MATHEMATISCHES INSTITUT

PROF. DR. PATRICK DONDL

STEPHAN WOJTOWYTSCH

Funktionalanalysis

Zusatzblatt zur Klausurvorbereitung

Eine der folgenden vier Aufgaben wird in der Klausur verwendet werden.

Aufgabe 1. Nicht-reflexive L^p -Räume

Es sei μ das Lebesguemaß auf \mathbb{R}^n .

- (a) Zeigen Sie, dass $L^1(\mu)$ kein reflexiver Banachraum ist, indem Sie eine Folge $f_n \in B_1(0) \subset L^1(\mu)$ finden, die keine schwach konvergente Teilfolge besitzt. Erklären Sie, warum dies ausreicht.
- (b) Zeigen Sie, dass $L^1(\mu)$ kein reflexiver Banachraum ist, indem Sie ein Funktional $\delta \in (L^{\infty})' \setminus J(L^1)$ konstruieren. Hinweis: Zeigen Sie, dass

$$\delta: C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n) \to \mathbb{R}, \qquad \delta(f) = f(0)$$

nicht in der Form $\delta(f)=\int_{\mathbb{R}^n}f\,g\,\mathrm{d}x$ für $g\in L^1(\mu)$ geschrieben werden kann und benutzen Sie den Satz von Hahn-Banach.

(c) Folgern Sie, dass $L^{\infty}(\mu)$ kein reflexiver Banachraum ist.

Aufgabe 2. L^p -Räume und Konvexität im Zielraum

Es sei $A \subset \mathbb{R}$, 1 und

$$L^p((0,1),A) := \{ f \in L^p(0,1) \mid f(x) \in A \text{ für fast alle } x \in (0,1) \}.$$

Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:

- (1) $L^p((0,1),A)$ ist schwach abgeschlossen in $L^p(0,1)$.
- (2) A ist ein abgeschlossenes Intervall.

<u>Hinweis:</u> Sie können ohne Beweis verwenden, dass für $f \in L^{\infty}(\mathbb{R})$ mit f(x+1) = f(x) für alle $x \in \mathbb{R}$ gilt

$$f_n \rightharpoonup \int_0^1 f(x) \, \mathrm{d}x$$

in $L^p(0,1)$ für alle $1 , wobei <math>f_n(x) := f(nx)$ ist.

Aufgabe 3. Schwach im Hilbertraum

Es sei $(H, (\cdot, \cdot))$ ein separabler Hilbertraum mit einer Orthonormalbasis $\{e_n\}_{n\in\mathbb{N}}$. Wir bezeichnen

$$||x|| = (x,x)^{1/2}$$
 und $|x| := \sum_{n=1}^{\infty} \frac{1}{n} |(x,e_n)|.$

Zeigen Sie die folgenden Aussagen.

- (a) Es gilt, dass $|x| < \infty$ für alle $x \in H$ ist.
- (b) Es gilt, dass $|\cdot|$ eine Norm auf H ist.
- (c) Es gilt $x_k \to x$ genau dann, wenn $\limsup_{k\to\infty} ||x_k|| < \infty$ und $|x_k x| \to 0$.
- (d) Es existiert eine Folge x_k sodass $||x_k|| \to \infty$ und $|x_k| \to 0$.

Aufgabe 4. Montoner linearer Operator

Es sei X ein Banachraum und $T: X \to X'$ ein linearer Operator, sodass

$$(Tx)(x) \geq 0$$

gilt für alle $x \in X$. Zeigen Sie, dass T stetig ist. Hinweis: Satz vom abgeschlossenen Graphen.

Weitere Klausuraufgaben könnten so aussehen:

Aufgabe 5. Starke und schwache Konvergenz in Hilberträumen Es sei H ein Hilbertraum, $x_k, x \in H$ sodass $x_k \rightharpoonup x$ schwach und $||x_k|| \rightarrow ||x||$. Zeigen Sie, dass $x_n \rightarrow x$ stark.

Aufgabe 6. Die Exponentialabbildung X ist ein Banachraum. Zeigen Sie, dass

$$\exp: \mathcal{L}(X, X) \to \mathcal{L}(X, X), \qquad \exp(A) := \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

wohldefiniert und stetig ist. Hierbei ist $A^k = A \circ \cdots \circ A$ k-mal, $A^0 = \text{Id.}$