Numerik für Differentialgleichungen

Blatt 2

Abgabe: 11. Mai 2016 im entsprechenden Kasten vor dem CIP-Pool, 2. OG, HH 10.

Existenz und Eindeutigkeit

Aufgabe 5 (4 Punkte). Konstruieren Sie unendlich viele Lösungen des Anfangswertproblems $y' = y^{1/3}$, y(0) = 0, skizzieren Sie einige und diskutieren Sie die Anwendbarkeit des Satzes von Picard-Lindelöf und des Satzes über die stetige Abhängigkeit der Lösungen von den Parametern.

Aufgabe 6 (4 Punkte). Sei $f \in C^k([0,T] \times \mathbb{R})$ und $y \in C^1([0,T])$ eine Lösung der Differentialgleichung y' = f(t,y). Zeigen Sie, dass $y \in C^{k+1}([0,T])$ gilt.

Aufgabe 7 (4 Punkte). Für eine stetige Abbildung $A:[0,T]\to\mathbb{R}^{n\times n}$ betrachten wir das System von Differentialgleichungen y'=A(t)y.

- (i) Überprüfen Sie, dass mit dem Beweis des Satzes von Picard-Lindelöf die Existenz einer eindeutigen Lösung mit der Anfangsbedingung $y(0) = y_0$ für $y_0 \in \mathbb{R}^n$ gezeigt werden kann.
- (ii) Zeigen Sie, dass die Menge L aller Lösungen des Systems y'=A(t)y einen Vektorraum definiert.
- (iii) Betrachten Sie die Abbildung $E_0: L \to \mathbb{R}^n, y \to y(0)$, und folgern Sie, dass dim L = n gilt.

Aufgabe 8 (4 Punkte). Seien $g, h \in C((0,T))$ stetige Funktionen.

- (i) Zeigen Sie, dass die Differentialgleichung Ly := y'(t) + g(t)y(t) = h(t) für $t \in (0,T)$ dem Superpositionsprinzip genügt: Für i = 1, 2, ..., n seien $h_i \in C((0,T))$ stetige Funktionen und $y_i \in C^1((0,T))$ Lösungen von $Ly_i = h_i$ in $\in C((0,T))$. Dann ist $\overline{y} := \sum_{i=1}^n y_i$ eine Lösung von $L\overline{y} = \overline{h}$ in $\in C((0,T))$, wobei $\overline{h} := \sum_{i=1}^n h_i$.
- (ii) Für $t_0 \in (0,T)$ setze $G(t) := \int_{t_0}^t g(r) dr$ für $t \in (0,T)$. Bestimmen Sie $C \in C^1((0,T))$ so, dass $y(t) := C(t) \exp(-G(t))$ für $t \in C((0,T))$ eine Lösung des Anfangswertproblems

$$Ly = h \text{ in } I, \quad y(t_0) = s_0$$
 (*)

für $s_0 \in \mathbb{R}$ ist.

(iii) Zeigen Sie, dass das Anfangswertproblem (*) genau eine Lösung $u \in C^1((0,T))$ besitzt.