERICS

an energy is essentially one-dimensional. Kohn and Müller instead examine the
complex patterns that are required at the austenite interface, modeled by the
boundary condition u|x=xmin

= 0. On a domain Ω = [0, L] × [0, 1] they receive

minu|x=xmin
=0E

ε ∼ Cε
2

3 L
1

3 .

A calculation using only a sawtooth function of y alone away from the boundary
(x ≥ h + xmin) and linearly interpolating in the regions closer to the boundary

0 ≤ x < h + xmin to satisfy u|x=xmin
= 0 would result in a scaling Eε ∼ Cε

1

2 L
1

2 .
This scaling was widely believed to be true.

The behavior of such a system is numerically regarded in this work. Simu-
lations were carried out using Dirichlet boundary conditions for u on x = xmin

(simply supported) and free boundary conditions for the other three boundaries.
The strain energy used was the same as in [34], except for the fact that we have
to add a term ε2u2

xx., too, due to the nature of our finite element method. This
term should, however, not result in any major differences since the main surface
energy will come from the phase boundaries which are aligned in the x-direction.
A 50 × 50, 70 × 50 and a 90 × 50 grid of elements, each of size 0.5 × 0.5 length
scales, was the domain for the simulation to examine the effect of various do-
main sizes. The factor ε(=

√
γ in our simulation) for the capillarity was taken

to be
√

0.5, 1.0 and
√

2.0, so a total of 9 simulations was run. Of those, we show
the time dependence of the total strain- surface- and kinetic-energy exemplarily
for the simulation with ε = 1 and the 50× 70 grid in Figure 5.15. For the same
simulation, an image of the resulting relaxed state can be found in Figure 5.16.
This figure shows the important variable uy in which the energy is non-convex.
One can clearly see the two phases with uy = 1 (black) and uy = +1 (white)
and the refinement at the boundary x = 0. The other simulations deliver similar
images and similar energies.

The potential (surface plus strain) energies for the simulations carried out
can be found in Table 5.1. It was not possible to reproduce the scaling law
depending on the length L of the specimen. This is not surprising, because in
order to see the self similar refinement proposed by Kohn and Müller one would
have to use a much larger scale simulation. We do generally only see a few
phase boundaries, and for the refinement at the austenite interface our spatial
discretization is to coarse. However, except for the run with ε =

√
0.5 and the

50 × 50 grid and the run with ε =
√

0.5 and the 90 × 50 grid (see below for
difficulties in such simulations) we are in very good agreement with the scaling
law in ε proposed in [34]. We obtain a scaling of the energy, disregarding the
two unsatisfying runs, with εa, where

a ≈ 0.65.

An error analysis was not performed, due to the few data points collected. This
result, however, is in excellent agreement with the prediction of Kohn and Müller
in [34].

The difficulties that arise when carrying out these simulations mainly come
from the fact that a viscosity term in the equation of motion hinders the phase

5.6. RESULTS OF THE NUMERICAL COMPUTATIONS 53

boundaries from moving. They get stuck and this is obviously what happened
in the runs with ε =

√
0.5 and the 50 × 50 or 90 grid—even though we set β,

the factor for the viscosity in the simulations, to be equal to zero. But in this
simulation it seems that even the numerical viscosity that is always inherent in
computations like these can enough to keep the phase boundaries from moving.
Of course, no viscosity at all would not work either, because somehow one has
to dissipate energy from the system. The refinement of the microstructure at an
austenite interface has been numerically examined before in the already men-
tioned simulation by Swart and Holmes, see [51], Section 6.4. But their system
does not include a surface energy term at all and therefore they can not obtain
scaling laws for the energy. The parameters for the the simulation regarding
the scaling law for the energy were

Grid 50 × 50, 70 × 50 and 90 × 50,
Element Size 0.5 × 0.5,
Boundary Conditions Simply supported at x = xmin, free on the

other boundaries u|x=xmin
= 0,

Initial Conditions u0(x, y) = 0.1 exp(−30x2 − 30y2)
Strain Energy W (ux, uy) =

∫
Ω

u2
x + (u2

y − 1)2,
Capillarity γ = ε2 = 0.5, 1, 2,
Viscosity β = 0.

4. Zirconia
In Chapter 4, a strain energy function for zirconia, a material with a triple point
is constructed. This seven well (4 monoclinic, 2 orthorhombic and 1 tetragonal)
potential was plugged into a two dimensional simulation and a test was per-
formed on a 50 × 50 grid. We chose very rigid boundary conditions (clamped
everywhere) and an initial condition that, at various points, exhibits strains for
every phase the system can have. However, the relaxed state shown in Fig-
ures 5.17 and 5.18 does not show orthorhombic minima. The variable ρ2 on
the orbit space is omitted here, because it is possible to distinguish the minima
without it. One can see that the largest region on the domain is occupied by
the tetragonal (ρ1 = ρ2 = ρ3 = 0) minimum. Where the boundary conditions
prevent this situation, the monoclinic minima are obtained, especially visible in
the lower right corner. This situation is in good agreement with what one would
expect, but still there seem to be problems with this simulation and it is not
completely trustworthy, because the phase boundaries are not as clearly visible
as in the other simulations. Nevertheless, the energy functional constructed in
Chapter 4 provides a basis for more investigations on zirconia, for example its
reaction to hard loading, i.e. the changing of boundary conditions with time.
The parameters used in the zirconia simulation were

54 CHAPTER 5. NUMERICS

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x

y

Figure 5.17: The orbit space variable ρ1 for the relaxed state for the zirconia
simulation. The light gray area shows values in the tetragonal minimum, the
dark and light gray areas have values in the monoclinic minimum.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x

y

Figure 5.18: The orbit space variable ρ3 for the relaxed state for the zirconia
simulation. The dark area is ρ3 = 0 (monoclinic or orthorhombic), the white
areas have values in the monoclinic minimum.

5.6. RESULTS OF THE NUMERICAL COMPUTATIONS 55

5
10

15
20

25
30

35
40

45
50 10

20
30

40
50

60
70

−0.2

0

0.2

yx

Figure 5.19: Traveling wave, shown is E12. Time step 2200.

Grid 50 × 50,
Element Size 0.5 × 0.5,
Boundary Conditions Clamped everywhere, values are taken from

the initial conditions on the boundary,
Initial Conditions u1 = 0.5 sin(x/4) sin(y/2.8), u2 =

0.5 sin(x/2.8) sin(y/4)
Strain Energy Constructed in Chapter 4,
Capillarity γ = 1,
Viscosity β = 0.01.

5. A Traveling Wave and an Obstacle
A very interesting question is the question of how traveling phase boundaries
react to obstacles that are in their way. It is very important to study such a
situation, because crystals are never defect-free—and the propagation of phase
boundaries obviously defines the quasi-plastic behavior as well as the pseudo-
elastic returning to the “memorized” shape. To model this situation, we, start-
ing with the Green-St. Venant strain tensor E again, first created a strain
energy that has only two minimizers. These minimizers were at E12 = ±0.1.
This energy function for the two-dimensional simulation was

W (E11, E22, E12) = E2
11 + E2

22 + 12(E2
12 − 0.12)2

(
1 + exp

(−E2
12

0.12

))
.

The exponential term only serves the purpose to increase the energy barrier
between the two minima. Then, to create the obstacle, which was in this case

56 CHAPTER 5. NUMERICS

5
10

15
20

25
30

35
40

45
50 10

20
30

40
50

60
70

−0.2

0

0.2

yx

Figure 5.20: Traveling wave, shown is E12. Time step 2400.

5
10

15
20

25
30

35
40

45
50 10

20
30

40
50

60
70

−0.2

0

0.2

yx

Figure 5.21: Traveling wave, shown is E12. Time step 2600.

5.6. RESULTS OF THE NUMERICAL COMPUTATIONS 57

5
10

15
20

25
30

35
40

45
50 10

20
30

40
50

60
70

−0.2

0

0.2

yx

Figure 5.22: Traveling wave, shown is E12. Time step 2800.

a set of four non transforming elements, a different energy function which was
simply

Wobstacle = 20(E2
11 + E2

22 + E2
12)

with only one minimizer at the unstrained reference configuration was used. To
simulate a large traveling wave, the program code was modified to allow periodic
boundary conditions at the x = xmin and x = xmax boundaries. This is done
by connecting the elements at x = xmax with those on x = xmin again and thus
working on a cylinder. Then we chose simply supported boundary conditions
at y = ymin and on the remaining y = ymax boundary.

The domain Ω was chosen to be a 50 × 200 grid of elements each of size
0.5. The four non transforming elements were around the element coordinates
25×25. This basically results in non reflective boundary conditions at y = ymax,
because this way traveling sound waves would be eliminated by the viscosity
before they could get back into the important region around the obstacle.

The initial conditions were u1 = 0.1y and u2 = 0. One can easily see that
this sets the whole system in the E12 = +0.1 minimum. After a relaxation
time so that the system could adapt to the different energy function on the
non transforming elements, we started to lift the boundary for u1 at y = ymin

upwards with a speed of 0.05, so that a traveling phase boundary was created
through that hard loading. The time difference between two time steps t2 and
t1 was 0.05. This loading results in the traveling wave seen in Figures 5.19
through 5.22.

The outcome might at first seem surprising. The traveling phase boundary
does almost not change its shape when it hits the obstacle—as opposed to sound
waves which would be dispersed. However, previous results (see [6]) already

58 CHAPTER 5. NUMERICS

indicate such a behavior even though this highly nonlinear process is essentially
not understood at all. The simulation parameters were

Grid 50 × 200,
Element Size 0.5 × 0.5,
Boundary Conditions Simply supported at x = const boundaries,

periodic at y = const,
Initial Conditions u1 = 0.1y, u2 = 0
Strain Energy See text,
Capillarity γ = 1,
Viscosity β = 0.05.

Appendix A

Notation

1. Derivatives
The partial derivative with respect to the variable x of a function u is denoted
by ux. The second derivative is denoted uxx etc. To distinguish indices denot-
ing differentiation from other indices a comma is used to separate them. For
example, u1,x is the derivative of u1 with respect to x.

The divergence of a matrix A ∈ Mat(n, n) is defined as the column vector
the bundles the divergencies of the rows of A. To distinguish that from the
“regular” divergence we write Div for the divergence of a matrix instead of div.

We thus have DivA =
(∑n

k=1
∂ajk

∂xk

)
j=1,...,n

.

A dot above a function as usual denotes the total time derivative of the
function.

2. Function Spaces
For spaces of functions defined on a domain Ω we use the standard notation.
So, for example, Cn(Ω) denotes the space of n-times continuously differentiable
functions defined on Ω. An index 0 is used if the functions vanish on the bound-
ary. Other function spaces used are described in Appendix B.

59

60 APPENDIX A. NOTATION

Appendix B

Hilbert and Sobolev Spaces

1. Banach Spaces
A normed vector space (X, || · ||X) is said to be a Banach space if it is complete.
Complete means that every Cauchy sequence in the space X converges to an
element of X . All n (n ∈ N) dimensional Euclidean vector spaces are Banach
spaces with the Euclidean norm, but usually the notion of Banach space is only
used in the infinite dimensional setting, typically for function spaces.

2. Hilbert Spaces
A Hilbert space X is a vector space with an inner product < ·, · > such that the
norm defined as ||f || :=

√
< f, f > for f ∈ X turns the space into a complete

metric space. Therefore, all Hilbert spaces are Banach spaces.

3. The space L2(Ω)
The vector space of all square integratable functions f on Ω is called L2(Ω) and
the L2 norm || · ||L2 is defined by

||f ||L2 :=

∫

Ω

f2dx.

For the domains under consideration, it can be shown that this space is a Hilbert
space. See [10] for further information on Lp spaces.

4. Sobolev Spaces and the Weak Derivative
Suppose we want to solve a k-th order partial differential equation together with
appropriate initial and boundary conditions on a suitable domain Ω. When try-
ing to find a solution for such an equation, the classical way is to search in
the space Ck(Ω), the space of k-times continuously differentiable functions de-
fined on Ω. However, for some partial differential equations of this form this
is not enough. Shock waves occurring in gas dynamics, for example, cannot
be described by continuously differential functions. Therefore one has to find a
different notion for differentiability and one can use a formal partial integration
to achieve that. We will say that a function f ∈ L2 defined on Ω is weakly

61

62 APPENDIX B. HILBERT AND SOBOLEV SPACES

differentiable with respect to x if for every test function ϕ ∈ C∞
0 (Ω), the space

of smooth functions with compact support on Ω, one has

∫

Ω

fϕxdx = −
∫

Ω

gϕdx

with a function g ∈ L2. The function g will be called the weak derivative of f .
The Sobolev space H1(Ω), Ω ⊂ R, is the space of all once partially weakly

differentiable functions f(x) endowed with the norm

||f ||H1 = ||f ||L2 + ||fx||L2 .

For Ω ⊂ R
n the Sobolev space H1(Ω) is defined analogously, with the norm

including the sum over the L2 norms of the higher derivatives. The Sobolev
space Hn is accordingly the space of all functions that have partial derivatives
up to order n in L2. One can show that a Sobolev space modeled on L2 is
a Hilbert space. The character of the norm of the Sobolev spaces to include
the L2 norms of all derivatives is used in the proof in Section 3.5. Much more
information on Sobolev spaces can be found in [10].

Appendix C

The MATLAB Program

“shape”

code/shape

Section Page

Main Program . 1 64

Initial Conditions . 2 65

Boundary Conditions . 3 66

Initialisation . 4 68

Boundary- and Initial Conditions . 7 72

Element Matrix . 12 80

Prepare Energy Function . 13 82

Assemble System Matrix . 14 83

Time Integration . 15 84

Assemble the Matrices . 22 91

Find Degrees of Freedom for an Element 23 92

Display . 24 93

63

64 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

1. Main Program.

This is the implementation of the finite element algorithm using rectangular
C1 bicubic elements for the simulation of a martensite phase transformation
with surface energy. Also includeed in this code is the program to display the
computed results, showview .m, which reuses many of the initialisation routines
for the program. The main program is divided into the following parts:

clear ; % remove any leftover variables from the workspace.

〈 Specify Initial Conditions 2 〉
〈 Initialise FEM Parameters 4 〉
〈 Set Initial and Boundary Conditions 7 〉
〈Compute Element Matrix 12 〉
〈Prepare Energy Function 13 〉
〈Assemble System Matrix 14 〉
〈Time Integration 15 〉

65

2. Initial Conditions.
In this program section we specify the initial conditions for the partial differen-
tial equation.
Variables introduced:

u1 0 function for the initial value of u1

u1 t 0 function for the initial value of u1,t

u1 x 0 function for the initial value of u1,x

and so on.

The element we use allows us to specify the spatial derivatives and the
function values at each node independently (four degrees of freedom for ev-
ery node: u, ux, uy and uxy) and we chose to set them by introducing four
functions like u1 0 for the actual values at those nodes. The functions are
evaluated on the coordinates of every node and should be specified on Ω =[
−1
2 Specimen sizex, 1

2Specimen sizex
]
×
[
−1
2 Specimen sizey, 1

2Specimen sizey
]

Here, we set the functions specifying the spatial derivatives to be the actual
derivatives of the function values specified in u1 0 and u2 0 by using the sym-
bolic derivative computed by diff .
Our second order differential equation also needs to be given the time derivatives
of all these functions as initial conditions.

〈 Specify Initial Conditions 2 〉 ≡
syms x y
u1 0 = 1/π∗sin (2∗π∗x/12.5);
u1 t 0 = sym (0);
u2 0 = sym (0);
u2 t 0 = sym (0);

u1 x 0 = diff (u1 0 , x);
u1 y 0 = diff (u1 0 , y);
u1 xy 0 = diff (diff (u1 0 , x), y);

u1 tx 0 = diff (u1 t 0 , x);
u1 ty 0 = diff (u1 t 0 , y);
u1 txy 0 = diff (diff (u1 t 0 , x), y);

u2 x 0 = diff (u2 0 , x);
u2 y 0 = diff (u2 0 , y);
u2 xy 0 = diff (diff (u2 0 , x), y);

u2 tx 0 = diff (u2 t 0 , x);
u2 ty 0 = diff (u2 t 0 , y);
u2 txy 0 = diff (diff (u2 t 0 , x), y);

This code is used in section 1.

66 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

3. Boundary Conditions.
In this program section we specify the boundary conditions for the differential
equation. The vector bc specifies for which sides of the specimen the displace-
ment u is constrained. If the first entry is nonzero, then the lower (y = 0) edge
has this constraint, the second is for the right edge and so on. The variable
bc n specifies for which boundaries the normal derivative ∇u · n should be con-
strained.
The symbolic functions describe the change of the boundary conditions with
time t. They can be functions of t and ξ, where ξ is the coordinate along the
boundary, going from − 1

2Specimen sizex to 1
2Specimen sizex (or y for bound-

arys x = const). The variable bcu1 is for u1, bcu2 is for u2. Concatenated is the
number of the boundary, starting with one from the lower (x = 0) and counting
counter clockwise. The functions with n at the end specify the change in the
boundary conditions for clamped boundaries, that is ∇u ·n. The functions with
t are for the derivative along the boundary, this is obviously the derivative with

respect to ξ and can be computed symbolically with diff .

〈 Set Restrictions 3 〉 ≡
bc = [1 1 1 1];
bc n = [0 0 0 0];

syms xi t

bcu1 1 = t;
bcu1 2 = t;
bcu1 3 = t;
bcu1 4 = t;

bcu1 1 n = t;
bcu1 2 n = t;
bcu1 3 n = t;
bcu1 4 n = t;

bcu2 1 = t;
bcu2 2 = t;
bcu2 3 = t;
bcu2 4 = t;

bcu2 1 n = t;
bcu2 2 n = t;
bcu2 3 n = t;
bcu2 4 n = t;

67

bcu1 1 t = diff (bcu1 1 , xi);
bcu1 2 t = diff (bcu1 2 , xi);
bcu1 3 t = diff (bcu1 3 , xi);
bcu1 4 t = diff (bcu1 4 , xi);

bcu2 1 t = diff (bcu2 1 , xi);
bcu2 2 t = diff (bcu2 2 , xi);
bcu2 3 t = diff (bcu2 3 , xi);
bcu2 4 t = diff (bcu2 4 , xi);

This code is used in section 7.

68 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

4. Initialisation.
Some basic parameters for the finite element method are set and others, like the
nodal connection, are computed.

Variables introduced in this program section:

Specimen Sizex Size of the simulated object in x-
direction

Specimen Sizey Size of the simulated object in y-
direction

N NDx ,N NDy Number of nodes in x and y direction
N ND Total number of nodes in the system
N NDpEL Number of nodes per element (see ele-

ment description in Section 5.4)
N ELx , N ELy Number of elements in x and y direction
N EL Total number of elements
N DOFpND Number of degrees of freedom per node

(see element description)
N DOFpEL Number of degrees of freedom per ele-

ment (see element description)
N DOF Total number of degrees of freedom
Delta t Timestep
STime Starting time
FTime Final time
N Time Number of timesteps (fix rounds to-

wards zero)
Capillarity Factor The capillarity γ of the system
Potential Factor The potential energy is multiplied by

this factor
Viscosity Factor The factor β for the viscous stress
file1 , file2 File names where u1 and u2 are saved

to
Initial File1 , Initial File2 Files to read the initial conditions from

(if set)
Initial File index At what timestep to start in the initial

conditions file

〈 Initialise FEM Parameters 4 〉 ≡
Specimen Sizex = 25;
Specimen Sizey = 25;
N NDx = 51;
N NDy = 51;
N ND = N NDx ∗N NDy ;
N NDpEL = 4;
N ELx = N NDx − 1;
N ELy = N NDy − 1;

69

N EL = N ELx ∗N ELy ;
N DOFpND = 4;
N DOFpEL = N NDpEL∗N DOFpND ;
N DOF = N ND∗N DOFpND ;

Delta t = 0.0005;
STime = 0.0;
FTime = 500;
N Time = fix ((FTime − STime)/Delta t);
Capillarity Factor = 1;
Potential Factor = 1;
Viscosity Factor = 0.01;

file1 = ’/home/pwd/u1.fem’;
file2 = ’/home/pwd/u2.fem’;

Initial File1 = ’’;
Initial File2 = ’’;

Initial File index = 0;
〈Calculate Coordinates 5 〉
〈Compute Element-Node Connections 6 〉

This code is used in sections 1 and 24.

70 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

5. In this loop we calculate the x- and y-coordinate for every node.

Variables introduced:

ncoord (nodeindex , 1) x-coordinate for node nodeindex
ncoord (nodeindex , 2) y-coordinate for node nodeindex
xlen and ylen the length of one element in each direction

The nodes are arranged in N NDy rows of N NDx nodes, so when counting
nodes with the indices iNDx and iNDy in x- and y-direction, (iNDy−1)∗N NDx
gives us the number of nodes in the rows below the currently processed line;
adding iNDx we have the number of the node at (iNDx ,iNDy). The x and
y coordinate are then found by normalising iNDx and iNDy to run from − 1

2
Specimen Size to 1

2 Specimen Size . Here we also have to take into account
that the indices start from 1 and the coordinates from 0. Then we can set the
ncoord (nodeindex , 1) to the computed x-coordinate and ncoord (nodeindex , 2)
to the y-coordinate. For the indexing of the nodes see Figure 5.1 (N and M
there are N NDx and N NDy here).
Since all elements have the same length, we compute this right now, taking the
difference in the coordinates of the nodes in the first element. (See Figure 5.1.)

〈Calculate Coordinates 5 〉 ≡
for iNDy = 1 : N NDy

for iNDx = 1 : N NDx
ncoord ((iNDy − 1)∗N NDx + iNDx ,

1) = (iNDx − 1)∗Specimen Sizex /(N NDx − 1)−Specimen Sizex /2;
ncoord ((iNDy − 1)∗N NDx + iNDx ,

2) = (iNDy − 1)∗Specimen Sizey/(N NDy − 1)−Specimen Sizey/2;
end

end

xlen = ncoord (2, 1) − ncoord (1, 1);
ylen = ncoord (N NDx + 1, 2) − ncoord (1, 2);

This code is used in section 4.

71

6. Here we determine which nodes belong to a certain element:

Variables introduced:

nodes (elementindex , 1) First node belonging to element elementindex
nodes (elementindex , 2) Second node belonging to element elementindex
nodes (elementindex , 3) Third node belonging to element elementindex
nodes (elementindex , 4) Fourth node belonging to element elementindex

The element index here is determined in the same fashion as the node index
in the previous program section (only by counting elements instead of nodes),
then the corresponding nodes are found counterclockwise around the element
starting in the lower left corner. See Figure 5.1.

This code is of course only usable for a rectangular element with four nodes.

〈Compute Element-Node Connections 6 〉 ≡
for iELy = 1 : N ELy

for iELx = 1 : N ELx
nodes ((iELy − 1)∗N ELx + iELx , 1) = (iELy − 1)∗N NDx + iELx ;
nodes ((iELy − 1)∗N ELx + iELx , 2) = (iELy − 1)∗N NDx + iELx + 1;
nodes ((iELy − 1)∗N ELx + iELx , 3) = (iELy)∗N NDx + iELx + 1;
nodes ((iELy − 1)∗N ELx + iELx , 4) = (iELy)∗N NDx + iELx ;

end
end

This code is used in section 4.

72 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

7. Boundary- and Initial Conditions.

For the initial conditions we can either start from scratch with the functions
given in program section 1 or we continue the computations from a file with old
data.

〈 Set Initial and Boundary Conditions 7 〉 ≡
if isempty (Initial File1)
〈 Set Initial Conditions According to Given Functions 8 〉

else
〈Read Initial Conditions from File 9 〉

end

〈 Set Restrictions 3 〉
〈Compute Boundary Conditions 10 〉

This code is used in section 1.

73

8. Set Initial Conditions

t1u1 the solution vector for u1 at time 0
t1u2 the solution vector for u2 at time 0
t2u1 , t2u2 the corresponding vectors at the time ∆t

In each of these vectors we have N DOFpND = 4 degrees of freedom (dof)
per node, each of which has its own symbolic function that specifies one initial
condition for this degree of freedom. We set the dofs by evaluating these func-
tions for the initial conditions at the corrdinates x and y for each node. The
value obtained is stored in the corresponding vector for the initial condition at
the index of the corresponding degree of freedom: For each node we have four
entries in the vector, the first at iND∗4 − 3 for the function value, the second
at iND∗4 − 2 for the x-derivative at this point, the third at iND∗4 − 1 for the
y-derivative and finally the fourth at iND for the xy-derivative. The solution
vectors for the time ∆t are computed by adding the initial conditions for the
time derivatives multiplied by the timestep. The degrees of freedom addressing
spatial derivatives have to be multiplied by the corresponding element lengths
because the actual derivative of the function on an element is the derivative of
the shape function times the value of the corresponding degree of freedom and
the derivatives of the shape functions obviously are inversely proportional to
the element length (See description of the shape functions in program section
12).

The symbolic functions for the initial conditions are no longer needed after-
wards and thus are cleared from memory.

〈 Set Initial Conditions According to Given Functions 8 〉 ≡
t1u1 = zeros (N DOF , 1);
t2u1 = zeros (N DOF , 1);
t1u2 = zeros (N DOF , 1);
t2u2 = zeros (N DOF , 1);

for iND = 1 : N ND
x = ncoord (iND , 1);
y = ncoord (iND , 2);
t1u1 (iND∗4 − 3) = eval (u1 0);
t1u1 (iND∗4 − 2) = eval (u1 x 0)∗xlen ;
t1u1 (iND∗4 − 1) = eval (u1 y 0)∗ylen ;
t1u1 (iND∗4) = eval (u1 xy 0)∗xlen∗ylen ;
t2u1 (iND∗4 − 3) = t1u1 (iND∗4 − 3) + Delta t∗eval (u1 t 0);
t2u1 (iND∗4 − 2) = t1u1 (iND∗4 − 2) + Delta t∗eval (u1 tx 0)∗xlen ;
t2u1 (iND∗4 − 1) = t1u1 (iND∗4 − 1) + Delta t∗eval (u1 ty 0)∗ylen ;
t2u1 (iND∗4) = t1u1 (iND∗4) + Delta t∗eval (u1 txy 0)∗xlen∗ylen ;
t1u2 (iND∗4 − 3) = eval (u2 0);
t1u2 (iND∗4 − 2) = eval (u2 x 0)∗xlen ;
t1u2 (iND∗4 − 1) = eval (u2 y 0)∗ylen ;
t1u2 (iND∗4) = eval (u2 xy 0)∗xlen∗ylen ;
t2u2 (iND∗4 − 3) = t1u2 (iND∗4 − 3) + Delta t∗eval (u2 t 0);

74 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

t2u2 (iND ∗4 − 2) = t1u2 (iND∗4 − 2) + Delta t∗eval (u2 tx 0)∗xlen ;
t2u2 (iND ∗4 − 1) = t1u2 (iND∗4 − 1) + Delta t∗eval (u2 ty 0)∗ylen ;
t2u2 (iND ∗4) = t1u2 (iND∗4) + Delta t∗eval (u2 txy 0)∗xlen∗ylen ;

end

clear u1 0 u1 x 0 u1 y 0 u1 xy 0 u1 t 0 u1 tx 0 u1 ty 0 u1 txy 0
clear u2 0 u2 x 0 u2 y 0 u2 xy 0 u2 t 0 u2 tx 0 u2 ty 0 u2 txy 0
clear x y
pack

This code is used in section 7.

9. Read Initial Conditions from File.

We open the files and read one inital data set. Then, in the loop we assign
the current data to the variables for the data from one timestep ago and read
one more data set until we get to the index in Initial File index .

〈Read Initial Conditions from File 9 〉 ≡
fid1 = fopen (Initial File1);
fid2 = fopen (Initial File2);

t2u1 = fread (fid1 , N DOF , ’double’);
t2u2 = fread (fid2 , N DOF , ’double’);

for it = 2 : Initial File index
it
t1u1 = t2u1 ;
t1u2 = t2u2 ;
t2u1 = fread (fid1 , N DOF , ’double’);
t2u2 = fread (fid2 , N DOF , ’double’);

end

This code is used in section 7.

75

10. In this program section we determine which boundary conditions have to
be set and what their initial values have to be.
Variables introduced

bcdof (1) Index of first constrained degree of free-
dom for u1 and u2

bcval1 0 (1), bcval2 0 (n) Corresponding initial values for u1 and
u2

...
...

bcdof (n) Index of last constrained degree of free-
dom for u1 and u2

bcval1 0 (n), bcval2 0 (n) Corresponding initial values for u1 and
u2

First, in the “Find boundary” program section we find out which degrees of
freedom belong to a certain boundary.

After initialising the index counter cc , we go through a for loop for every
boundary condition that needs to be set. The first four are for u itself, the next
four are for the tangential derivative which is set when u is set, the last four
are for the normal derivative of u, which is controlled by the bc n variable. The
four loops are one for every side of the specimen.

These loops basically all do the same: They check every entry in the vector
that is storing the information about the indices of the constrained degrees of
freedom. The counter cc is incremented so that a new entry can be written into
bcdof and bcval . The respective index number is written into bcdof and the
values in bcval1 and bcval2 are set to be the values of the inital conditions on
these degrees of freedom.

〈Compute Boundary Conditions 10 〉 ≡
〈Find Boundary 11 〉
cc = 0;

if (bc(1) 6= 0)
for iND = 1 : length (boundarydof1 u)

cc = cc + 1;
bcdof (cc) = boundarydof1 u (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof1 u (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof1 u (1, iND));

end
end

if (bc(2) 6= 0)
for iND = 1 : length (boundarydof2 u)

cc = cc + 1;
bcdof (cc) = boundarydof2 u (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof2 u (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof2 u (1, iND));

76 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

end
end

if (bc(3) 6= 0)
for iND = 1 : length (boundarydof3 u)

cc = cc + 1;
bcdof (cc) = boundarydof3 u (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof3 u (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof3 u (1, iND));

end
end

if (bc(4) 6= 0)
for iND = 1 : length (boundarydof4 u)

cc = cc + 1;
bcdof (cc) = boundarydof4 u (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof4 u (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof4 u (1, iND));

end
end

if (bc(1) 6= 0)
for iND = 1 : length (boundarydof1 u t)

cc = cc + 1;
bcdof (cc) = boundarydof1 u t (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof1 u t (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof1 u t (1, iND));

end
end

if (bc(2) 6= 0)
for iND = 1 : length (boundarydof2 u t)

cc = cc + 1;
bcdof (cc) = boundarydof2 u t (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof2 u t (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof2 u t (1, iND));

end
end

if (bc(3) 6= 0)
for iND = 1 : length (boundarydof3 u t)

cc = cc + 1;
bcdof (cc) = boundarydof3 u t (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof3 u t (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof3 u t (1, iND));

end
end

if (bc(4) 6= 0)
for iND = 1 : length (boundarydof4 u t)

cc = cc + 1;

77

bcdof (cc) = boundarydof4 u t (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof4 u t (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof4 u t (1, iND));

end
end

if (bc n (1) 6= 0)
for iND = 1 : length (boundarydof1 u n)

cc = cc + 1;
bcdof (cc) = boundarydof1 u n (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof1 u n (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof1 u n (1, iND));

end
end

if (bc n (2) 6= 0)
for iND = 1 : length (boundarydof2 u n)

cc = cc + 1;
bcdof (cc) = boundarydof2 u n (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof2 u n (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof2 u n (1, iND));

end
end

if (bc n (3) 6= 0)
for iND = 1 : length (boundarydof3 u n)

cc = cc + 1;
bcdof (cc) = boundarydof3 u n (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof3 u n (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof3 u n (1, iND));

end
end

if (bc n (4) 6= 0)
for iND = 1 : length (boundarydof4 u n)

cc = cc + 1;
bcdof (cc) = boundarydof4 u n (1, iND);
bcval1 0 (cc) = t1u1 (boundarydof4 u n (1, iND));
bcval2 0 (cc) = t1u2 (boundarydof4 u n (1, iND));

end
end

This code is used in section 7.

78 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

11. In this program sections we determine which degrees of freedom belong
to the boundary.
First we find the nodes on every side of the specimen. This information is saved
in boundarynodes1 for the first (lower, y = ymin) side of the specimen, and
continuing to count counter-clockwise. Then we find the degrees of freedom
corresponding to the various boundary conditions. Since there are four degrees
of freedom (u, ux, uy and uxy) for every node their indices are found by multi-
plying the index of the node minus 1 with 4 and then adding 1 for u, 2 for uy

and so on. In the second row of the boundarydof vectors we save the coordinate
along the boundary of the node the dof belongs to. The first 4 loops find the
indices of the degrees of freedom for u, where only one—the starting—corner
node is used, therefore we loop only to N NDx − 1 or N NDy − 1. The next 4
loops are for the tangential derivative, so the first of them finds the indices of
the x-derivative, the second the y-derivative, the third x again and the last of
them finds the y derivative. The last 4 loops are for the normal derivative, they
find the indices of the respectively other derivatives.

〈Find Boundary 11 〉 ≡
boundarynodes1 = (1 : N NDx);
boundarynodes2 = N NDx ∗(1 : N NDy);
boundarynodes3 = N NDx ∗N NDy − ((1 : N NDx) − 1);
boundarynodes4 = (1 +N NDx ∗(N NDy − 1))− (N NDx ∗((1 :N NDy)− 1));

for iND = 1 : N NDx
boundarydof1 u (1, iND) = (boundarynodes1 (iND) − 1)∗4 + 1;
boundarydof1 u (2, iND) = ncoord (boundarynodes1 (iND), 1);

end

for iND = 1 : N NDy
boundarydof2 u (1, iND) = (boundarynodes2 (iND) − 1)∗4 + 1;
boundarydof2 u (2, iND) = ncoord (boundarynodes2 (iND), 2);

end

for iND = 1 : N NDx
boundarydof3 u (1, iND) = (boundarynodes3 (iND) − 1)∗4 + 1;
boundarydof3 u (2, iND) = ncoord (boundarynodes3 (iND), 1);

end

for iND = 1 : N NDy
boundarydof4 u (1, iND) = (boundarynodes4 (iND) − 1)∗4 + 1;
boundarydof4 u (2, iND) = ncoord (boundarynodes4 (iND), 2);

end

for iND = 1 : N NDx
boundarydof1 u t (1, iND) = (boundarynodes1 (iND) − 1)∗4 + 2;
boundarydof1 u t (2, iND) = ncoord (boundarynodes1 (iND), 1);

end

for iND = 1 : N NDy
boundarydof2 u t (1, iND) = (boundarynodes2 (iND) − 1)∗4 + 3;
boundarydof2 u t (2, iND) = ncoord (boundarynodes2 (iND), 2);

79

end

for iND = 1 : N NDx
boundarydof3 u t (1, iND) = (boundarynodes3 (iND) − 1)∗4 + 2;
boundarydof3 u t (2, iND) = ncoord (boundarynodes3 (iND), 1);

end

for iND = 1 : N NDy
boundarydof4 u t (1, iND) = (boundarynodes4 (iND) − 1)∗4 + 3;
boundarydof4 u t (2, iND) = ncoord (boundarynodes4 (iND), 2);

end

for iND = 1 : N NDx
boundarydof1 u n (1, iND) = (boundarynodes1 (iND) − 1)∗4 + 3;
boundarydof1 u n (2, iND) = ncoord (boundarynodes1 (iND), 1);

end

for iND = 1 : N NDy
boundarydof2 u n (1, iND) = (boundarynodes2 (iND) − 1)∗4 + 2;
boundarydof2 u n (2, iND) = ncoord (boundarynodes2 (iND), 2);

end

for iND = 1 : N NDx
boundarydof3 u n (1, iND) = (boundarynodes3 (iND) − 1)∗4 + 3;
boundarydof3 u n (2, iND) = ncoord (boundarynodes3 (iND), 1);

end

for iND = 1 : N NDy
boundarydof4 u n (1, iND) = (boundarynodes4 (iND) − 1)∗4 + 2;
boundarydof4 u n (2, iND) = ncoord (boundarynodes4 (iND), 2);

end

This code is used in section 10.

80 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

12. Element Matrix.
To compute the element matrix we use MATLAB’s symbolic math package, an
interface to the MAPLE kernel.
Variables introduced:

f ,g Vectors with the cubic 1D shape func-
tions, f for zeta direction, g for eta

phi Vector with the 2D shape functions,
tensor products of the 1D shape func-
tions

lapphi Vector that contains the functions 4N
Ke Element stiffness matrix
Me Element mass matrix

First we set eta and zeta to be symbolic variables, so that all functions
containing these variables will be stored as symbolic functions. Then we specify
the 1D shape functions in F and G, where we already normalize to the element
length, and we create the 2D shape functions in N as tensor products of the
1D functions (See Section 5.4). We immediately take the divergence of each of
these functions in N and store that in the vector lapN because this is the only
thing we use in the element matrix.
Then we calculate the element stiffness matrix Ke and the element mass matrix
Me :

K
(e)
i,j =

∫

Ωe

4ϕi4ϕj dV (C.1)

M
(e)
i,j =

∫

Ωe

ϕiϕj dV (C.2)

where Ω is the element domain and ϕi are the shape functions.
To save time we make use of the fact that Ke and Me are symmetric matrices.
After that, the variables f , g and lapphi are no longer needed and we remove
them from memory.

〈Compute Element Matrix 12 〉 ≡
syms eta zeta ;

f = [(1 − zeta/xlen)ˆ2∗(1 + 2∗zeta/xlen);
(zeta/xlen)∗(1 − zeta/xlen)ˆ2;
(zeta/xlen)ˆ2∗(3 − 2∗zeta/xlen);
−(zeta/xlen)ˆ2∗(1 − zeta/xlen)];

g = [(1 − eta/ylen)ˆ2∗(1 + 2∗eta/ylen);
(eta/ylen)∗(1 − eta/ylen)ˆ2;
(eta/ylen)ˆ2∗(3 − 2∗eta/ylen);
−(eta/ylen)ˆ2∗(1 − eta/ylen)];

phi (1) = f(1)∗g(1); phi (2) = f(2)∗g(1); phi (3) = f(1)∗g(2);
phi (4) = f(2)∗g(2);
phi (5) = f(3)∗g(1); phi (6) = f(4)∗g(1); phi (7) = f(3)∗g(2);
phi (8) = f(4)∗g(2);

81

phi (13) = f(1)∗g(3); phi (14) = f(2)∗g(3); phi (15) = f(1)∗g(4);
phi (16) = f(2)∗g(4);
phi (9) = f(3)∗g(3); phi (10) = f(4)∗g(3); phi (11) = f(3)∗g(4);
phi (12) = f(4)∗g(4);

for i = 1 : 16
lapphi (i) = diff (diff (phi (i), zeta), zeta) + diff (diff (phi (i), eta), eta);

end

for i = 1 : 16
for j = i : 16

Ke (i, j) = eval (int (int (lapphi (i)∗lapphi (j), eta , 0, ylen), zeta , 0,
xlen));

Ke (j, i) = Ke (i, j);
Me (i, j) = eval (int (int (phi (i)∗phi (j), eta , 0, ylen), zeta , 0, xlen));
Me (j, i) = Me (i, j);

end
end

clear f g lapphi

This code is used in sections 1 and 24.

82 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

13. Prepare Energy Function.
Variables introduced:

phi x (i), phi y (i) Spatial derivatives of the shape func-
tions (symbolic)

Shape Int x , Shape Int y Integrals of the spatial derivatives of the
shape functions

In this program section we prepare the integration of the potential. First
we specify the strain tensor F depending on the spatial derivatives of the dis-
placement, then we compute the Cauchy-Green strain tensor C = F tF . The
potential energy can then be expressed symbolically in terms of the entries of the

Cauchy-Green strain tensor. The stress tensor σ = ∂Φ(F)
∂F

can then be computed
symbolically with MATLAB’s diff function. For the final integration we will
need the integrals of the spatial derivatives of the shape functions over the ele-
ment domain and so we precalculate them symbolically but evaluate the actual
value of the integral and store it in the Shape Int x and Shape Int y vector.

〈Prepare Energy Function 13 〉 ≡
syms u1 x u1 y u2 x u2 y

F = [u1 x + 1, u1 y ; u2 x , u2 y + 1];
C = transpose (F)∗(F);

Phi = (C(1, 1) − 1)ˆ2 + (C(2, 2) − 1)ˆ2 + (C(1, 2)ˆ2 − 0.1)ˆ2;

sigma (1, 1) = diff (Phi , u1 x);
sigma (1, 2) = diff (Phi , u1 y);
sigma (2, 1) = diff (Phi , u2 x);
sigma (2, 2) = diff (Phi , u2 y);

Shape Int x = zeros (N DOFpEL, 1);
Shape Int y = zeros (N DOFpEL, 1);

for iDOF = 1 : N DOFpEL
phi x (iDOF) = diff (phi (iDOF), zeta);
Shape Int x (iDOF) = eval (int (int (phi x (iDOF), eta , 0, xlen), zeta , 0,

ylen));
phi y (iDOF) = diff (phi (iDOF), eta);
Shape Int y (iDOF) = eval (int (int (phi y (iDOF), eta , 0, xlen), zeta , 0,

ylen));
end

This code is used in sections 1 and 24.

83

14. Assemble System Matrix.

f1 , f2 the system vectors for u1 and u2

M the system mass matrx
K the system stiffness matrix
u1 , u2 the solution vectors

index (1) first degree of freedom for the currently
processed element

index (2) second dof
...

...

index (N DOFpEL) last degree of freedom for the element

For every element we extract the corresponding nodes from the nodes ma-
trix, then we find the degrees of freedom for these nodes by using the function
elementdof and store them into index . The function assemble adds the entries
of the element matrix Ke to the entries in K described by index (Same for the
mass matrix). Finally, the stiffness matrix is multiplied by the factor for the
capillarity. The functions elementdof and assemble have been taken from [35].

〈Assemble System Matrix 14 〉 ≡
f1 = zeros (N DOF , 1);
f2 = zeros (N DOF , 1);
K = sparse (N DOF , N DOF);
M = sparse (N DOF , N DOF);
u1 = zeros (N DOF , 1);
u2 = zeros (N DOF , 1);
index = zeros (N NDpEL∗N DOFpND , 1);

for iEL = 1 : N EL
for i = 1 : N NDpEL

nd (i) = nodes (iEL, i);
end
index = elementdof (nd , N NDpEL, N DOFpND);
K = assemble (K, Ke , index);
M = assemble (M, Me , index);

end

K = K∗Capillarity Factor ;

This code is used in sections 1 and 24.

84 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

15. Time Integration.
We want to discretise the following equation for both f1 & u1 and f2 & u2 :

Mü + Ku = f (C.3)

so we say

ü =
u(t+2∆t) − 2u(t+∆t) + u(t)

(∆t)2
(C.4)

and get:

(
M + (∆t)2K

)
u(t+2∆t) = M

(
2u(t+∆t) − u(t)

)
+ (∆t)2f (C.5)

We do this by storing the entire matrix on the left hand side into K and the
entire right hand side into the effective system vectors fn1 and fn2 . Then we
solve Ku = f . So first we prepare K and apply the boundary conditions to this
matrix. Also, we can immediately compute the LU-factorization of K, because
the matrix will remain the same throughout the time integration. This saves
time when solving the system of linear equations. K itself is no longer needed
after that and thus cleared from memory.
In the time integration loop we first integrate the potential energy into the force
vectors f1 and f2 . Then we compute the effective force vectors fn1 and fn2 ,
as decribed above (right hand side). After applying the boundary conditions to
the force vectors the linear equations can be solved and the results are saved
into the files.

〈Time Integration 15 〉 ≡
K = M + Delta tˆ2∗K;

〈Apply Boundary Conditions to Matrix 16 〉
[L, U] = lu (K);
clear K
pack

for it = 1 : N Time
t = it∗Delta t
〈 Integrate Potential 17 〉
fn1 = M∗(2∗t2u1 − t1u1) + Delta tˆ2∗f1 ;
fn2 = M∗(2∗t2u2 − t1u2) + Delta tˆ2∗f2 ;

〈Apply Boundary Conditions to System Vectors 18 〉
〈 Solve System of Linear Equations 20 〉
〈 Save Results 21 〉
t1u1 = t2u1 ;
t2u1 = u1 ;
t1u2 = t2u2 ;
t2u2 = u2 ;

end;

This code is used in section 1.

85

16. Apply Boundary Conditions to Matrix.

We want to make sure that in the system of linear equations certain elements
in the resulting vector have a specified value. To achieve this we set the entire
row in the matrix to be zero except for the index of the constrained degree of
freedom where it is one. If we then later (program section 18) set the corre-
sponding entry in the force vector to the desired value for this dof, this value
will also be the result. We repeat this procedure for every constraint specified
in the bcdof vector.

〈Apply Boundary Conditions to Matrix 16 〉 ≡
for ibc = 1 : length (bcdof)

bcindex = bcdof (ibc);
K(bcindex , :) = 0;
K(bcindex , bcindex) = 1;

end

This code is used in section 15.

86 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

17. Integrate Potential.
After initialising the force vectors, we loop for every element to do the in-

tegration. First we get the indices of the degrees of freedom for the current
element, exactly as in the “Assemble System Matrix” program section. We
then compute the strain, that is the spatial derivatives of the displacement,

ux(x, y) =

N∑

i=1

uiϕi,x(x, y).

The same for the other derivatives, too. Here the approximation is made, that
one considers the gardient, and therefore the derived quantities like the stress
tensor, to be constant on one element. One can say that the element is linearized
before integration. With this approximation one obtains

∫

ΩE

uxdV =

∫

ΩE

N∑

i=1

uiϕi,x(x, y)dV

=

N∑

i=1

ui ·
∫

ΩE

ϕi,x(x, y)dV.

Since we have already prepared the integrals over the shape functions, all we
hav to do is to dot-product this vector with the vector containing the coefficients
of the element in the right order. This is exactly t2u1 (index) or t2u2 (index).
After that, we evaluate the stress tensor for the just computed strain. Since the
strain tensor has already been specified as a symbolic function in the variables
u1 x , u1 y , u2 x and u2 y the MATLAB function eval will automatically eval-
uate σ at these just computed variables. Then, we are ready to integrate this
into the force vectors:
The force vector of the element is given by

fi =

∫

ΩE

ϕi · (Divσ + 4ut)dV = −
∫

Ωe

∇ϕi · (σ + β∇ut)dV.

where σ = ∂Φ
∂F

is the stress tensor and ϕi are the shape functions of the ele-
ment. The boundary terms cancel on the inside of the whole domain Ω. The
time derivatives of the gradients are computed by taking the difference of the
gradients from two timesteps. They are used to compute the viscous stress.

Here, the integration of the stress tensor σ and the viscous stress is simply
done by multiplying the precalculated integrals of the spatial derivatives of the
shape functions with the stress. The result is added to the force vector of the
system at the indices of the degrees of freedom of the element.

〈 Integrate Potential 17 〉 ≡
f1 = zeros (N DOF , 1);
f2 = zeros (N DOF , 1);

for iEL = 1 : N EL

87

for i = 1 : N NDpEL
nd (i) = nodes (iEL, i);

end
index = elementdof (nd , N NDpEL, N DOFpND);

u1 x = dot (t2u1 (index), Shape Int x /(xlen∗ylen));
u1 y = dot (t2u1 (index), Shape Int y/(xlen∗ylen));
u2 x = dot (t2u2 (index), Shape Int x /(xlen∗ylen));
u2 y = dot (t2u2 (index), Shape Int y/(xlen∗ylen));

u1 xt = (u1 x − dot (t1u1 (index), Shape Int x /(xlen∗ylen)))/Delta t ;
u1 yt = (u1 y − dot (t1u1 (index), Shape Int y/(xlen∗ylen)))/Delta t ;
u2 xt = (u2 x − dot (t1u2 (index), Shape Int x /(xlen∗ylen)))/Delta t ;
u2 yt = (u2 y − dot (t1u2 (index), Shape Int y/(xlen∗ylen)))/Delta t ;

esigma = eval (sigma)∗Potential Factor ;

f1 (index) = f1 (index) − ((esigma (1,
1) + Viscosity Factor ∗u1 xt)∗Shape Int x + (esigma (1,
2) + Viscosity Factor ∗u1 yt)∗Shape Int y);

f2 (index) = f2 (index) − ((esigma (2,
1) + Viscosity Factor ∗u2 xt)∗Shape Int x + (esigma (2,
2) + Viscosity Factor ∗u2 yt)∗Shape Int y);

end

This code is used in section 15.

18. Apply Boundary Conditions to System Vectors.
First we compute the new boundary conditions for this timestep. Then, for
every constrained degree of freedom, we set the effective force vectors at the
constrained index to be the value to which they are constrained. (See program
section 16)

〈Apply Boundary Conditions to System Vectors 18 〉 ≡
〈Compute new Boundary Conditions 19 〉
for ibc = 1 : length (bcdof)

bcindex = bcdof (ibc);
fn1 (bcindex) = bcval1 (ibc);
fn2 (bcindex) = bcval2 (ibc);

end

This code is used in section 15.

88 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

19. In this program section we compute the new boundary conditions for this
timestep.

This works much like setting the initial boundary conditions in program
section 10. We first set the variable ξ that is used in the functions that describe
the change in the boundary conditions as the coordinate along the boundary
to the value stored for it in the boundarydof matrix, then we evaluate these
functions and add their value to the respective initial boundary condition and
save the result in the vector bcval .

〈Compute new Boundary Conditions 19 〉 ≡
cc = 0;

if (bc(1) 6= 0)
for iND = 1 : length (boundarydof1 u)

cc = cc + 1;
xi = boundarydof1 u (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 1);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 1);

end
end

if (bc(2) 6= 0)
for iND = 1 : length (boundarydof2 u)

cc = cc + 1;
xi = boundarydof2 u (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 2);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 2);

end
end

if (bc(3) 6= 0)
for iND = 1 : length (boundarydof3 u)

cc = cc + 1;
xi = boundarydof3 u (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 3);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 3);

end
end

if (bc(4) 6= 0)
for iND = 1 : length (boundarydof4 u)

cc = cc + 1;
xi = boundarydof4 u (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 4);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 4);

end
end

if (bc(1) 6= 0)

89

for iND = 1 : length (boundarydof1 u t)
cc = cc + 1;
xi = boundarydof1 u t (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 1 t);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 1 t);

end
end

if (bc(2) 6= 0)
for iND = 1 : length (boundarydof2 u t)

cc = cc + 1;
xi = boundarydof2 u t (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 2 t);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 2 t);

end
end

if (bc(3) 6= 0)
for iND = 1 : length (boundarydof3 u t)

cc = cc + 1;
xi = boundarydof3 u t (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 3 t);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 3 t);

end
end

if (bc(4) 6= 0)
for iND = 1 : length (boundarydof4 u t)

cc = cc + 1;
xi = boundarydof4 u t (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 4 t);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 4 t);

end
end

if (bc n (1) 6= 0)
for iND = 1 : length (boundarydof1 u n)

cc = cc + 1;
xi = boundarydof1 u n (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 1 n);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 1 n);

end
end

if (bc n (2) 6= 0)
for iND = 1 : length (boundarydof2 u n)

cc = cc + 1;
xi = boundarydof2 u n (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 2 n);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 2 n);

90 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

end
end

if (bc n (3) 6= 0)
for iND = 1 : length (boundarydof3 u n)

cc = cc + 1;
xi = boundarydof3 u n (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 3 n);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 3 n);

end
end

if (bc n (4) 6= 0)
for iND = 1 : length (boundarydof4 u n)

cc = cc + 1;
xi = boundarydof4 u n (2, iND);
bcval1 (cc) = bcval1 0 (cc) + eval (bcu1 4 n);
bcval2 (cc) = bcval2 0 (cc) + eval (bcu2 4 n);

end
end

This code is used in section 18.

20. Solve Linear Equations.
We first solve the system fn1 = L∗y and then y = U∗u. The matrices L and U
are the results of the LU-factorization carried out earlier.

〈 Solve System of Linear Equations 20 〉 ≡
y = L\fn1 ;
u1 = U\y;
y = L\fn2 ;
u2 = U\y;

This code is used in section 15.

21. Save.
The results are saved in two files, one for u1 and one for u2. The data in u1
and u2 we just computed is appended to the files.

〈 Save Results 21 〉 ≡
fid1 = fopen (file1 , ’a’);
fwrite (fid1 , u1 , ’double’);
fclose (fid1);
fid2 = fopen (file2 , ’a’);
fwrite (fid2 , u2 , ’double’);
fclose (fid2);

This code is used in section 15.

91

22. Assemble the Matrices.
This function assembles the entries of the element stiffness matrix or mass ma-
trix into the system stiffness matrix or mass matrix. The parameters it is calles
with are K, the actual system matrix, Ke , the element matrix, and index , the
indices of the degrees of freedom for the element.

First, we find the number of degrees of freedom per element by looking at
the lenght of the index vector. Then we go through all the entries in the element
matrix and add them to the according indices in the system matrix. For the
i-th element dof, index (i) stores the index of the system dof. This function has
been taken from [35].

〈 assemble.m 22 〉 ≡
function [K] =assemble (K, Ke , index)

N DOF = length (index);
for iDOF = 1 : N DOF

DOFindex i = index (iDOF);
for jDOF = 1 : N DOF

DOFindex j = index (jDOF);
K(DOFindex i , DOFindex j) = K(DOFindex i ,

DOFindex j) + Ke (iDOF , jDOF);
end

end

92 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

23. Find Degrees of Freedom for an Element.
This function is used to find the indices of the degrees of freedom for a given
element. To do this, one first has to loop over the nodes in the element. Their
indices can be found in the vector nodes . Then one can find the index of the
first dof for this node. Since there are N DOFpEL dofs for every element one
has to skip N DOFpEL times the node number minus one to get to the last
index for the previous element. By adding 1 one has the first dof index for the
node. Then one adds N DOFpND entries to index , the indices of the dofs are
in a row. This function has been taken from [35].

〈 elementdof.m 23 〉 ≡
function [index] =elementdof (nodes , N NDpEL, N DOFpND)

k = 0;
for iND = 1 : N NDpEL

start = (nodes (iND) − 1)∗N DOFpND + 1;
for iDOF = 1 : N DOFpND

k = k + 1;
index (k) = start − 1 + iDOF ;

end
end

93

24. Display.
This helper application called showview .m reads the data computed by the main
program shape.m and displays it on the screen. To do this we need a lot of the
parameters of the main program and so we reuse a few of the program sections
that perform the initialisation in shape .m. The only new part here is the Display
Loop that does the actual displaying.

〈 showview.m 24 〉 ≡
clear ;
〈 Initialise FEM Parameters 4 〉
〈Compute Element Matrix 12 〉
〈Prepare Energy Function 13 〉
〈Assemble System Matrix 14 〉
〈Display Loop 25 〉

94 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

25. Display Loop.

In this program section we read the computed data from the files and pre-
pare it for displaying.

First we read one set of values into memory from the files, then we start
the while loop. In the loop we first read a new set of values after setting
the previously read values to be those of one timestep ago (t1u1 , t1u2). If we
encountered the end of the files while trying to read the files we break out of
the loop.
Then we compute the displayable results. This part can be altered to compute
specific order parameters of the system, too. If one wants to make surface plots
of the variables computed here, one first has to assemble the result vectors into
a suitable MATLAB matrix for display.
After we left the while loop we close the files.

〈Display Loop 25 〉 ≡
it = 0;
fid1 = fopen (file1 , ’r’);
fid2 = fopen (file2 , ’r’);

u1 = fread (fid1 , N DOF , ’double’);
u2 = fread (fid2 , N DOF , ’double’);

while (¬feof (fid1) ∧ ¬feof (fid2))
it = it + 1
t1u1 = u1 ;
t1u2 = u2 ;
u1 = fread (fid1 , N DOF , ’double’);
u2 = fread (fid2 , N DOF , ’double’);

if (feof (fid1) ∨ feof (fid2)) , break , end

〈Compute Variables 26 〉
end

fclose (fid1);
fclose (fid2);

This code is used in section 24.

95

26. Compute Variables.

First we prepare the time derivatives of the solutions and compute the total
energy split into the kinetic part, the capillarity, and the potential energy for
every timestep (after putting the time into the variable x),

Ekin = < ut, Mut >, (C.6)

Ecap = < u, Ku >, (C.7)

Epot =
∑

elements

Eelement, (C.8)

as usual in the finite element method.

〈Compute Variables 26 〉 ≡
〈Compute Potential Energy Density 27 〉
u1 t = (u1 − t1u1)/Delta t ;
u2 t = (u2 − t1u2)/Delta t ;

x(it) = it ∗Delta t ;

Ekin (it) = 0.5∗(dot (u1 t , M∗u1 t) + dot (u2 t , M∗u2 t));
Ecap (it) = 0.5∗(dot (u1 , K∗u1) + dot (u2 , K∗u2));
Epot (it) = sum (EL Epot);

This code is used in section 25.

27. Potential Energy Density
First we compute the entries of the deformation gradient, exactly as in the

“Integrate Potential” program section. Then the value of the potential energy
for this deformation gradient is evaluated.

〈Compute Potential Energy Density 27 〉 ≡
for iEL = 1 : N EL

for i = 1 : N NDpEL
nd (i) = nodes (iEL, i);

end
index = elementdof (nd , N NDpEL, N DOFpND);

u1 x = dot (u1 (index), Shape Int x /(xlen∗ylen));
u1 y = dot (u1 (index), Shape Int y/(xlen∗ylen));
u2 x = dot (u2 (index), Shape Int x /(xlen∗ylen));
u2 y = dot (u2 (index), Shape Int y/(xlen∗ylen));

EL Epot (iEL) = eval (Phi);

end

EL Epot = EL Epot∗xlen∗ylen∗Potential Factor ;

This code is used in section 26.

96 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

Index of code/shape

n : 3
t : 3

assemble : 14, 22
bc : 3, 10, 19
bc n : 3, 10, 19
bcdof : 10, 16, 18
bcindex : 16, 18
bcu1 : 3
bcu1 1 : 3, 19
bcu1 1 n : 3, 19
bcu1 1 t : 3, 19
bcu1 2 : 3, 19
bcu1 2 n : 3, 19
bcu1 2 t : 3, 19
bcu1 3 : 3, 19
bcu1 3 n : 3, 19
bcu1 3 t : 3, 19
bcu1 4 : 3, 19
bcu1 4 n : 3, 19
bcu1 4 t : 3, 19
bcu2 : 3
bcu2 1 : 3, 19
bcu2 1 n : 3, 19
bcu2 1 t : 3, 19
bcu2 2 : 3, 19
bcu2 2 n : 3, 19
bcu2 2 t : 3, 19
bcu2 3 : 3, 19
bcu2 3 n : 3, 19
bcu2 3 t : 3, 19
bcu2 4 : 3, 19
bcu2 4 n : 3, 19
bcu2 4 t : 3, 19
bcval : 10, 19
bcval1 : 10, 18, 19
bcval1 0 : 10, 19
bcval2 : 10, 18, 19
bcval2 0 : 10, 19
boundarydof : 11, 19
boundarydof1 u : 10, 11, 19
boundarydof1 u n : 10, 11, 19
boundarydof1 u t : 10, 11, 19
boundarydof2 u : 10, 11, 19

boundarydof2 u n : 10, 11, 19
boundarydof2 u t : 10, 11, 19
boundarydof3 u : 10, 11, 19
boundarydof3 u n : 10, 11, 19
boundarydof3 u t : 10, 11, 19
boundarydof4 u : 10, 11, 19
boundarydof4 u n : 10, 11, 19
boundarydof4 u t : 10, 11, 19
boundarynodes1 : 11
boundarynodes2 : 11
boundarynodes3 : 11
boundarynodes4 : 11
Capillarity Factor : 4, 14
cc : 10, 19
Delta t : 4, 8, 15, 17, 26
diff : 2, 3, 12, 13
DOFindex i : 22
DOFindex j : 22
dot : 17, 26, 27
Ecap : 26
Ekin : 26
EL Epot : 26, 27
elementdof : 14, 17, 23, 27
elementindex : 6
Epot : 26
esigma : 17
eta : 12, 13
eval : 8, 12, 13, 17, 19, 27
fclose : 21, 25
feof : 25
fid1 : 9, 21, 25
fid2 : 9, 21, 25
file1 : 4, 21, 25
file2 : 4, 21, 25
fix : 4
fn1 : 15, 18, 20
fn2 : 15, 18, 20
fopen : 9, 21, 25
fread : 9, 25
FTime : 4
fwrite : 21
f1 : 14, 15, 17
f2 : 14, 15, 17

97

ibc : 16, 18
iDOF : 13, 22, 23
iEL : 14, 17, 27
iELx : 6
iELy : 6
iND : 8, 10, 11, 19, 23
index : 14, 17, 22, 23, 27
iNDx : 5
iNDy : 5
Initial File index : 4, 9
Initial File1 : 4, 7, 9
Initial File2 : 4, 9
int : 12, 13
isempty : 7
it : 9, 15, 25, 26
jDOF : 22
Ke : 12, 14, 22
lapN : 12
lapphi : 12
length : 10, 16, 18, 19, 22
lu : 15
Me : 12, 14
N DOF : 4, 8, 9, 14, 17, 22, 25
N DOFpEL : 4, 13, 14, 23
N DOFpND : 4, 8, 14, 17, 23, 27
N EL : 4, 14, 17, 27
N ELx : 4, 6
N ELy : 4, 6
N ND : 4, 8
N NDpEL : 4, 14, 17, 23, 27
N NDx : 4, 5, 6, 11
N NDy : 4, 5, 11
N Time : 4, 15
ncoord : 5, 8, 11
nd : 14, 17, 27
nodeindex : 5
nodes : 6, 14, 17, 23, 27
pack : 8, 15
phi : 12, 13
Phi : 13, 27
phi x : 13
phi y : 13
Potential Factor : 4, 17, 27
shape : 24
Shape Int x : 13, 17, 27
Shape Int y : 13, 17, 27

showview : 1, 24
sigma : 13, 17
sin : 2
sparse : 14
Specimen Size : 5
Specimen Sizex : 4, 5
Specimen Sizey : 4, 5
start : 23
STime : 4
sum : 26
sym : 2
syms : 2, 3, 12, 13
transpose : 13
t1u1 : 8, 9, 10, 15, 17, 25, 26
t1u2 : 8, 9, 10, 15, 17, 25, 26
t2u1 : 8, 9, 15, 17
t2u2 : 8, 9, 15, 17
u1 : 4, 14, 15, 20, 21, 25, 26, 27
u1 t : 26
u1 t 0 : 2, 8
u1 tx 0 : 2, 8
u1 txy 0 : 2, 8
u1 ty 0 : 2, 8
u1 x : 13, 17, 27
u1 x 0 : 2, 8
u1 xt : 17
u1 xy 0 : 2, 8
u1 y : 13, 17, 27
u1 y 0 : 2, 8
u1 yt : 17
u1 0 : 2, 8
u2 : 4, 14, 15, 20, 21, 25, 26, 27
u2 t : 26
u2 t 0 : 2, 8
u2 tx 0 : 2, 8
u2 txy 0 : 2, 8
u2 ty 0 : 2, 8
u2 x : 13, 17, 27
u2 x 0 : 2, 8
u2 xt : 17
u2 xy 0 : 2, 8
u2 y : 13, 17, 27
u2 y 0 : 2, 8
u2 yt : 17
u2 0 : 2, 8
Viscosity Factor : 4, 17

98 APPENDIX C. THE MATLAB PROGRAM “SHAPE”

xi : 3, 19
xlen : 5, 8, 12, 13, 17, 27
ylen : 5, 8, 12, 13, 17, 27

zeros : 8, 13, 14, 17

zeta : 12, 13

List of Refinements in code/shape

〈 assemble.m 22 〉
〈 elementdof.m 23 〉
〈 showview.m 24 〉
〈Apply Boundary Conditions to Matrix 16 〉 Used in section 15.

〈Apply Boundary Conditions to System Vectors 18 〉 Used in section 15.

〈Assemble System Matrix 14 〉 Used in sections 1 and 24.

〈Calculate Coordinates 5 〉 Used in section 4.

〈Compute Boundary Conditions 10 〉 Used in section 7.

〈Compute Element Matrix 12 〉 Used in sections 1 and 24.

〈Compute Element-Node Connections 6 〉 Used in section 4.

〈Compute Potential Energy Density 27 〉 Used in section 26.

〈Compute Variables 26 〉 Used in section 25.

〈Compute new Boundary Conditions 19 〉 Used in section 18.

〈Display Loop 25 〉 Used in section 24.

〈Find Boundary 11 〉 Used in section 10.

〈 Initialise FEM Parameters 4 〉 Used in sections 1 and 24.

〈 Integrate Potential 17 〉 Used in section 15.

〈Prepare Energy Function 13 〉 Used in sections 1 and 24.

〈Read Initial Conditions from File 9 〉 Used in section 7.

〈 Save Results 21 〉 Used in section 15.

〈 Set Initial Conditions According to Given Functions 8 〉 Used in section 7.

〈 Set Initial and Boundary Conditions 7 〉 Used in section 1.

〈 Set Restrictions 3 〉 Used in section 7.

〈 Solve System of Linear Equations 20 〉 Used in section 15.

〈 Specify Initial Conditions 2 〉 Used in section 1.

〈Time Integration 15 〉 Used in section 1.

Bibliography

[1] M. Achenbach. A model of shape memory alloys as a solid/solid phase
transition. In K.-H. Hoffmann and J. Sprekels, editors, Free boundary
problems: theory and applications. Vol. II. Proceedings of the International
Colloquium held in Irsee, June 11–20, 1987, pages 796–801, Harlow, 1990.
Longman Scientific & Technical.

[2] M. Achenbach and I. Müller. Creep and yield in martensitic transforma-
tions. Ingenieur-Archiv, 53(2):73–83, 1983.

[3] H. W. Alt, K.-H. Hoffmann, M. Niezgódka, and J. Sprekels. A numerical
study of structural phase transitions in shape memory alloys. Technical
Report 90, Institut für Mathematik, Universität Augsburg, 1985.

[4] J. M. Ball and R. D. James. Fine phase mixtures as minimizers of energy.
Arch. Rational Mech. Anal., 100(1):13–52, 1987.

[5] Pavel Běĺık and Mitchell Luskin. A computational model for the indenta-
tion and phase transformation of a martensitic thin film. J. Mech. Phys.
Solids, 50(9):1789–1815, 2002.

[6] Kaushik Bhattacharya. Phase boundary propagation in a heterogeneous
body. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1982):757–
766, 1999.

[7] Kaushik Bhattacharya. Martensitic Phase Transformations. Oxford Uni-
versity Press, Oxford, 2003.

[8] M. I. G. Bloor and M. J. Wilson. Partial differential equations for shape
generation in geometric modelling. In Geometry and topology of subman-
ifolds, III (Leeds, 1990), pages 32–48. World Sci. Publishing, River Edge,
NJ, 1991.

[9] Dietrich Braess. Finite elements. Cambridge University Press, Cambridge,
second edition, 2001. Theory, fast solvers, and applications in solid me-
chanics, Translated from the 1992 German edition by Larry L. Schumaker.

99

100 BIBLIOGRAPHY

[10] Häım Brezis. Analyse fonctionnelle. Collection Mathématiques Appliquées
pour la Mâıtrise. [Collection of Applied Mathematics for the Master’s De-
gree]. Masson, Paris, 1983. Théorie et applications. [Theory and applica-
tions].

[11] Nikolaus Bubner, Jan Soko lowski, and Jürgen Sprekels. Optimal boundary
control problems for shape memory alloys under state constraints for stress
and temperature. Numer. Funct. Anal. Optim., 19(5-6):489–498, 1998.

[12] Shu Ping Chen and Roberto Triggiani. Proof of two conjectures by G.
Chen and D. L. Russell on structural damping for elastic systems. In
Approximation and optimization (Havana, 1987), volume 1354 of Lecture
Notes in Math., pages 234–256. Springer, Berlin, 1988.

[13] Zhi Ming Chen and Karl-Heinz Hoffmann. Asymptotic behaviors of
Landau-Devonshire-Ginzburg model for structural phase transitions in
shape memory alloys. Adv. Math. Sci. Appl., 4(1):209–226, 1994.

[14] Zhiming Chen and K.-H. Hoffmann. On a one-dimensional nonlinear ther-
moviscoelastic model for structural phase transitions in shape memory al-
loys. J. Differential Equations, 112(2):325–350, 1994.

[15] Claude Chevalley. Invariants of finite groups generated by reflections.
Amer. J. Math., 77:778–782, 1955.

[16] Pierluigi Colli and Jürgen Sprekels. Global existence for a three-dimensional
model for the thermomechanical evolution of shape memory alloys. Non-
linear Anal., 18(9):873–888, 1992.

[17] Pierluigi Colli and Jürgen Sprekels. Global solution to the full one-
dimensional Frémond model for shape memory alloys. Math. Methods Appl.
Sci., 18(5):371–385, 1995.

[18] Sergio Conti and Giovanni Zanzotto. Reconstructive phase transforma-
tions, maximal Ericksen-Pitteri neighborhoods, dislocations and plasticity
in crystals. Technical Report 42/2002, Max-Planck Institut für Mathematik
in den Naturwissenschaften, Leipzig, 2002.

[19] C. M. Dafermos. Global smooth solutions to the initial-boundary value
problem for the equations of one-dimensional nonlinear thermoviscoelastic-
ity. SIAM J. Math. Anal., 13(3):397–408, 1982.

[20] J. L. Ericksen. On correlating two theories of twinning. Arch. Ration.
Mech. Anal., 153(4):261–289, 2000.

[21] Giuseppe Fadda, Lev Truskinovsky, and Giovanni Zanzotto. Unified Lan-
dau description of the tetragonal, orthorhombic, and monoclinic phases of
zirconia. Submitted.

BIBLIOGRAPHY 101

[22] F. Falk. Model free energy, mechanics, and thermodynamics of shape mem-
ory alloys. Acta Metallurgica, 28(12):1773–1780, 1980.

[23] I. M. Gelfand and S. V. Fomin. Calculus of variations. Revised English
edition translated and edited by Richard A. Silverman. Prentice-Hall Inc.,
Englewood Cliffs, N.J., 1963.

[24] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations
of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
Reprint of the 1998 edition.

[25] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0. A Computer
Algebra System for Polynomial Computations, Centre for Computer Alge-
bra, University of Kaiserslautern, 2001. http://www.singular.uni-kl.de.

[26] K.-H. Hoffmann and A. Żochowski. Existence of solutions of some nonlinear
thermoelastic systems with viscosity. Math. Methods Appl. Sci., 15(3):187–
204, 1992.

[27] Toshio Honma. Types and mechanical characteristics of shape memory
alloys. In Shape Memory Alloys, pages 61–115. Gordon and Breach Science
Publishers, New York, London, Paris, Montreux, Tokyo, Melbourne, 1984.

[28] Song Jiang. Global large solutions to initial-boundary value problems
in one-dimensional nonlinear thermoviscoelasticity. Quart. Appl. Math.,
51(4):731–744, 1993.

[29] David Kinderlehrer and Pablo Pedregal. Weak convergence of integrands
and the Young measure representation. SIAM J. Math. Anal., 23(1):1–19,
1992.

[30] P. Klouček. The computational modeling of nonequilibrium thermody-
namics of the martensitic transformations. Comput. Mech., 22(3):239–254,
1998.

[31] P. Klouček and M. Luskin. The computation of the dynamics of the marten-
sitic transformation. Contin. Mech. Thermodyn., 6(3):209–240, 1994.

[32] P. Klouček and M. Luskin. Computational modeling of the martensitic
transformation with surface energy. Math. Comput. Modelling, 20(10-
11):101–121, 1994. Theory and numerical methods for initial-boundary
value problems.

[33] Donald E. Knuth and Silvio Levy. The cweb System of Structured Docu-
mentation. Addison-Wesley Professional, Boston, 2001.

[34] Robert V. Kohn and Stefan Müller. Surface energy and microstructure in
coherent phase transitions. Comm. Pure Appl. Math., 47(4):405–435, 1994.

102 BIBLIOGRAPHY

[35] Young W. Kwon and Hyochoong Bang. The Finite Element Method Using
MATLAB (CRC Mechanical Engineering). CRC-Press, Boca Raton, FL,
2000.

[36] Peter D. Lax. Functional Analysis. Pure and Applied Mathematics. Wiley
Interscience, New York, NY, 2002.

[37] I. Müller and K. Wilmański. A model for phase transition in pseudoelastic
bodies. Il Nuovo Cimento, 57 B(2):283–318, 1980.

[38] Ingo Müller and Stefan Seelecke. Thermodynamic aspects of shape memory
alloys. In G. Airoldi, editor, Shape memory Alloys—From Microstructure
to Macroscopic Properties. Trans Tech Publications, 1996.

[39] Stefan Müller. Variational models for microstructure and phase transitions.
In Calculus of variations and geometric evolution problems (Cetraro, 1996),
volume 1713 of Lecture Notes in Math., pages 85–210. Springer, Berlin,
1999.

[40] K. Otsuka and C. M. Wayman. Shape Memory Materials. Cambridge Univ.
Press, Cambridge, 2002.

[41] Wilfried H. Paus. Existence and uniqueness of local solutions in time for
a three-dimensional model on shape memory alloys. Technical Report 301,
SFB 256, Rheinische Friedrich-Willhelms-Universität Bonn, 1993.

[42] Irena Paw low and Antoni Żochowski. Existence and uniqueness of solu-
tions for a three-dimensional thermoelastic system. Dissertationes Math.
(Rozprawy Mat.), 406:46, 2002.

[43] Reinhard Racke and Songmu Zheng. Global existence and asymptotic
behavior in nonlinear thermoviscoelasticity. J. Differential Equations,
134(1):46–67, 1997.

[44] A. C. E. Reid and R. J. Gooding. Pattern formation in a 2d elastic solid.
Physica A, 239(1), 1997.

[45] T. Roub́ıček. Dissipative evolution of microstructure in shape memory
alloys. In Hans-Joachim Bungartz, Ronald H. W. Hoppe, and Christoph
Zenger, editors, Lectures on applied mathematics (Munich, 1999), pages
45–63. Springer, Berlin, 2000.

[46] Hans-Rudolf Schwarz. Methode der finiten Elemente, volume 47 of
Leitfäden der Angewandten Mathematik und Mechanik [Guides to Applied
Mathematics and Mechanics]. B. G. Teubner, Stuttgart, third edition,
1991. Eine Einführung unter besonderer Berücksichtigung der Rechen-
praxis. [An introduction with special reference to computational practice],
Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks].

BIBLIOGRAPHY 103

[47] N. Simha and L. Truskinovsky. Shear induced transformation toughening
in ceramics. Acta Metallurgica Et Materialia, 42(11):3827–3836, November
1994.

[48] Ruben D. Spies. A state-space approach to a one-dimensional mathematical
model for the dynamics of phase transitions in pseudoelastic materials. J.
Math. Anal. Appl., 190(1):58–100, 1995.

[49] Jürgen Sprekels and Song Mu Zheng. Global solutions to the equations of a
Ginzburg-Landau theory for structural phase transitions in shape memory
alloys. Phys. D, 39(1):59–76, 1989.

[50] Bernd Sturmfels. Algorithms in invariant theory. Springer-Verlag, Vienna,
1993.

[51] Pieter J. Swart and Philip J. Holmes. Energy minimization and the forma-
tion of microstructure in dynamic anti-plane shear. Arch. Rational Mech.
Anal., 121(1):37–85, 1992.

[52] L. Truskinovsky and G. Zanzotto. Elastic crystals with a triple point. J.
Mech. Phys. Solids, 50(2):189–215, 2002.

[53] Stephen J. Watson. Unique global solvability for initial-boundary value
problems in one-dimensional nonlinear thermoviscoelasticity. Arch. Ration.
Mech. Anal., 153(1):1–37, 2000.

[54] Hermann Weyl. The classical groups. Princeton University Press, Prince-
ton, NJ, 1997. Their invariants and representations, Fifteenth printing,
Princeton Paperbacks.

[55] Johannes Zimmer. Stored energy functions for phase transitions in crystals.
Submitted.

[56] Johannes Zimmer. Mathematische Modellierung und Analyse von Formge-
dächtnislegierungen in mehreren Raumdimensionen (Mathematical Model-
ing and Analysis of Shape Memory Alloys in Several Space Dimensions).
PhD thesis, Technische Universität München, 2000.

