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Introduction

e Functional Analysis: Analysis in infinite dimensional spaces.
e Linear Functional Analysis: Linear Algebra in infinite dimensional spaces.

e Typical question: X,Y vector spaces; A : X — Y linear continuous. Does A have a continu-
ous inverse? (If not, can we somehow measure the defect?)

This leads to the so-called Fredholm-Alternative
Example. U C R" open, with smooth boundary,

X ={ueC®>U)nC((U)|u=00ndU},
Y :=C(U),

(0.1)

has a solution for any f € Y.
Classically: The equation is a pointwise condition on wu.

Modern:  w is a point (or vector) in a function space, —A is a linear mapping between function
spaces.

Fact: A is continuous and injective. However, A is not surjective.

In particular, there exist f € C'(U) : no u € Y satisfies —Au = f. We will work out
this example in the first tutorial.

Problem: (2 is a terrible function space for the Laplacian. Much better: Holder spaces (C*®)
or Sobolev spaces.

Topics of the class
e Spaces, norms, topologies,
e Linear operators and their properties,

e General theory < concrete spaces, e.g. LP.



1 Basic structures

Outline
e Basic structures and spaces,
e Continuous linear operators,
e Hahn-Banach,
e Baire Lemma,
e Weak topology,
e LP and Sobolev spaces,
e Hilbert space theory,

e Spectral theory.

1 Basic structures

1.1 Topological spaces

Definition 1.1 (Topology). Let X be a set and let T be a set of subsets of X (Notation: 7 C 2%)
with the properties

1. 0,XeT
2.TCT=Uyer UET
3. U,,UbeT =UnNnUeT.

Then, (X, T) is called a topological space, T is called topology and sets U € T are called open.
If in addition to that, we have that for all 1,25 € X, x1 # x5 there exist Uy, Us € T with the
property that
21 €Uy, 29 €Uy, Ui NUy =0, (separation axiom)

then (X, T) is called a Hausdorff space.
Definition 1.2. A subset A C X of a topological space is called closed if
U €T suchthat A=X\U=:U°".
Let X henceforth be a topological space.
Definition 1.3. Let A C X.
1. A°:={2x € X |3U C A,U €T s.t. x € U} is the interior of A.
2. Ai={r € X |VU € T,z € U we have U N A # ()} is the closure of A.
3. A := A\ A° is the boundary of A.
Definition 1.4. 1. A set A C X is called dense in X, if A = X.
2. X is called separable, if there exists A C X that is dense and countable.
Proposition 1.5. 1. A° C AC A.
2. A=A° < Aopen, A=A<s A closed.
3. A° is open, A is closed.
4. X\A=(X\A)°.

Proof. Analysis 2 or exercise. O



1 Basic structures 1.1 Topological spaces

Proposition 1.6. Let A C X, (X, T) be a topological space. Then (A, Ta) with
Ta={UNA|UEeT}
is a topological space. Ty is called a subspace topology (relative topology).
Proof. Should be pretty clear. O
Definition 1.7. Let (X, T) be a topological space.
e B C T is called basis of T, if any set in 7 can be written as a union of sets in B.

e S C T is called a subbasis of T, if the set of all finite intersections of sets in S is a basis of T.

Proposition 1.8. Let X be a set, S C 2% a collection of subsets of X. Let now B C 2% be the
set of subsets of X generated by taking any finite intersections between sets in S. Then the set
generated by taking arbitrary unions of sets in B is a topology.

Proof. Exercise. O

Definition 1.9. Let 71,72 be topologies on X. T3 is called stronger (or finer) than 73 and Ty
weaker (or coarser) than Ta, if

T CTa.
Example. 1. The indiscrete topology: T = {0, X},
2. The discrete topology: 7 = 2% := P (X),
3. The cofinite topology: X =N, T := {U € 2" | # (X\U) < oo} U0,
4. Topologies induced by a metric.

Definition 1.10 (Neighborhood). Let A C X. A set N is called a neighborhood of A if there
exists an open set U such that A C U C N. Note that A can be a singleton. We write N(A).

Definition 1.11 (Continuity). Let (X, Tx), (Y, Ty) be topological spaces.

1. A mapping f: X — Y is called continuous if

YV € Ty we have f~1(V) € Tx.

2. A mapping f : X — Y is called continuous in x € X, if for any neighborhood Ny of f(x)
there exists a neighborhood Ny of = such that f(Nx) C Ny.
Proposition 1.12. f: X — Y is continuous, if and only if f : X = Y is continuous in all z € X.

Proof. “=" Fairly easy, just take the preimage of the open set in Ny as Nx.

‘e Consider V' C Y open. If the preimage is empty, we are done. Otherwise, take x €
f~Y(V) =: A. By the definition of continuity in a point, there exists an open set U
containing x such that U C A. So A = A° and thus open.

O

Definition 1.13 (Convergence). Let (X,7) be a topological space, let © € X. We say that a
sequence (T),cyn converges to x, if

for any neighborhood N(z) we have that 3ko € N such that Yk > ko we have z;, € N.

We write -
T — .

Proposition 1.14. If (X, T) is Hausdorff, then the limit x is uniquely determined. We then write

x = lim zp w.r.t (with respect to) T.
k—o0



1 Basic structures 1.2 Metric

Proof. Assume xy — 21,z — T2 # x1. Then
dU; > .131,U2 S xo with Uy NU5 = 0.
But: dkg : Vk > kg we have x, € U; and at the same time x, € Us. This is a contradiction. O

Example. 1. Tx = 2%. Any function f: X — Y is continuous.

However, x;, — x only if Jkg s.t. Vk > kg we have zp = z.

2. Tx = {0, X}, Ty Hausdorff. Then we have: f is continuous only if f is constant.

However, any sequence in X converges to every element in X.

Remark (Direct method of the calculus of variations). Goal: Find z € X :

flz)= ylg;f(y) for some f:X —[0,00).

L. 3(@r)pen © f(zx) — inf f. We have f (zx) < C for k > ko.
2. We want that a subsequence of (), converges to some x € X.

3. Then we need to show that f (z) =inf f. (< z; —» z = f(z) <liminf f (z;))

lower semicontinuity

Remark 1.15. i) One topic we left untouched is the product topology. For finite products it suffices
to consider the box topology on H?:l X, namely the topology to the basis consisting of all sets of

the form
{H U; | Uj S 7;} .
i=1

ii) A further point we have not discussed here is the issue of compactness. In purely topological
spaces, this is somewhat tricky and we will treat compactness in more detail later.

1.2 Metric

Definition 1.16. Let X be a set and d: X x X — R, such that for all z,y,z € X we have
1. d(z,y) > 0and d(z,y) =0z =y.
2. d(z,y)=d(y,z).
3. d(z,2) <d(z,y)+d(y,z).

Then we call (X, d) a metric space, d a metric or a distance.

Remark. e Without the requirement that d (z,y) = 0 < x = y we call d a pseudo metric.

e By taking a modulo
z=y < d(z,y)=0

we can transform a pseudo metric space into a metric space.
e The only thing that is to show for this claim is
T1,Y1,22,Y2 € X, 11522, 1=y2 = d(z1,y1) = d(22,92)
This, however follows from the triangular inequality [3. of the definition of a (pseudo) metric].

Example. 1. X =R/ d(z,y) =]z —yl.

2. X =R,d(x,y) = 2



1 Basic structures 1.2 Metric

3. (X,d) metric space, h : Y — X injective,
dy (y1,y2) == d (h(y1),h(y2))
is called the pullback metric.

4. Discrete metric:

0, z=y
d(z,y) := {1 vhy

Definition 1.17. Let (X, d) be a metric space,
B, (z)={ye X |d(z,y) <r} forr>0,z¢cX.
We call U C X open with respect to the metric d, if Vo € U there exists 7 > 0
B, (z) C U.
The empty set is open.
Proposition 1.18. Let (X,d) be a metric space, and let
T:={U C X |U is open w.r.t. d}.
Then (X,T) is a Hausdorff space. We call T the by d induced topology.
Proof. 1. 0,X € T : clear.

2. Let 7" C T and W := {Jy o7~ U. We need to show that for all 2 € W there exists r > 0 with
B, (r) € W. This is obvious, though, since there is some U € T’ with € U and we can
just take the r for that U.

3. Let Uy, Uy € T,x € Uy NUs. We have ry,r9 >0
B, () cU; and B, (z) C Us.
It follows by the triangle inequality that

Bmin(rl,m) (.I') (- U1 N UQ.
4. Let x # y. We have that d (z,y) = ¢ > 0.

B.(zx)N B, (y) =0, T:g>0. O

Definition 1.19. Let d;,ds both be a metric on X.
e d; is called stronger than ds or dy weaker than dy, if the same holds for the induced topologies.
e d; is called equivalent to dso, if the induced topologies are equal.

Proposition 1.20 (Continuity in metric spaces). Let (X,dx),(Y,dy) be metric spaces and let
f: X =Y. Then f is continuous in x € X, if and only if

Ve>0:36>0: dx(z,y)<d=dy (f(x),f(y) <e.
Proof. Analysis 2. O
Proposition 1.21 (Convergence in metric spaces). Let (X,dx),(Y,dy) be metric spaces.

1. Let (x;) ;o be a sequence in X, then

whr e Vedke : d(zg,x) <e (fork>ke).



1 Basic structures 1.2 Metric

2. A mapping f : X =Y is continuous in x, iff for all sequences (xy),cy with v, — x we have
f@e) = f(2).
Remark. The second condition is called sequential continuity.
Warning. This is generally not true in purely topological spaces.
Proof. 1. Clear.

2. “=7 Clear (somewhat).
‘e Assume that f is not continuous. Then Je > 0 : Vd > 0dxs :

dx (z,25) <0, but dy (f(2),f(zs)) > e
§ =4~ Jzy, 1 dx (z,23) < £ — 0.

dy (f (@), f(zk)) Z e, ap =2, but  f(zx) A f(2). 0
Definition 1.22. Let (X, d) be a metric space.
L. (21)ey is called a Cauchy sequence, if Ve > 03k € N : Yk, > ko, we have d (2, 2;) < €.
2. The space (X, d) is called complete, if every Cauchy sequence admits a limit in X.

Proposition 1.23 (sequential criterion). Let A C (X, d) (metric space). A is closed, iff for all
sequences (xj)jeN with x; € A and x; = x € X, we have x € A.

Proof. = Assume there was a limit point x in A¢, which is open. Thus there exists a neighbor-
hood N(xz) C A*. Then points in the sequence would have to lie in this neighborhood and
outside of A, which is a contradiction.

< Assume A is not closed and consider x € A°\ A. By the definition of the closure, for any

r > 0 we have B,.(z) N A # 0. Now take a sequence of radii going to zero and pick as xy any
point in the intersection of the respective ball with A.

O

Proposition 1.24. Let (X,d) be a complete metric space, and A C X be closed. Then (A,d) is a
complete metric space.

Proof. Tt’s clear that (A, d) is a metric space. For completeness, consider a Cauchy sequence in A.
By completeness of (X, d), it admits a limit in X, this limit must lie in A by the above sequential
criterion. 0

Example. 1. Q (the rationals) with the usual distance are a not complete metric space.

2. Take I =[0,1] and

P,:={f:1—R| f is a ploynomial of degree deg (f) < n},

P:=|J P,

neN

d(f,g) ==sup|f (z) —g(2)|.

zel

(P, d) is a metric space. We take
Ny
fle):=exp(x) and fu(2):=) ==

noting that f ¢ P. We have

sup | fn (x) = f (x)] = 0.
rzel
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(And also sup,¢; | fn (x) — fi ()] — 0.) However, if
n,k— 00

g= lim fg
k—o0
would exist in P, then necessarily, we would need

|fn(x) —g (@) <d(fn,g) =0 Vzel,

so we would have
g=Jf=exp.
But again, f ¢ P.

Theorem 1.25 (Completion). Let (X, d) be a metric space and consider the set X~ of all sequences
m X. Let

X = {a”c = (xj)jeN e xN | (xj)jEN s a Cauchy—sequence}/

endowed with the equivalence relation

(@j)jen = Wi)jen & d(x5,y5) = 0.

Then, (f( , d) is a complete metric space with

4 (@) e W)je) 1= lim d(ay,5).
Furthermore, the mapping
J:X =X, J(x) = () jen (constant sequence)

defines an (therefore injective) isometry, that is

d(J(2),J(y) =d(x,y) Ve,yeX,
and for any (x;) ey € X, we have

A ((2);e0: 7 (8)) ——> 0,

k—o0
thus J (X) is dense in X.

Proof. o Well-definedness of d: Let & = (xj)jeN Y = (yj)jeN be in X. We have

d (25, y;) — d(wi,y:)| < |d(25,y5) — d(wi,y5)] + |d (x5, y5) — d (x4, )]
<d(zjzi) +d(y;,y:) —Wm 0.

So this was a Cauchy sequence in R and the limit

d(%,9) = lim d(z;,y;)

J]—00

exists. By analogous arguments,

d (27, y7) —d(zi,y;) = 0,



1 Basic structures 1.3 Vector spaces and norms

2. Symmetry carries over in the limit.

3. The triangle inequality also carries over in the limit.

o Completeness: Consider (xk)keN a Cauchy sequence in X, ok = (x;‘?)jeN € X.For k € N,
we pick a ji, such that

d(mkm)g

R Vlvjz.jk

T =

Now for j > jr, 1, k,l € N, we have

d(xfk’ ]z) <d( Jk’ J) ( 5’ §)+d(x7’x]z)
1 1
k—'_d(mj’xj)—’_j
1 1
j—oo k (x 7$l)+7
—— 0.
k,l— o0

So we define

= ('T;l)leN € X.

Claim. x! — x>

Proof. J(xl,xm) m d (xgc,xio) , however for k > ji :

d(xgﬁxkoo) d(xk’ ]L)+d( Ji> ;Ck)

1 Uk
= 7 +d (‘le’fvjk)
—0. O
k,l—o00
e The statements about J are easy to verify. O

1.3 Vector spaces and norms

We only consider vector spaces over the fields K € {R,C} and consider those fields metric (or
topological) spaces with the usual distance.

Definition 1.26. Let X be a vector space over K and let X at the same time a topological space.
If vector addition and scalar multiplication are continuous, then X is called a topological vector
space.

Remark. Note that we need to use the box topology where appropriate here.

Definition 1.27 (Norm).

e Let X be a vector space over K. A mapping ||-|| : X — R is called a norm, if we have
1 ||z]] >0 Vze X.
2. |z =0 = z=0.
3. laxll = | =]
4.z +yll < [zl + flyll-

e If ||-|| is @ norm on X, then (X, ||-||) is called a normed space.
e A mapping with properties 1., 3., 4. is called semi-norm.

Remark. Again, we can turn a space with a semi-norm into a normed space by taking the modulo.



1 Basic structures 1.3 Vector spaces and norms

Proposition 1.28. Let (X, ||-||) be a normed space. By taking
d: X xX >R, d(z,y):=|z—vl,
we get a metric space (X,d).
Proof. Analysis II. O
Definition 1.29. A complete normed space is called Banach space.

Proposition 1.30. A normed vector space is a topological vector space and the topology is Haus-

dorff.
Proof. Exercise. O

Proposition 1.31. Let ||-||,, ||, be two norms on X, di,ds the induced metrics and Ty, T2 the
induced topologies. We have

1. ds is stronger than dy, iff 3C > 0 :

lzll, <Cllzll, VzeX.

2. Two norms are equivalent (< T = Tz), iff 3C,c¢ > 0:
cllzlly < flzlly < Cllzll; -

Proof. <« Take U open w.r.t. T1, and take x € U. Then there exists a d;-r-ball around x which
still lies in U. The dg—%—ball then also lies in U.

= Consider T} > B%!, an open d;-r-ball around the origin and, for any § > 0, the dp-d-ball Bg?
Since the inequality is not satisfied for any C, we can always find an z € ng with = ¢ B3,

which is therefore not open wrt. ds.
O

Theorem 1.32. All norms on a finite dimensional vector space are equivalent.
Proof. Use the basis, Luke. O

Example. The norms

1
1l = sup |F(®)] and  [fll, = / £ ()] dt

te[0,1]
on the vector space C* ([0, 1]) are not equivalent. Take e.g. f, (t) := t". We have

| fnllo =1, however

1
| fully =T

— 0.
Theorem 1.33. A finite dimensional subspace of a normed space is complete and closed.

Proof. Completeness follows from the completeness of K", closedness from the sequence-criterion
for closedness from before. O

Remark. e This does not generally hold for infinite dimensional subspaces.
Remark. If X,Y are normed spaces, Z = X X Y, then

1€l 2, = (IS + lInlly) . €=(Cm) €2

and
1€l 7,00 == max ([[¢] x , [I7ly)

are all equivalent norms on Z. Z is a Banach space, iff X and Y are Banach.



1 Basic structures 1.4 Scalar product

1.4 Scalar product
Definition 1.34. Let X be a K-vector space. A mapping

(b): X xX >R
is called a sesquilinear form, if Va,x1,x2,y,y1,y2 € X,a € R we have
L (az,y) = a(z,y) = (z,ay)

9. (z1 + 22,9) = (71,9) + (T2, 9)
(z, 91 +y2) = (2, 91) + (2, y2)

A sesquilinear form is symmetrical, if

(#,9) = (y,2).
A symmetrical sesquilinear is called positive semidefinite, if
(x,2) >0 VrelX.
A positive semidefinite sesquilinear form is called positive definite, if
(z,z)=0 = ax=0.
Remark. If K = R, we use the phrase bilinear.

Definition 1.35. A positive definite (symmetrical) sesquilinear form is called scalar product. The
pair (X, (-,-)) is called pre-Hilbert space.

Lemma 1.36. Let (-,-) be a scalar product and define

||l == V/(z,2) VzeX.

Then ||z|| :== \/(x,x) is a norm on X. Furthermore we have
1. [z, y)| < x|l - |yl (Cauchy-Schwarz inequality)
2 e+ yl*+llz =yl =2z + 2|yl (Parallelogram identity)
Proof. Linear Algebra O

Remark. Central Property: Orthogonality.
Definition 1.37. 1. Two vectors z,y are called orthogonal, if (z,y) = 0.

2. Two subspaces U,V C X are called orthogonal, if (z,y) =0 VzeU,yeV.
Definition 1.38. A complete pre-Hilbert space is called Hilbert space.

Example. X = C* ([0,1]) with (f, g) := fol fg+ fol f'q’ is a pre-Hilbert space.
The completion of X with respect to ||z|| = /(x,z) is called Sobolev space H'.

1.5 Example spaces
1.5.1 The finite dimensional vector spaces K"

A finite dimensional vector space, in fact the canonical finite dimensional vector space over the field
K. Becomes a Banach space with any of the usual norms ||z|, = (3., |z,|?)*/? and a Hilbert
space with the Euclidean norm. Do you remember the triangle inequality?

10



1 Basic structures 1.5 Example spaces

1.5.2 The sequence spaces

We consider KV, the space of sequences with values in K. The i-th canonical unit vector is denoted
by e;, the vector where the i-th entry is 1, all others are zero.

Theorem 1.39. We have

1. KN is a metric space with the Fréchet-Metric d(x,y) = p(xz — y) with p(x) = Z;’;l 9-d Lzl

2. Entrywise convergence is the same as convergence with respect to this metric
3. The space KN is complete.
4. 0P, 1 < p < oo are Banach-spaces.
5. 0% is a Hilbert-space.
Proof. See Alt, Lineare Funktionalanalysis. O

1.5.3 Bounded Functions
For a set S and a K-Banach-space Y we consider the set of all bounded maps from S to Y,
B(S,)Y)={f: S —=Y; f(S) is a bounded subset of Y}.

Theorem 1.40. With the supremumsnorm ||f||p(s,y) = SuP.eg ||f(2)|ly, this space becomes a
Banach-space.

Proof. The properties of being a norm are easy to verify. For any = in S, every Cauchy-sequence
in B(S,Y) is a Cauchy-sequence in Y and thus admits a limit (by assumption of Y being Banach)
f(z). We have

F@) = fil@) = Jim [fo@) )] < lminf |1~ fill sy

Thus, f — fr is a bounded function and so is f. Furthermore, for £ — 0o, the right hand side of
the above goes to zero, so fi converges to f with respect to the supremums-norm, as the bound is
independent of x. O

1.5.4 Continuous and Differentiable Functions

Theorem 1.41. For S C R” closed and bounded, Y a K-Banach-space, the space of continuous
functions from S to'Y endowed with the supremums-norm is a Banach-space.

Proof. Identification of the limit as in Theorem [[.40] We also know that uniform limits of con-
tinuous functions are continuous. O

Remark. 1. On unbounded or not closed sets S C R", since then continuous functions may
not be bounded, one can either simply look at the bounded continuous functions and derive
the same theorem as above, or for compact sets (Kj)jen such that |J; K; = S define a

Fréchet-metric by taking p(x) = Z;il 27 m% This results in a complete metric
space. v

2. On closed and bounded sets S, we consider m-times continuously differentiable functions
to be the functions whose derivatives, which are naturally defined on the interior of S,
can be continuously extended to the boundary. These spaces form Banach-spaces with the
supremums-norm on all derivatives (proof is the same as for continuous functions, the uniform
convergence also ensures that the limits of the derivatives are again the respective derivatives
of the limits).

3. There is no norm such that induces convergence on each derivative on the space of infinitely-
differentiable functions (see exercises).

4. We also know the spaces of continuous (or differentiable, etc.) functions with compact
support.

11



1 Basic structures 1.6 Compactness

1.6 Compactness

Theorem 1.42 (Compactness in metric spaces). Let A be a subset of a metric space (X,d). Then
the following are equivalent:

1. A is (covering) compact, that is, every open cover of A contains a finite subcover.

2. A is sequentially compact, that is, every sequence in A admit a converging subsequence.

3. (A,d) is complete and precompact, that is, for all € > 0 there is a finite cover of A with
e-balls.

Remark. compact = covering compact.

Proof. 1. = 2. Let (21),cy be a sequence without accumulation point. Then, Vy € A : 3r, > 0:

N, :={keN|z; € B,, (y)} is finite.

The balls B, (y) comprise an open cover of A. Therefore 3 {yk},ivzl :

C=

Bryk, (yk) O A.

k=1

This is a contradiction to our assumption, since otherwise there would only be finitely
many elements in the sequence.

Fist, we show completeness: By 2., we have that every Cauchy sequence in A admits
an accumulation point. However, a Cauchy sequence admits at most one accumulation
point. By 2., the accumulation point is in A. Therefore, the sequence converges to an
element of A.

For compactness, we argue by contradiction: Assume de > 0 : no finite cover with
e-balls exists. Therefore there exists a sequence (), C A :

k
w1 € A\ B: ().

j=1
So (x) has no accumulation point.

Let (U;),.; be an open cover of A. We define

iel
B:= {BCA|JCI,BC UUi:>|J|:oo}.
ieJ

We want to show A ¢ B. A is precompact, so VB € B,e > 0 there is a cover

Bc | B:(x).

i=1

Hence, for some i (depending on ¢):
B. (xl) NBeB.

Assume A € B. So inductively, we can take ¢ = %, k € N and get existence of z € X

and sets:
B1:=A, Bp:= B1/k (ack) NBp_1 € B Vk > 2.

Take yr € B,k € N. For k <[, we have

Yr, Y1 € By, (xr) = d (yr, y1) <

N

12



1 Basic structures 1.6 Compactness

= (Yr)pey is @ Cauchy sequence. Since A is complete, 3y € A :

e :=d (yr,y) —— 0.
k— oo

But we have y € U, for some ¢y and hence for k large enough
By, C By, (zx) C By, (yr) C B%+Ek (y) C Us,.

Therefore By, ¢ B, which is a contradiction. O

Theorem 1.43 (Riesz). Let X be a Banach space. then By (0) is compact, if and only if X is
finite dimensional.

Proof. “«<” Heine-Borel.
‘=7 By precompactness of B; (0), there exists a cover
By (0) C | B (mr) -
k=1
Take

Y :=span ({yx} ) -

Y is finite dimensional, so by Theorem [1.33]it is closed in X. We assume Y # X.
Claim. We have V0 € (0,1) : Jxg € X, ||zg]| = 1:

dist (zg,Y) > 6.
Proof. Take x € X\Y. Then

dist (z,Y) > 0.
There exists yo € Y :

1
0<|lz—yol < Edist (z,Y).

Take
T — Yo
Ty ‘= 77— -
(e
Then, forally € Y :
ey
—_—
lzo =yl = 7—— Iz = (%o + [z — woll W)l
[l = ol
1
> ———dist (2,Y)
1z = ol
dist (z,Y)
2T o
5 dist (2,Y)
=40.
This proves the claim. O

Remark. Such an xg is called almost orthogonal element.)

However, for some j € {1,...,n} :
Ty € B1/2 (yJ) .
With % < 0 < 1 there is a contradiction to

dist (zg,Y) > 0. O

13



2 Lebesgue-Spaces, Part 1

2 Lebesgue-Spaces, Part 1

In short, these are the spaces of functions f, such that
11 dn <.

2.1 A reminder of theorems from measure theory
Proofs and theorems for this paragraph and further read on measure theory:
e Fonseca & Leoni: Modern Methods in the calculus of of variations: LP spaces
e Brokate & Kersting: Maf & Integral
e Evans & Gariepy: Measure Theory and Fine Properties of Functions (“tough read”)

We consider (2, M, 1) be a o-finite measure space, i.e. Q is a set and M is a o-algebra in ,
v is a measure and (2, M, i) is o-finite, i.e. 3(£2,,), countable family of sets in M such that

Q= U Q, and p(Q,) <oo Vn.
n=1

Sets E € M such that pu (FE) = 0 are called null sets. We say that the same property holds almost
everywhere (a.e.) on ), if the property holds on all z € Q\E for some null set E. In this chapter,
we identify functions that agree almost everywhere. We often write [ f instead of fQ fdu. for the
integral over a measurable function.

We will need the following facts about integration.

Definition. L' (u) := {f : Q — K, f measurable : [, |f| du < oo} .

Theorem (Monotone convergence theorem (Beppo-Levi)). Let (fy) be a sequence in L' :

neN
1. i<fo<..<fn<.. ae onf.
2. sup,, [ fn < 00.

Then f,, (x) converges a.e. on §) to a finite limit f (x). We have f € L* and

an_fHLl ::/|fn—f|m0.

Theorem (Dominated convergence (Lebesgue)). Let (fn),cn be a sequence of functions in L*,
such that

1. fo(x) = f(z) a.e onf.
2. 3ge Lt |f, () <g(z) VneEN, ae on.

Then, f € L' and
1fo = Fllpr === 0

Lemma (Fatou’s lemma). Let (f,) be a sequence in L' :

neN
1.Vn:f, >0 a.e onf.

2. sup,, [ fn < oc0.

For almost all x € €, set
f(z) :=liminf f, (z) < oco.

n—oo

Then, f € L' and



2 Lebesgue-Spaces, Part 1 2.2 Definition and basic properties of LP

Now let (Q1, M1, u1) and (Qa, Mo, us) be two measure spaces. There is a canonical way to
define a measure on the product space Q = Q; x Q :

Theorem (Tonelli). Let F: Q1 x Q2 — R be a measurable function, such that

1. [o, |F (2,y)| duz < 0o for a.e. x € Q1 and

2. Jq, (fsb |F (z,y)| d,ug) dpy < oo.
Then F € L' (91 x Q2).
Theorem (Fubini). Let F € L' (1 x Q3). Then
F(z,") € L' (Q) forae x€Q

and
| P du e L)
Qo

end vice versa. Moreover

/Ql ( o @Y d‘”) i = / (/ Flo.y) dﬂl) dpz = // F(o,y) d(in @ ).

Notation. A basic example is the case, where 2 = R™ and g is the Lebesgue measure on R™.
We denote by C. (R™) the continuous functions with compact support on R™. The support of a
(continuous) function f is the closure of the set {f # 0}

Theorem (density of continuous functions). The space C. (R") lies dense in L' (R™), i.e. Vf €
L* (R™),e > 03f € C. (R™) such that

If =7l <.

2.2 Definition and basic properties of L”

Definition 2.1. Let p € (1,00). Set

LP (p) == {f:Q— K| f is measurable and |f[" € L" ()}

1/p
1l = 1L, = ( [ ur dﬂ> |

L% (p) :={f:Q — K| f is measurable and 3C > 0: |f (z)| < C a.e. on 1},

with

Definition 2.2. We set

where

1fll oo == [Iflloc :=nf{C >0]]|f(x)] <C ae. onQ}.

Remark. For Q C R™ we often write LP(Q) for the LP-space on 2 with the Lebesgue measure. We
sometimes implicitly consider a function in L”(2) to be a function of LP(R™) by continuation by
zero outside ). If no ambiguity should occur, we sometimes leave out the measure or set altogether.

Definition 2.3. We set for 1 < p < oo

L:D

1) ={f: Q= K|f € LP(K) for any K C Q compact}
and we write f, — f in L} if f,, converges to f in L? on any compact subset of €.

Notation. Let 1 < p < co. We denote by p’ the conjugate exponent:



2 Lebesgue-Spaces, Part 1 2.2 Definition and basic properties of LP

Theorem 2.4 (Holders’s inequality). Assume f € LP, g € LP' 1 <p<oc. Then f-g € L' with

J17-01< 181 gl

Remark. 1. A useful consequence of Hélders’s inequality is the following:
Take f1, fa, ..., fx funktions: f; € LPi :

1 1 1 1
-—=—+4+—4+.+—<n
p P11 P2 Pk

Then f= f1- fo--- fr € LP and
Il < fallon - Lkl o -
In particular, if f € LP N LY, 1 <p < q < o0, then
feLl” Vp<r<gq
and we have the following “interpolation inequality”

1—
£l < AT 11"

where

-=—+ ) Ogagl
r.p p

2. We also note that for 1 < p < co we have ((|a| + |b])? < 2P(|a|? + |b|P).
Proof of Theorem[2.]} See exercises. O
Theorem 2.5. LP is a vector space and |||, is a norm for any 1 < p < oco.

Proof. The only difficult thing for to check p < oo is (again) triangle inequality, the checking of
which is an exercise. For p = oo the triangle inequality is easy, but make sure that zero norm
implies the function vanishes a.e. O

Theorem 2.6 (Fischer-Riesz). L? is a Banach space for any 1 < p < co.

Proof. p = oc. Take a Cauchy sequence (fy), oy in L. For all k > 1 there exists N :

1
||f’m_fn||Loo <E Vn,mZNk.

Thus there exist null sets Fy, :

1
Take
E = | Ey.
keN

We have p (E) = 0. We see that for all z € Q\E, f, (z) is Cauchy in K. Thus
fn(z) = f(x) VoeQ\E.

Taking the limit n,m — oo in (*) yields

1F (2) = fu ()] < % Vr € O\E.n > Np.
= fa £> I

16



2 Lebesgue-Spaces, Part 1 2.2 Definition and basic properties of LP

1 <p<oo. Let (f,) be a Cauchy sequence in LP. It is enough to show convergence on a sub-
sequence (why?), so wlog. we may assume

1
I fes1 — frllpr < o vk > 1.

Let N
gn (@) = 3 o (@) = fi ().
k=1

We have

g is also increasing, so by the monotone convergence theorem (Beppo-Levi), (g, ())
has a finite limit g (x) a.e. on  such that g € L. We have for m >n > 2:

[fm () = fo ()] < [fon (2) = frner (@) + oo+ [frga (2) = fu (2)] < g (2) = gn1 (2).

Therefore, we have that f, (z) is a Cauchy sequence a.e. on Q. It follows that f, ()
converges to a limit f (z). So a.e. on Q:

If (@) = fo (2)| < g(z) Vn>2.

Thus, f € LP and by dominated convergence,

1fn = fllp» =0,
since |f,, (z) — f (z)]” — 0 a.e. and |f, — f|’ < gP € L'. O

neN

Theorem 2.7. Let f, be a sequence in LP and let f € LP :

| frn = flle — 0.

Then there exists a subsequence (fp, ),y and h € LP :
1. fn, — f a.e. on Q.
2. |fn| < h ae onQ.

Example. Take

Fo () = {1, rzel,

. )
0, otherwise

where (I,),, oy is a sequence of intervals that repeatedly move through all of [0, 1] (i.e. every point
of [0,1] is in at least one of the intervals of each “round”) while steadily getting smaller.
This sequence converges to zero in LP,p < 0o, but it converges nowhere pointwise.

Proof of Theorem[2.7]. p = oo is obvious. Take 1 < p < oo. Since (fy), ey is a Cauchy sequence,
we consider a relabelled subsequence (fx)cy :

fr == feLP.
k— o0
From the previous proof, we know
|f_fk‘ <gelLl ae. onf

By dominated convergence, we know that

P
L_>f

=

and thus

In addition, we have B
[fie (@) < |F (2)] + g (),
which implies 2. O



2 Lebesgue-Spaces, Part 1 2.3 Density of smooth functions and separability

2.3 Density of smooth functions and separability

Theorem 2.8. Let Q C R™ open. The space C. () is dense in
LP(Q):=L° (,pu) V1<p<oo, (p Lebesgue measure).

Notation. We define the complex sign function

é, z#0

sgn: C— B1(0), sgnz:= ,
& 10, = {0, =0

the truncation operator
T,:C—C, T,z:=sgnz- -min{|z|,n},

and for a set E C 2, the characteristic function

1, z€eF

10— R, = .
XE XE () {0’ ¢ ¢ E

Proof of Theorem[2.8
Claim. Given f € LP (2),e > 0, there exists g € L™ (2) and a compact set K C Q such that

g(@)=0 Vre Q\K, and [g—f],, <=

Proof. Take (K,)nen an increasing sequence of compact subsets of {2 such that (J,, .y Kn = Q\ E
for some null set E (this is possible since Lebesgue measurable sets can be approximated from the
inside by compact sets).
Xn ‘= XK Jn = xaTnf.
We have
fu s g

By dominated convergence, we see
||fn—f||Lp > 0.
n—oo

So it suffices to take g = f,, for n large enough. O
By the density of C,. (R™) in L' (R®)), Vd > 0: 3g; € C.. (Q) such that

lg = g1l <0

To see this if Q # R™, first consider the function g as a function on all of R™ (by continuation by
zero outside ), then approximate with a functio §; by density of C.. Then, since (2 is open and
g vanishes outside a compact subset K, of Q, we have dist(K,,d9Q) = ¢ > 0. We can thus find K
compact and U open with, K,, C U C K C € and have space to cut off §; in a continuous fashion
in between those two sets such that supp(g;) C K by taking ¢1(z) = ¢(x)g1(x) where ¢ = 1 on
K,, »=00n Q\ K, and ¢ continuous. Note that this cutting off can not increase the L!-distance
to g as g vanishes outside K,, anyhow.
We can furthermore assume
lg1llp < llgll o

(otherwise, replace g; with Tjg|,. 91 and note that the distance again only decreases) and get

lg— a1l <llg— 91||1L/f “|lg = 91||i;1/p (the useful interpolation inequality)
<& 2l =)'
so by picking § small enough, the theorem is proven. O

Corollary 2.9. LP(Q, u), Q C R™ measurable (not necessarily open), 1 Lebesgue, is separable for
1<p<o0.

18



2 Lebesgue-Spaces, Part 1 2.3 Density of smooth functions and separability

Proof. First, consider the functions defined on all of R™ by continuation by zero. Then approx-
imate by a function in C. (R™). Functions in C, (R™) are uniformly continuous, so the can be
approximated in LP by finite step functions. The finite step functions taking (complex) rational
values on appropriate sets form a countable dense subset of the finite step functions. If necessary,
cut off the step functions outside of 2 by multiplication with xq. O

Remark. Separability also holds for a more general measure space 2, if that measure space is
separable (i.e. its o-algebra is countably generated).

Remark. L>°((0,1)) is not separable. To see this, consider f, = X(a,1) for @ € (0,1) and note that
[|fa — fallzee =1 for a # § and that there are more than countably many real numbers o € (0, 1).
Therefore, B = {B1/2(fa)|ca € (0,1)} is an uncountable and non-intersecting collection of 1/2-balls
in L>°((0,1)). Thus there can not exist a countable, dense subset. Similarly, L (£2) is not separable
for any open set  C R™.

Notation. In the following we write V' CC Q for V open and V C K C  for some compact set
K cQ.

Definition 2.10. 1. We define n € C*°(R") by
_1 i
n(z) = { Cexp <|m|2_1) if |[z] <1

0 otherwise
where C' > 0 is such that [g'n=1.

2. For ¢ > 0 set

1 T
=g ()
€ €
We call i standard mollifier.
Remark. Note that [, 7. = 1 and supp(n.) = Bc(0).
Definition 2.11. For f € L} (Q), we define its mollification

loc

@ = [ nle-nfwdy= [ ey

B.(0)
for z € Q. Note that we implicitly continued f by zero outside of 2 for the integration.
Theorem 2.12 (Properties of mollifiers). Consider 2 C R™ open, f € L}, (). We have
1. fee C>®(Q)
2. If f € C(Q), then f¢ — [ uniformly on compact subsets of .
3. For1<p<oo, fe Ll (Q), f¢— fin Ll (Q).

loc loc

Proof. 1. Let x € Q,i € {1,...,n},h > 0, so that z + he; € Q.
We have

Heshe) =) _ L[ L(, (b (220))

=6in V}ll<n<x+h:i_y> —n(xzy»f(y)dy

for some V CC R".

We have
1 x+he; —y x—y 10 x—y
o U el — =)
h € € € Ox; €

uniformly on V, g—ff therefore exists and equals

a €
/Q aTZi(I —y)f(y)dy

The same argument holds for any other derivative.
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2 Lebesgue-Spaces, Part 1 2.3 Density of smooth functions and separability

2. Let K C V CC Q be compact and € > 0. By uniform continuity of f on V', there exists § > 0
with
fa—y)— f@) <e Ve K,ye Bs0).

For z € K and ¢ so small that |J, x Bs(z) C V we now obtain
@)~ f@l<e [0 =e

3. Let 1 <p<oo,felLl (2)and V cC W cC . Claim: For € > 0 sufficiently small we have

loc
Ifl e vy < I fllzeowry

Let x € V. We have

|fe(z)| = /B( )ne(w—y)f(y)dy S/Be(w)nif”’”(:ﬁ—y)ni/”(x—y)lf(y)ldy

1-1/p 1/p

< n/P(x —y)|f(y)Pdy

Be(z)

/ ne(z — y)dy
Be(z)

=1
> f o= | </Be<x) n = y)lf(y)l”dy> "
< /W |f(y)|? (/Be(y) Ne(x — y)da:) dy = /W |f(z)[Pdx

if Be(z) Cc W,Vz € V.
Now finally choose again V. .CC W CcC Q, § > 0 and g € C.(W) (by Theorem , so that

If = glleeewy <0
Then
1< = fllzeevy S NFE—=gllzevy + 195 = glleeevy + 119 = fllevy
<2\f = gllerow) + 19° = gllzeevy <26+ |l9° = gllLr(v)
||g6 - gHLP(V) — 07 (6 — 0)7
since g¢ — ¢ uniformly on V.
lg°(z) —g(z)| < C b lg(x) — g(y)|dy — 0

And the the claim follows.
O

Remark. By first multiplying with x,, as in the proof of Theorem [2.8] we also get density of
C(Q) in LY (Q) for © C R™ open. Remember that we use the Fréchet-Metric on L . i.e.,

llglxc, o

d(f,9) =2 en 2*jm for compact K; C € such that Q2 = J; K; modulo a null set. For
bounded € this is equivalent to the usual distance from || - ||z»(q) (try it!).
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3 Continuous linear maps

3 Continuous linear maps

We take (X, ||| y) and (Y, ]|-]ly) to be normed spaces and consider a linear map A: X — Y.
Definition 3.1. A is called bounded, if

sup | Az, < .
llll x <1

Theorem 3.2. The following are equivalent:
1. A is continuous in 0 € X.
2. A is continuous.
3. A is Lipschitz continuous (i.e. 3L > 0:Vz,y € X : ||[Az — Ay|| < L ||l — y||).
4. A is bounded.

Proof. 4. = 3. Let z1 + 25 € X.
|[Az1 — Aza|| = [|A (21 — 22) ||

‘A

< sup [ Az [z1 — 22|
l=I<1

r1 — T2
H oy — o]
lz1 — 2|

=:L<oco

3. = 2. Trivial.
2. = 1. Trivial.

1. = 4. By contradiction: Assume A is not bounded, that is
3 (Ik)keN in X : ||zk]| = 1, ||Azk || — oo.

We can construct
-1
2k = ||Azg||” 2k — 0.

However, we have ||Azk|| =1 Vk, contradicting sequential continuity of A at 0. O
Corollary 3.3. If dim X < oo, then all linear operators A: X — Y are continuous.

Example. Take

(X -l x) = (€ ([0, 2] 1l 1)
Y, [lly) = (€ ([0, 1), Il -

Then
d: X—=Y, fef

is not continuous. To see this, consider fy (t) = t*.

Definition 3.4.

Z(X,Y):={A: X - Y | Ais linear and continuous} ,

Al z(x,yy = sup [|Az]ly .
el <1

If Y = K, then we call X' := Z(X,K), the space of (continuous linear) functionals or the
(topological) dual space of X.
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3 Continuous linear maps

Proposition 3.5. (ﬁ (X,Y), H'”z(x,y)) is a normed space. For all Ae Z(X,Y),z € X :

[Az|ly < [|All 2x,v) llzllx -

Proof. Exercise.

O

Theorem 3.6. Let X,Y,Z be normed spaces, A € £ (X,Y),Be £ (Y,Z). Then BAe ¥ (X, Z)

with
||BAH$(X,Z) < ||B||$(Y,Z) ||AH$(X,Y) .

Furthermore, the mapping
(A,B) — BA

18 continuous.
Proof. Let ||z|| = 1. Then we have
|BAz|| , < ||B||$(Y,Z) || Az|ly

< ”BHZ(Y,Z) ) ||A||,$(X,Y) el x -
=1

Continuity of (A4, B) — BA follows from

[B1Ar = BoAs|| o (x 7 = [|1B1 (A1 — Az) + (B1 — B2) Al ¢(x 2

S Bl gv,z) A1 = A2l ¢ x vy + 1 A2l 2 (x vy 1B = Bell ¢y, 2)

A1 —=A2ll o (x,vy:1B1—=B2ll & (v, z)—0
Theorem 3.7. IfY is a Banach space, then so is £ (X,Y).
Remark. Note that we do not require completeness of X.

Proof of Theorem [3.7]. Let (Ax),cn be a Cauchy sequence. It follows that

sup ||Arr — Aiz|ly —— 0
Izl x <1 k,l=oo

and for any fixed z € X\ {0}, we have

1
— ||Agx — A — 0.
el 14— Al s

That means, (Axz),y is a Cauchy sequence in Y. Thus there exists a limit

Yoy(z):= leIIOlO Agx.

Claim (1). y () is linear in x.
Proof (1). Take a € K, z1, 29 € X. We have
y(axy +22) = lim Ay (ax; + 22)
k—o0
= lim (aAkasl +Akx2)
k—o0
=« lim Agz; + lim Apzs
k—o0 k—o0
=ay(z1) +y(z2).

So y is a linear map and we write
y = Ax.

Claim (2). A is continuous.

22
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4 Hahn-Banach theorem and some consequences

Proof (2).
A =| lim A
1Az]ly ’kggo k)|
=1 A
Ji [ Ayl
< limsup ||AkHz(X,Y) ]| x
k—o0
< Lilzlly,
since Cauchy sequences are bounded. O

Claim (3). [|Ax — All »(x vy — 0.
Proof (3).

|Az — Apzx|ly = ‘ llggo Az — Az

y
< limsup ||4; — Ang(xy) 2]l x -
=00

If we take the sup over ||z|| < 1, we get

140 = Axll o vy < Timsup A = Ag ]| =0,
=00

since (Ag),cy is a Cauchy sequence. O
O

Remark. For an interesting application see the exercise with the exponential and Neumann series
and the connection to Voterra’s integral equation.

4 Hahn-Banach theorem and some consequences

Question. Is the dual space rich enough?

Example. X vector space, take x,y € X,z # y. Does there exist some f € X' : f(x) # f (y).

4.1 Analytic version of the theorem

Theorem 4.1 (Hahn-Banach). Let X be a vector space over the real numbers and takep : X — R
with the following properties:

1. p(Az) =Ap(x) YA>0,z€X (positive homogeneity)
2.p(r+y)<p(x)+ply) VryeX (sublinearity)
Furthermore, let G C X be a linear subspace and let g : G — R be linear with
g(z)<p(x) Vred.

Then there exists a linear map
f: X—>R

such that
1. flg=g (thatis f () =g (x) Ve G).
2. f(z)<p(z) VrelX.

We say that f is a continuation (extension) of g.
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4 Hahn-Banach theorem and some consequences 4.1 Analytic version of the theorem

Remark. On a normed vector space, the norm satisfies the requirements on p, whence the extension
is a bounded linear functional.

Example. Series with increasing difficulty:
1. X =R? =span{(1,0),(0,1)}.
Z € G:=span{(1,0)},
9(z) =7,
p() = llall, = (a3 +3)"".
Clearly, we have an extension f of g, namely
f(x) =a.
2. X =L?((0,1)) Take
¢ € X such that ||¢]|, =1,
G:=span{¢} ={T € X | T = A\p, A € R},
g(@): =X VIegd,
p(x) = [l
We can take

1

fl)=[ =@)¢(t) dt = (z,9)r>

0
(bound follows from Cauchy-Schwarz).

3. X = LY(0,1))
1
Jell, = [ 1o 0) at
Take ¢p € X, ¢ (1) = 2%/2 We thus have ||¢]|; = 1.
G:=span{¢} ={z € X |z = Ao, A € R},
g(@):=\ Viegq,
p(x) = |-
Note that .
fa)= [ swoa
0

does not work. However, the Hahn-Banach theorem guarantees the existence of such a
functional

f:X =R <1 fle=9
4. X = L*((0,1)) Take the linear subspace of L™

G:= (C ((07 1)) ’ ||Hoo) ’

9@ = (3).
p(@) =7 -

Existence of a continuation is guaranteed, even though a general function in L°° does not
admit a “value at 1/2”.

Idea of the proof. We consider the set P of all continuations h of g on D (h) (domain of h,
subspace of X) and order the elements of P by set inclusion with respect to their domain
D (h), that is

h<h' &= D()DD(h) and h(z)="h () Vo€ D(h).

7All” that is left to do then is to find the “largest” extension.
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4 Hahn-Banach theorem and some consequences 4.1 Analytic version of the theorem

Definition 4.2. 1. A set P with a relation < is called partially ordered, if Va,b,c € P :

(a) a<a (Reflexivity)
(b) (a<bandb<c)=a<c (Transitivity)
(¢c) (a<bandb<a)=a=0b (Antisymmetry)

2. A set Q with a relation < is called totally ordered, if it is partially ordered and we further

have
a<bVb<a VabeqQ.

3. Let R C P, P partially ordered. An element ¢ € P is called an upper bound of R, if

a<c VYae€R.

4. An element m € P is called maximal, if for all a € P, we have
m<a = Mm=a.
Remark. e The canonical example for a partial order is set inclusion.
e If for a,b € P we neither have a < b nor b < a, then a and b are called not comparable.

Zorn’s Lemma. Let (P, <) be not empty, partially ordered and assume that any totally ordered
subset Q of P admits an upper bound in P. Then P admits a maximal element.

Remark. [Zorn’s Lemmal is equivalent to the aziom of choice:

Axiom of choice. Take A to be a set of non-empty sets ,then there exists a choice function F on
A, such that
F(X)eX VXeA

Proof of equivalence. Not here. O
Proof (Theorem [4.1)). Consider
P:={h:D(h)—R|GCD(h), hisa continuation of g onto D (h),h(z) <p(x) Vz e D (h)}

with the relation
D (hl) cD (hg)

hi <hy & {h1<x):h2(1‘) Va € D (hy)

Claim (1). P is not empty.

(1)
Proof (1). g € P. O
Claim (2). “<” is a partial order on P.

Proof (2). 1. a < a is clear by definition.

2.a<bAb<c= D(a) C D () C D/(c)and ¢|p@ycpm)= a-

3.a<bAb<a= D(a)=D(0b)Nal|pp=b=a=h. O
Claim (3). Every totally ordered subset of P admits an upper bound in P.

Proof (3). Let

Q:= {hj}jeja
D) =D,
jel

h(z):=h;(x) VYzeD/(h;).
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4 Hahn-Banach theorem and some consequences 4.1 Analytic version of the theorem

Claim (3a). h is well defined.
Proof (3a). h1,he € Q, x € D (h1) N D (hg). Since @ is totally ordered, we have either
hy < hg or hy < hy.
W.lo.g. let’s assume the former. =
x € D(hy) =z € D(ha). O
Claim (3b). h € P.
Proof (3b). e D (h) is a subspace of X, because
z,y€ D(h)=3jel:z,ye D(h;).

Therefore, we have
(ax+y)e D(h) VaeR.

Linearity of h follows in the same way.
e h(x) <p(z)on D(h) is also clear, since

Jjel:zeD(hj)=h(z)="h;(z) <p(x).

e h(z) =g (z) on G is again clear, since for any j € I, we have G C D (h;) and h; = g on G.
o hj < hforall h; € Q follows from the definition of h. O

With that, all requirements of are fulfilled and we can deduce existence of a maximal
element f € P. O

Claim (4). f is the sought after continuation of g.

Proof (4). Since f € P, the only thing that remains to show is that D (f) = X. We argue by
contradiction.
Let o € X such that z¢ ¢ D (f). Take

D (f) = D () +span ({zo})

We have

x—|—tx0€D<f) Vvt € R.

z

Set

f@)=[(x)+at
for a suitable o € R such that f € P.

Claim (4a). Such an « exists.

Proof (4a). We only have to show that f < p which is nothing but

f@)+at<p(x+itxy) VereD(f),teR

x x

ad < ad
& f(t)+a_p(t+xo) (t>0)

x x

o< =z
f(t) O‘—p(t xo) (t<0)
by positive homogeneity. This is equivalent to showing that
<
veen(f): {f@trasplitmn) ()
fa)—a<plz—m)



4 Hahn-Banach theorem and some consequences 4.1 Analytic version of the theorem

due to homogeneity of p. However, (using sublinearity of p) we have that Vz,y € D (f) :

f@)+fy) <plz+y)
<p(x+z0) +p(y — x0)
f@)—py—z0) <plx+z0)— f(2).

We can thus choose « in between the two sides of the inequality, which satisfies (x). O
Therefore, we have f € P. Note that f < f # f, in contradiction to maximality of f. O
This completes the proof. O

Corollary 4.3. Let (X, ||-||) be a normed K-vector space (K € {R,C}) and let G be a subspace of
X. Let

g: G — K linear,

gl == sup |g(x)].
z€G
lzllx <1

Then there exists a continuation f € X' of g such that

1 llx = llgll -
Proof. Exercise. O
Corollary 4.4. Let X be a K-vector space. Then Vzg e X :3fy € X' :

follx: = llzollx  and  fo (wo) = [|zo]*-
Proof. Take
G =K - 2o == span ({z0})
9 (txo) :=t|zo*.

Then

191l = [loll -
With Corollary the existence of fj follows. O

Corollary 4.5. Let X be a K-vector space, x,y € X,z # y. Then there exists f € X' such that

f@)# f(y).
Proof. Corollary .4 with xg = 2 — . O
Corollary 4.6. Let X be a normed K-vector space. Then for all x € X we have
[zl = sup |f(z)] = max [f(z)].
fex’ fex
£l 5 <1 £l x <1

Proof. Let x # 0. We immediately have

sup |f (z)] < 1|z
fex’
1l xr <1

Using Corollary [4.4] there exists fy € X’ such that

1 follxr = ll2llx »
fo(z) = |l -

Now let
1

fl = 7f07
]|

and we have || f1]|y, =1 and fi (z) = ||z| . =
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4 Hahn-Banach theorem and some consequences 4.2 Separation of convex sets

4.2 Separation of convex sets
In the following, let X be a normed R-vector space (complex at the end of the section).

Definition 4.7. An affine hyperplane is a set of the form
H={zeX]|f(z)=0a},

where 0 £ f : X — R is a linear (not necessarily continuous) map.
H is called hyperplane of the equation

[f = a].
Proposition 4.8. The hyperplane of the equation [f = «] is closed iff f is continuous.
Proof. Exercise. O

Definition 4.9. Consider A, B C X. The hyperplane H of the equation [f = a] separates A from
B if we have
fl@)<a<fly) VeeAyeB.

H strictly separates A from B if there exists € > 0 :
f@)+e<a<f(y)—e VreAyeB.

Theorem 4.10 (First separation theorem). Consider A, B C X convez, not empty and disjoint
and let A be open. Then there exists a closed hyperplane that separates A from B.

Lemma 4.11 (Minkowsky Functional). Let C C X be convexr and open with 0 € C. For allx € X,
we define
p(x):=inf{a>0|a ' -2eC}.

Then p is positively homogeneous of degree 1 and sublinear with respect to vector addition. Fur-
thermore, we have

1.IM>0: 0<p(z)<M|=z| VrelX.
2.C={zeX:p(x)<1}.
p is called Minkowsky functional or gauge of C.
Proof. Homogeneity is clear by definition.
1. Let r>0: B, (0) CC. =
() <~ la
p(z) < —llzfl-
Property 1. follows.

2. Let ¢ € C, thus 3 > 0: (1 + &)z € C. With that we have

()< —— <1
x :
PR =177
Let p(x) <1. Then 0 < a < 1:
alreC.
We thus have
r=a(az)+(1-a) 0 €C. (convex combination)
oy ec

So 2. follows.
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4 Hahn-Banach theorem and some consequences 4.2 Separation of convex sets

Sublinearity: Let x,y € X,e > 0. With homogeneity and 1., we have

_r . _ Y .
pl@)+e = ply) +e
Due to convexity, we have
t 1—-t
i L=DY e wieo ).
ple)+e ply) +e
Take
pz)+e
p(x)+p(y) + 2
and we get
T+y
eC.
p(x) +p(y)+ 2
By 2.

r+y

p<p<x>+p<y>+2e> <!

So (by homogeneity) we have
pl+y) <p)+p(y) +2 Ve>0.
The claim follows by arbitrary choice of £ (¢ — 0). O

Lemma 4.12 (Separation of a point and a convex set). Take C' C X open, non-empty, and convex,
take xog € X\C. Then there exists f € X’ :

f(x) < f(zg) Vxedl.
In particular, the hyperplane [f = f (xo)] separates the set C from {xq}.
Proof. W.l.o.g. we can assume 0 € C. Consider p (x), the Minkowsky functional of C. Take
G:=Rxy and g¢(txg) =t.

Then, we have
g(x)<p(x) Vred.

By Hahn-Banach theorem there exists f € X’ with the required properties:
f(ro)=1 and f(x)<1 VreC. O
Proof (Theorem [4.10). Take

c=JA-p=U U -y}

yeEB yeEBxz€A

By definition, C' is open and 0 ¢ C (since by assumption A N B = ().
By Lemma there exists f € X' :

F(2)<0 VzeC.

Therefore,
f@)<fly) VeeAyeB,
since
zeC = z=x—-vy, t€AyYyeBDB,
and thus

With a € R such that

the theorem follows. O
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4 Hahn-Banach theorem and some consequences 4.2 Separation of convex sets

Theorem 4.13 (Second separation theorem). Take A, B C X convez, non-empty and disjoint.
Let A be closed and B compact. Then there exists a closed hyperplane that strictly separates A
from B.

Proof. Fix € > 0. Take

A=A+ B.(0) := U U {z+y},

z€A yEB.(0)
B.:=B+B.(0).

With that, A., B. are open, convex, and non-empty.

Claim. For sufficiently small €, we have A, N B, = (.

Proof. Assume that for all € : A. N B, # 0. Then there exists (£,,),,cy
en =0, e, >0,

with the property that there exist (zy),cy € AY, (Yn), ey € B", such that
[z — ynll < 2e5.

Using compactness of B, there exists a subsequence

Yn, — Y € B.
But
Ve>0:3ze€A: ye B (x).
Thus, we have y € A = A. This is a contradiction to AN B = 0. O

Therefore, by Theorem we have a closed hyperplane [f = o] separating A, from B.. Thus
we have
fla+ex)<a<f(y+ez) VeeAyeB,z€ B (0).

But that gives us
f@+elfl<a<f@—clfl,

and the claim follows. O
Remark. e The most common application of this theorem is to take B = {z¢}.

e Let A, B C X non-empty, disjoint and convex. Without assumptions, it is only generally
possible to separate A from B in the finite-dimensional case.

e With the following Lemma, one can extend the above theorems to the complex setting. By
taking a real closed hyperplane [Re f = o], € R.

Lemma 4.14. Take X to be a Banach space over C, A C X convex, non-empty and open. Take
zg € X\A. Then there exists f € X' :

Re f () <Re f(zg) Vxe A
Corollary 4.15. Let F C X be a subspace, such that F # X. Then there exists 0 % f € X' :
fx)=0 VzeF
Remark. This is very useful for proving the denseness of subspaces:

(VzeF:f(z)=0) = f=0 = F=X.
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5 Baire category argument

Proof. Take zo € X such that zg ¢ F. By Theorem with A = F, B = {x¢}, there exists
0 # f € X', such that the hyperplane

[(Re) f = o]
separates F' and {x¢} strictly. We have

(Re) f(z) <a <Ref(xg) VxePF
Since F' is a subspace of X, it follows

ARef(x)<a VAER z€eF
= Ref(x)=0 VzeF
= f(x)=0 Vo eF

See exercise 10. ]

5 Baire category argument

Lemma 5.1 (Baire). Let X be a complete metric space and take a sequence (Fy,)
subsets of X. If

nen Of closed

F, =0 VneN,

() =

Remark. e A set F'is called nowhere dense, if (F)O =0

then

e A set M is called meagre (or set of category 1), if 3(F,),, oy , Fn nowhere dense and

U Fo=M.

neN

e Non-meagre sets are called fat (or of category 2).

e In particular, every complete metric space is fat.

Remark. The most common application of Baire’s Lemma is the following: Take (A,),y a se-
quence of sets in a complete metric space X. If

UAan=X = 3neN: (4,)° #0.

neN
Proof. Let O,, := Ff¢. Then O, is open and dense in X. Required to prove is that
G:=()On
neN

is still dense in X. Take w a non-empty open set in X. We will show that
wNG # 0.

Take xg € w,rg > 0 such that
BTO(%) Cw.

Now pick z1 € By, (x9) N O1 and r; > 0 such that

By, (21) C By, (z0) N 01, 0<7 < %0
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5 Baire category argument 5.1 Banach-Steinhaus theorem

(This is possible, since O; is open and dense.) In the same manner we can inductively construct
(2n)pen € XN, (rn)pen € RYg such that Vn e N

—_ T
Brn_*_1 (xn—H) C Brn (:cn) n On+1, 0< T+l < =,

2
Thus (7,),,cy is a Cauchy sequence and we have
Tp — X € Y,
and
Zniyp € By, () VYp>0,neN.
But then for the limit, we get
x € By, (x,) VneN.
Thus z € wNG. O

5.1 Banach-Steinhaus theorem

Theorem 5.2 (Banach-Steinhaus). Let X, Y be normed K-vector spaces, X a Banach space. Let
(Ti);er a family of linear bounded maps from X to'Y (not necessarily countably many). Assume
that

sup [|[T;z|| < oo Vze X.

iel

Then we have

sup ||T;]| < oo.
il

Remark. Theorem [5.2]is also called uniform boundedness principle, since from the pointwise state-

ment, it follows that
Tzl < Cllz|| Viel,zelX.

Proof. Let
X, ={reX :Viel:|Tiz|] <n}.
With that, we have X, closed and by assumption of pointwise boundedness, we have

UXn:X.

neN

By Lemma [5.1] there exists ng € N :
X, #0.

Now pick z¢ € X, 7 >0
Br (mo) C Xno~

But then we have
T (zo +7r2)|| <ng Viel,ze Bi(0).

It follows

’I"||’TlZ||§TL()+||TZl‘0H Viel,ze B (0),

no + || Tizol|
T

173 < Viel,

and the theorem is proven. O

Corollary 5.3. Let X be a Banach space, Y a normed space, (Ty,),,cy @ sequence of bounded linear
maps T, : X — Y :
T,x —— Tx VzeX.
n—oo

Then we have
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5 Baire category argument 5.2 Open mapping and closed graph theorems

1. sup, ey | Tn]l < oo.
2.TeZ(X)Y).
3. ||IT|| < liminf, o | Tnll -
Proof. Exercise. O

Corollary 5.4. Let Z be a Banach space, B C Z. Assume V[ € Z' we have

F(B) = J{f©®)}

beEB
is bounded in K. Then B is bounded set.
Proof. We will use Theorem [5.2with

X=2Y=KI=B.

For any b € B, we define
T,(f)=f() VfeZ.
Thus by assumption we have

sup (T} (f)) < oo VfeZ
beB

Banach-Steinhaus [5.2] yields C > 0 :
fOI<Clfl VfeZ. beB.

With Corollary 4.4, it follows that
Ib]| < C Vbe B. O

Corollary 5.5. Let Z be a Banach space, B’ C Z' and the sets

U f(x) be bounded (in K) Vz e Z.
fenB’

Then B’ is bounded (in the operator norm ||| o7 x))-

Proof. Use Theorem with X = Z,Y = K, I = B’. The conclusion is made as in [5.4 O

5.2 Open mapping and closed graph theorems

Theorem 5.6 (Open mapping theorem). Let X,Y be Banach spaces, T : X — Y bounded and
linear and surjective. Then there exists ¢ > 0 :

T(B1(0)) > B:(0).
in X inY

Remark. Tt follows that the image of any open set in X is an open set in Y (under surjective maps).
Such a map is called an open map.

Proof. 1. We first show that for T': X — Y surjective, linear, we have 3¢ > 0 :
T(B1(0))  Bac (0). ()

Let

By surjectivity of T, we have

Y = UYn.

neN
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5 Baire category argument 5.2 Open mapping and closed graph theorems

Due to Baire’s Lemma, we have some ng € N :
Y, #0.
But we have

By, (0) = {:r € X|ni0x € By (0)}.

Using linearity of T', we have

Therefore, we also have
(TBO)) #0.

Now pick ¢ > 0,y € Y :
Buc (yo) € T'(By (0)).

By linearity of T', we have that not only yo € T (Bj (0)), but also —yo € T'(B; (0)). Thus

Byc (0) C Bac (y0) + Bac (—0) (A+ B :=Ugyeaxs {z+y})
C T (B1(0)) + T (B1(0)).

Linearity and convexity hold

T (B, (0)) +T(B,(0) =T (B2(0)).
The claim follows by additional rescaling by a factor %
2. Claim. Assume T is a continuous linear operator from X to Y satisfying (). Then we have
T (B1(0)) > B (0)
for the ¢ > 0 from 1.
Proof. Choose any y € Y such that ||y|| < c. We need to find z € X :
|z]| <1 and Tz =wvy.

By (*) we know that Ve > 03z € X :
1
2l < 5 and - ly =Tz <e.
Choosing € = 5, we find 2; € X :
leall < 5 andlly—Tall < &
21 5 an Yy 21 5

By the same construction applied to y — T'z; instead of y and € = £, we find 25 € X :

I
1 c
|22l < 1 and ||(y —Tz1) -T2 < 1
——
GBC/Q(O)

—_————
€Bes4(0)

This way, we can construct a sequence (zy,),, :

(%)
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5 Baire category argument 5.2 Open mapping and closed graph theorems

It follows that .
Iy = Z Zk
k=1

is a Cauchy sequence. Let
r= lim z,.

n—oo
Clearly ||z|| < 1 and
ly —Tz| = Hy -T ( lim xn) ‘ = lim ||y — Tz,| =0. (by continuity of T')
n—oo n—oo
Thus
y="Tx. O

O

Remark. Both completeness of Y and completeness of X are necessary. Counterexamples are in
the exercises.

Corollary 5.7. Let X,Y be Banach spaces, T : X — Y linear, bounded and bijective. Then T—!
18 continuous.

Proof. By Theorem [5.6] we have
1T (2)|| <e=lzf <1.

By homogeneity of the norm, we have
1
lzll < Z T ()| Vo € X.
So T~! is bounded, thus continuous. O

Remark. Let X be a vector space and |||, |||, two norms on X, such that X is complete w.r.t
both norms. Assume that
2]y < cllzll,  veeX.

By Corollary 5.7] with T' = id x, the norms are already equivalent.
Theorem 5.8 (Closed graph theorem). Let X,Y be Banach spaces, T : X — Y linear. Assume
G(T):={(z,T(z) e X xY} (graph of T')
to be closed in the product norm. Then, T is continuous.
Remark. We also have T continuous = G (T') closed (proven by sequence criterion).
Proof. Consider the two norms
lzlly = 2l x + 1T @)y,
]l ==l -

Since we assumed that G (T) is closed, G (T'), as a closed linear subspace of a Banach space, is a
Banach space, so (X, ||-||;) is a Banach space as well. Obviously

[zl < flzll, VzeX.
By the remark to Corollary 3C >0:
IT (2)ly <C-|zlly VzeX.
Thus, T is bounded. 0

Remark. Theorem [5.8sometimes simplifies the proof of continuity for a linear operator 7': X — Y :
Instead of showing
2y —x = T(rp)—>yandy=T (x),

we only need to prove
(xp m>zand T (zr) —y) = y=T(x).
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6 The weak topology

6 The weak topology

So in co-dimensional spaces, bounded sequences do not necessarily admit a converging subsequence.
What now?

Theorem 6.1. Let X be a separable Banach space and let (fy), oy be a sequence in X' with
Iy <1 WEEN.

Then there exists f € X' and a subsequence (fkj)jeN :

(f*f;@j) () —— 0 VzeX.
j—00
exX’

Example. For X = (P, we have X' = ¢*" See Exercise 31. Therefore, immediately any bounded
sequence in [P admits a weak(x)ly convergent subsequence.

Proof. Let (x,,)nen be a sequence with dense span in X. We have (fi, (2,))keny bounded K, for
all n € N. Using a diagonal sequence argument, we have (fi, ) en, such that for all n € N we have

lim fx,; (zn)
j—o0

exists in K.
But thus we have for any y € Y = span({z,, }nen) existence of the limit

fly) = lim fi, (y),

for which linearity follows immediately. Since |f(y)| < ||y|| we have uniform continuity of f on Y.
Thus we can find a unique continuation of f onto all of X’ (since Y dense in X).
We also call this continuation f, noting that it is linear. It follows that || f|] <1 und

Ve e X,y e Y |(f = fa )2l <[(f = Sl = yll + [(f = Fi) )Wl < 20z =yl + |(F = fu;) ]l
—_————
—0 (j—o00)
Since Y is dense in X, we can choose |z — yl| arbitrarily small and the theorem follows. O

Question. Can we generalise this?

6.1 The weak topology o (X, X’)
Let X be a set, f; : X — Y; maps, Y; topological spaces for i € I.

Goal. Find the coarsest topology 7 on X such that all functions f; are continuous.

Remark. There is such a topology, since with the discrete topology on X all functions are continu-
ous. However, this is not necessarily the coarsest.

Let now (wf ) be the open sets in Y;. In order for all f; to be continuous, we must have
J€J;

£ (wﬂ) eT Viel,jelJ,.
So we need
{f;l (uﬂ) |z’eI,jeJi} cT.

Proposition 6.2. Let S be a family of subsets of X containing ) and X. Let ® be the set of
subsets of X which can be written as finite intersections of sets in S, i.e.

k
d={pCX|FHeN () 5 €50=]s

Jj=1
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6 The weak topology 6.1 The weak topology o (X, X’)

Furthermore, let W be the set of all arbitrary unions of sets in ®, i.e.

‘P{¢€X|3(¢A)AEA’¢ U ¢A7¢>\€q)}-

AEA
Then V¥ is the coarsest topology on X that contains all sets in S.
Proof. We have to show that

1. U is a topology on X, that is, it is stable under finite intersections and arbitrary unions and
contains (), X.

2. W contains all sets in S.
3. ¥ C ¥,V is a topology on X, S C ¥, then ¥ = 0.

1. was Proposition (the only thing to show is stability under finite intersections, which follows
as noted below), 2. and 3. are fairly obvious.
Take 11,19 € U. We have

(Ax)rers Br)ex s Ax, B € ® VA K

such that

wlzLJA,\7 Yo = U B...

AEA KEX

But then we have

Corollary 6.3. Taking
-1 i . .
S = {fi (wf) liel,je Ji}
and ¥ as in Proposition[6.9, we get the required coarsest topology that makes all f; continuous.

Proposition 6.4. Let (X, T) be a topological space, such that T is the coarsest topology such that
fi : X =Y, is continuous Vi (f;, Y; as above). Then we have

o Do o fi(zp) — fi(x) Viel.

Proof. “=7 True due to continuity of the f;,i € I.
‘e Let U € T : x € U. We have
K(X)
U= U ﬂ fi?;,A) (Viea)s  Viea € Yi(s,n) open.
AEA k=1

There exists \g € A :
K(Xo)
2E [ it Vero) -
k=1

By assumption, we have

Fitero) (@r) = Fitwno) (@) Ve € {1, ..., K (Xo)}

37



6 The weak topology 6.1 The weak topology o (X, X’)

=dN eN:
fi(,€7)\0) (zn) € Viro VR >N,k € {1, ...,K()\O)}.
=
K(Xo)
T, € ﬂ fizi,ko) (Vir,) CU ¥n > N.
k=1
=

-
Ty — X. O

Proposition 6.5. Let Z be a topological space, ¥ : Z — (X, T),T as above. Then 1 is continuous,
iff fi o1 is continuous for all i € I.

Proof. “=" clear.

‘e Let U € 7. Then
U= Vir), VikeVi

arb. fin.
Thus we have

) =N (7 (Vi)
a f

=N Fiow)™ (Vin)
a f

open in Z. O
Definition 6.6. Let X be a topological space.
1. N C X is called a neighbourhood of x¢ € X, if
JUeT: xz9geUCN.

2. A family W of open sets in X is called a neighbourhood basis of xg, if every N € W is a
neighbourhood of zg and we have: M neighbourhood of z¢y =

ANeW: NCM.

Definition 6.7. Let X be a Banach space. The weak topology o (X, X’) is the coarsest topology
that renders all maps in the dual space X’ continuous as maps from X to K with its usual topology.

Remark. We immediately see that if U is open w.r.t. o (X, X’), then U is open w.r.t. the topology
induced by ||| -

Proposition 6.8. The space (X,o0 (X, X)) is a Hausdorff space.
Proof. Let x1,x2 be in X, x7 # x2. By the Hahn-Banach theorem there exists f € X’ :
f (@) # f(z2).
So we have Uy, Us open in K :
UpNUz=0 and f(x1) € Uy, f (22) € Us.
As preimages of disjoint sets are disjoint, we have
RO N U) = 0. O

Proposition 6.9. Let zg € X. A neighbourhood basis w.r.t. o (X,X") of x¢ can be constructed of
sets of the form
V=A{eeX||filx—zo)| <e Viel},

where I is a finite index set and

fie X ¥icl, e>0.
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6 The weak topology 6.1 The weak topology o (X, X’)

Proof. 1t’s clear that all sets of the form of V' are open and contain xg. Let N be a neighbourhood
of zg wrt. 0 (X, X’). Let U C N,zp € U,U € 0 (X, X’). We have

K(X)
U=J () £A(Ver),  far € X', Vix CK open,
AEA k=1
So there exists \g € A :
£(Xo)
20 € [ Fne Viero) -
k=1
Let now
Yrro = Jrno (Z0) -
We have € > 0:
BE (yli7)\0) C Vli7)\0'
Now consider
£(Xo)
Vi () fod, (Be (gnn)) = (o € X | |fi (x — o) <}
k=1
Thus V is of the required form and by construction we have V C U. O

Notation. Let (z,,) be a sequence in X. By

neN
Ty — T
we denote convergence of x,, to x w.r.t. the weak topology. If there is the danger of ambiguity, we

write
weakly
—_—\

n

for convergence w.r.t. o (X, X’) and
strongly
n

for convergence w.r.t. |||y . We call the topology induced by |||y the strong topology.

Proposition 6.10. Let (z,) be a sequence in a Banach space X and x € X. We have

neN
1.zp,—2 & f(x,) — f(x) VfeX.

strongly weakly
2. x, ——r = X —&

3. xp = = 3C>0: |z.]y <C VneN and ||z|| < liminf,, o ||z,

Proof. 1. Proposition [6.4]

2. Observe
|f (zn) = f @) <[ fllx0 Nlzn — 2|,

then use “if” from 1. to get the result.

3. By Corollary we only need to check that
{f (@)}, cn is bounded Vf.
This is true by assumption of convergence of f (z,,). For the second statement note
[f @)l < Ifllx lanlly  and  f(zn) = f(2x) VfeX'

Thus we have
7 (@) < £l limin [z, ]
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6 The weak topology 6.1 The weak topology o (X, X’)

4. By the triangle inequality we have
[fn (@n) = f (@) < [fn (2n) = [ (@n)| + | (zn) = f (2)]
< = FllHlznll + 1 (20 — )]

The first term vanishes due to 3. and strong convergence of f,, the second term does so by
assumption. O

Theorem 6.11. In finite dimensional Banach spaces the strong and weak topologies agree.
Proof. Exercise. O
Remark. However, in co-dimensional Banach spaces, they never agree.

Example. S :={z € X | ||z|| =1}, X oco-dimensional Banach space. We will show

X,X")

X)) S o By = B,

Let z9 € B, U neighbourhood of zg w.r.t. to o (X, X’), then UN S # 0 :
By Proposition we can assume

V={eeX||fi(x—mx)| <e Vie{l,..,n}}, fieX' neNe>0.

Now let 0 # yp € X :
fi(yo) =0 Vie{l,..n}.

Such a yq exists: Consider

¢ X = Kna (ZS (x) = (fl (x))ie{l,...,n} .

If there were no such yg, ¢ would only vanish on the origin and thus be injective, so X could be
at most n-dimensional.
Let now

g (1) == [lzo + tyoll,

which is continuous and
g(0)=llzof| <1 and g(t) —— oc.

t—o0

Therefore, there exists tg € R : g (t9) = 1 and thus
[zo +tovollx =1 ~ o +toyo €S,

and
xo + toyo € V.

Example. B (0) is not open w.r.t. o (X, X’), if X is co-dimensional. Indeed, we even have

Proof works exactly as above.

Remark. e The weak topology on an co-dimensional space is never metrisable (i.e. not induced
by any metric).

e Two metrics on X that induce the same converging sequences also induce the same topo-
logy. However this is not necessarily true if only the topologies induce the same converging
sequences.

Example. X =['. We have
Il (. (1))
—_— N x

T, — T & X,

Luckily, such examples are “rare”.
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6 The weak topology 6.1 The weak topology o (X, X’)

Theorem 6.12. Let C C X convex. Then C is strongly closed, if and only if it is weakly closed.
Remark. Together with the this shows that

gU(XJ(') _ m”'”x.

Proof. “<=” We always have
U weakly open = U strongly open.

Thus, if C' is weakly closed, it is strongly closed.

‘=7 Let C be strongly closed and convex, xo ¢ C. We need to show 3U € o (X, X') :
0 €U and UNC =0.
By the second separation theorem there exists f € X', a € R:
Ref(zg) <a<Ref(zx) VreC.

Let now
U:={zeX|Ref(z) <a}.
Then U € 0 (X, X') :
29 €U and UNC =0. O

Lemma 6.13 (Mazur). Let (2,,),cy be a sequence in X,

weakly
n——

n

Then there exists a sequence (yn), ey of convex combinations of (x;);_, , i.e.
n n
Yn = ZAn,jxja ZAn’j = ]., )\nd Z 0 Vn,j,
j=1 j=1
such that
strongly
n —————
Proof. Exercise. O
Remark. In particular, we have
z € conv ({zp},en) - (convex hull)

Theorem 6.14. Let X,Y be Banach spaces, T : X — Y linear. Then T is continuous w.r.t.
the strong topology on both spaces, if and only if it is continuous w.r.t. the weak topology on both
spaces.

Proof. “=" By Proposition [6.5] it suffices to show Vf € Y :
F:xw f(Tx)
is continuous w.r.t. o (X, X’) as a map to K. This, however, is clear, since

f(Tz) e X".
‘e The graph G (T') of T is closed in X x Y w.r.t. o (X, X")®0c (Y,Y’), since, by assump-

tion, T is continuous. By Theorem G (T) is also strongly closed and the closed
graph theorem [5.8] yields the result. O

Remark. In general, this does not hold for non-linear functions.
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6 The weak topology 6.2 The weak* topology o(X’, X)

6.2 The weak* topology o(X’, X)
Let X be a Banach space, X’ the dual space of X endowed with its usual norm
1fllx = sup |f(z)].
reX
llzll<1

Let further X be the bidual of X, i.e. the dual space of X’ endowed with the norm

€l = sup 1€ (F)]-
fex
IFlI<1

Definition 6.15. The canonical injection J : X — X" is given by

v J(x),  J(x)(f) = f(2).

Remark. 1. For fixed x € X, the map f +— f (x) is continuous as a map from X’ to K and also
linear, so J () is indeed a continuous linear form on X’.

2. J is isometric, since

1T (@)l x» = sup [J () (f)]

llF<t
= sup |f ()|
Irn<t
= ||zl x (Hahn—BanaCh

This also implies injectivity.

3. There are examples where J is not surjective (see exercise). One can, however, always identify
the subspace J (X) of X" with X.

On X’ we have already defined two topologies
1. The strong topology, induced by ||-|| v ,
2. The weak topology o (X', X").

We now introduce a third topology.

Definition 6.16. The weak™ topology o (X', X)) on X' is the coarsest topology on X’ that renders
all maps of the form

ox X' =K, freox(f)=Uz)(f)=f(2)

continuous for all x € X.
Remark. 1. If dim X < oo, weak, weak* and strong topologies all agree.

2. If J(X) is a strict subspace of X" (i.e. J(X) # X"), then the weak topology o (X', X") is
strictly finer than the weak* topology o (X, X).

Example. Let £ € X"\ J (X). Then
H:={feX"[{(f)=0}
is closed w.r.t. o (X', X"), but not w.r.t. o (X', X).

Note. convex, strongly closed = weakly closed, however convex, strongly closed 7% weakly* closed.

Proposition 6.17. The space (X',0 (X', X)) is Hausdorff.
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6 The weak topology 6.2 The weak* topology o(X’, X)

Proof. Let f1,fo € X', f1 Z£ fo. = Jx € X :
fi(z) # fa(z).

Without loss of generality, for some o € R, we have

Ref1 (:L‘) <Oé<Ref2(I).

Now let
Up:={feX |Ref(x) <a},
Uy:={feX |Ref(z)>a}l.
f1 € Uy, fo € Uy Uy, U; open, UlﬂUQZ(Z). O

Proposition 6.18. Let fo € X'. A neighbourhood basis w.r.t. the weak™ topology is given by sets
of the form

V=A{feX"||(f—fo)(z;) <eVjeJ}, |J|<oo,z;€XVje>D0.
Proof. Same as the proof of Proposition [6.9] O

Notation. Let (fn),cy be a sequence in X'. We write

fo= 1
if f,, converges to f € X' w.r.t. the weak* topology.

Proposition 6.19. Let (f,) be a sequence in X'. We have

neN

L fof & folz)—= f(z) VzeX.

[Nl - "
8. fa=f = faf
4 faf = (IIfnl) pen s bounded in R and || f|| < liminf, oo || fnl| -

5. fn—*\f,mnwy—)x = fol(zn) — f(2).

Proof. As in Proposition 3. follows from J (X) being a subspace of X" (o (X', X) is certainly
not finer than o (X', X")). O
Remark. A counterexample to f,, — f,x, — x = f, () — f (x) can be found in the exercises (in
12, where (12)" = 12 = (12)").

Now, we look at the fundamental reason, why we deal with weak* topologies.

Theorem 6.20 (Banach-Alaoglu). The set

{feX [|fllx <1} =B1(0) c X
is compact w.r.t. the weak* topology o (X', X).

Remark. The proof uses Tychonov’s theorem, that says, that the product space of compact topo-
logical spaces (even uncountably many) is compact w.r.t. the product space topology.

Definition 6.21 (Product space topology). Let (Y;),.; be a family of topological spaces and let

icl

Y ::HE ={(i)ics |y €Ys VieI}.
iel

The product topology on Y is the coarsest topology that renders all maps of the form
vitY =Y 0i(y) =i (Wi)ier) =¥ (projections)

continuous.
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6 The weak topology 6.2 The weak* topology o(X’, X)

Remark. For finite products (|I] < oo), this topology agrees with the|box topologyl This is not the
case in oo-dimensional spaces. In particular, the following theorem is untrue for the box topology.

Theorem 6.22 (Tychonov). Let

X = HX“ X; compact Vi € 1.
iel

Then X s compact w.r.t. the product topology.
Remark. We will prove Tychonov’s theorem by means of Alexandrov’s subbase theorem.

Theorem 6.23 (Alexandrov). Let (X, T) be a topological space, B a subbasis of T. If every cover
of X by sets in B admits a finite subcover, X is compact.

Proof. We argue by contradiction.
e Assume X is mot compact, however every cover by sets in B admits a finite subcover.
e Let P be the set of all open covers of X that do not admit a finite subcover.
e We endow P with the partial order of set inclusion.

— P is not empty.
— P is partially ordered.

Let C be a chain in P (i.e. a totally ordered subset of P). We have an upper bound of C by
taking

S=|JVi=J{UIUeV}.

v;eC v;eC
Claim. S € P.

Proof. Assume Uy, ..., U, is an open subcover of X by sets in S. We have
Vie{l,.,n}3V;, e C: U, eV,
However, {V},},_, , C C is totally ordered, thus there is a maximal element V},. We have
U, eV, Yi=1l.n

But then {U;} is a finite subcover by sets in V;,. This contradicts V;, € P. O

i=1..n
By we thus have a maximal element in P, i.e. 3IM € P :
Ae PMCA = A=M.
This maximal element has the following properties
1. U ¢ M open = MU{U} ¢ P = M U{U} admits a finite subcover that must contain U.
Thus there exist {U;}7_, in M :

X:O%UU
j=1

2. For U open
x=Juuv = v¢Mm

j=1
3. tUy,...,U, ¢ M, then
(U, ¢ M.
j=1
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6 The weak topology 6.2 The weak* topology o(X’, X)

Proof. Vj e{l,..,n}3V;, € M,k =1..1;:

L

U U Vik=X. (by 1.)
k=1

Let z € X. Then either x € V} ;, for some j, k or
zelU; Vje{l,..n}
With that, we have
n n 1
xX=|u|u U Vix
j=1 j=1k=1

finite
and by 2.

ﬁUjgéM. O

j=1
4. U ¢ M,U CW open = W ¢ M. (follows from 1. and 2.)

We will now apply the subbasis.
Claim. BN M is a cover of X.

Proof. Let x € X. We want to show:
dJAeBNM: zeA

Clearly, there exists U € M : x € U. U is open, so we can write it as
v=J\B;, BB
arb fin
Thus there exists {B;}’_, in B
n
ze (B, CU.
j=1
We now necessarily have a jo : Bj, € M (otherwise, by 3. (; B; ¢ M =% U ¢ M). But then,
r € By, e BNM. O

By assumption, BN M C B contains a finite subcover of X. This subcover is also a finite
subcover to M, contradicting M € P. Hence P is empty and the proof is complete. O

Proof (Tychonov [6.22). Let X;,i € I be compact topological spaces,
X =[x
iel
We need to prove that X is compact w.r.t. the product topology.

Let thus I" be an open cover of X. By Theorem [6.23] we may assume I' only consists of sets of
an arbitrary subbasis of the product topology. Such a subbasis is given by

S = {U cX:U= gpjl (U;),U; C X; open, i € I} . (p; projection on X;)
Let S; be the subset of S generated by a particular ¢; :
S;={UCX|U=¢;'(V),VCX,open}, i€l

S:USi.

icl

We have
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6 The weak topology 6.2 The weak* topology o(X’, X)

Claim. There exists ig € I : I'NS;, is a cover of X.

Proof. Assume the contrary, namely
Viel:Jy,eX: y ¢AVAel'NS,.
Take

Let now z := () We have z € X, but

iel -
z¢ A VAeTn|JS=TnS=T,
iel
in contradiction to I' being a cover of X.

We now have
rnsS, ={¢.' (V;yCcX|jelJ}
for some sets
V; C X;, open Vj e J.

UV =X,

jed

Since I'N S;, covers X, we have

X, is compact, thus we can select a finite Subset
n
Vitio € Vitier s U Ve =X
k=1
Therefore,

{wio (Vi) € X | ke {L,...n}}

is a finite subcover of X to I

(note that ¢; 'p; (A) = A)

Proof (Banach-Alaoglu [6.20]). Let X be a Banach space. Consider the product space

Y =K* ={w = (wo),ex | ws €K}

with the product topology and X’ with the weak* topology o (X', X). Consider further the map

X' =Y, [ (f(2)ex-

Claim. ® is a homeomorphism from X’ to ® (X’) (bijective, continuous, with continuous inverse).

Proof. 1. Continuity of ® is follows from continuity of
[ (@), = ()
for any x € X by Proposition [6.5
2. Injectivity: Let f1, fo € X', f1 # fo.

=JzeX: fi(z)# f2(n)
= (@ (f1)), # (®(f2)),
= D (f1) # @ (fa)-

3. Continuity of the inverse: Again, by it suffices to show that
Wi &7 (W) ()
is continuous for any = € X. But
w7 (W) (2) = w,

is continuous by definition of the product topology.
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6 The weak topology 6.3 Reflexive spaces and separable spaces

We have
*(Bi()=#, (Bi0)cx),

where
Ho={w €Y | |wg| < 2], Woty = Wa + Wy, wrg = Ay Vz,y € X, A € K}.

With that, we have # = J# N J;, where

= H [— =], [1z]]] , (compact by Theorem [6.22))
zeX
% = ﬂ Azy n m B:r,/\ )
z,yeX ze X, €K

Apy ={we€Y |wy +wy —wziy =0}, z,y€X,
—_—
continuous function in w
Boy={weY |wy, — M, =0}, zeX,Aek
—_———

continuous in w

All A, ,, By » are closed as continuous preimages of {0}, and thus .#; is closed as an intersection of
closed sets. Therefore, % is compact as an intersection of a compact and a closed set and finally,

X' DB (0) =01 (x)

is compact as a continuous image of a compact set. O

6.3 Reflexive spaces and separable spaces

For this section denote by Bx the strongly closed unit ball in a Banach space X.

Definition 6.24. Let X be a Banach space and let J be the canonical injection in the bidual
space X"
J:X=>X", z—J@): X' =K, ff(z).

X is called reflexive, if
J(X)=X".

In reflexive spaces, we can thus identify X with X",

Remark. 1t is necessary to use the canonical injection, since there are Banach spaces X, that are
not reflexive, however do admit a surjective isometry X — X”.

Lemma 6.25 (Helly). Let X be a Banach space, fi,..., fn € X', a1, ..., € K. Then the following
are equivalent:

1. Ve>0:3z. € X, ||z <1:
|fi (ze) —au] <e.

2. |Z?:1 Bzazl S ||Z:L:1 ﬂsz”X/ Vﬁlw'wﬂn e K.
Proof. Exercise. O

Lemma 6.26 (Goldstine). Let X be a Banach space. Then J(E) is dense in Bxn w.r.t.
o (X", X") (weak* topology on X" ).

Proof. Let £ € Bx» and V be a neighbourhood of £ w.r.t. o (X", X’). We have to show that
J(Bx)NV #0.
By construction of the neighbourhood basis in o (X", X’) we can assume that V is of the type

Vi=neX"||n=-&f)l<eVfi,...fne X'}, e>0.
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We are thus looking for some 2 € By :

Ifi(x) = &(f)l <e Vie{l,..,n}.

Let
a; :=§(f;) EK.
Since ||£]] < 1, we have V34, ..., 8, € K:

> Biai| = ‘f <Zﬁifi> <> Bifi
i—1 i=1 i=1 X/
By Lemma [6.25] there is z. € By :
Ifi(ze) —ayl <e Vie{l,..,n}.
S0 s
J(z.) € J (Bx) V. 0

Theorem 6.27 (Kakutani). Let X be a Banach space. X is reflexive, if and only if Bx is compact
w.r.t. the weak topology o (X, X’).

Proof. “=7 By reflexivity
J (Bx) =Bxr ={¢ € X" | [¢llxn < 1}

Thus J (Bx) is compact w.r.t. o (X", X’) (by Banach-Alaoglu [6.20)).

Hence it is enough to show that
JH (X o (X, X)) = (X, 0 (X, X))
is continuous. However, we have
fodThi (X" o (X", X)) =K, f(JTHE) =€)
is continuous Vf € X’. Thus J~! is continuous and
7 (Bxr) = Bx
is compact.

‘e Let Bx be compact w.r.t. o (X, X”). By Theorem (strong-strong continuity <
weak-weak continuity), J is continuous as a map

(X,0 (X, X)) = (X", 0 (X", X")).
Since o (X", X"") is finer than o (X", X’), it is also continuous as a map
(X,0 (X, X)) = (X", 0 (X", X")).

(There are “no more” elements in X’ than in X".)

Therefore J (Bx) is compact w.r.t. o (X”,X’) and dense by Lemma Compact
sets are closed in Hausdorff spaces, so we have

By linearity of J, we further have

J(X)=X". O
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Remark. 1. J (E) is always strongly closed in X”.

In general, however, J (E) is not strongly dense in Bx.
2. Finite dimensional vector spaces are reflexive.

Lemma 6.28. Let X be a reflexive Banach space, M C X a closed subspace. Then M is reflexive
w.r.t. its induced norm.

Proof. On M, we have defined two weak topologies:
1. The topology o (M, M’) .
2. The subspace topology of o (X, X').

By restriction or extension of continuous linear functionals, those two topologies agree.
However, we have By is compact w.r.t. o (M, M’) as a weakly closed subset of a compact set. [J

Corollary 6.29. Let X be a Banach space. X 1is reflexive, if and only if X' is reflezive.

Proof. “=" By Banach-Alaoglu Bx is compact w.r.t. o (X', X), however, by reflex-
ivity of X :
c( X', X)=0(X",X").

Thus X’ is reflexive by Theorem

‘" The same argument as above holds X" is reflexive. By J (X) is reflexive as a
closed subspace of X”. f, however, is certainly a surjective isometry
X = J(X).
Therefore, X is reflexive, since
(T : X — Y surjective Isometry) = (X reflexive < Y reflexive). O

Corollary 6.30. Let X be a reflexive Banach space, K C X strongly closed, convex and bounded.
Then K is compact w.r.t. o (X, X').

Proof. 3m > 0:K C m - Bx and K is weakly closed. Therefore, K is compact as a closed subset
of a compact set. O

Question. What are we going to use this for? We will prove:
Let ¢ be a convex and strongly lower semicontinuous function, i.e.

x; =~z = liminf¢(x;) > ¢ ().
Then ¢ admits a minimum on any convexr bounded set.
Definition 6.31. Let X be a topological space, A C X. A function
¢:A— (—o0,00]
is called lower semicontinuous, if
{ye X |¢(y) >a} C X open VaeR.
Note. On metric spaces, this is the same as sequential lower semicontinuity:

(z; 7 2zin X) = liminf¢(z;) > ¢(x).

J—0o0
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Theorem 6.32. Let X be a reflexive Banach space, A C X convex, closed, not empty, and let
¢ A— (—o0,o0]

be a strongly lower semicontinuous function that is convex and Z oo.
In case A is not bounded, assume in addition that

lim ¢ (z) = oo.
[|z||—o0,zEA ( )

Then ¢ attains its minimum on A, i.e. dxg € A :
d(xo) < ¢(x) Vze A

Proof. Let R
A={zeA|d(x) <N}, do=¢(a) <oo,ac A

A is thus bounded by growth, convex by convexity and closed by strong lower semicontinuity of ¢.
Claim. ¢ attains its minimum on A.

Note. If we prove this claim, we are done, since
o (x) > ¢ (zo) Ve A

Proof. Take a sequence (zy), ¢y in A:
. 1
¢ (zx) < inf ¢ (x) + —.
€A k

By compactness of A (by Corollary , this sequence admits an accumulation point zo € A.
We continue to argue by contradiction. Assume thus 3¢ > 0 :

¢ (x0) > inf ¢ (z)+c.
€A

The set
U := {yG/ﬂd)(y) > inf~¢(z)+c}
TEA 2

is weakly open, since its complement is convex and strongly closed, thus weakly closed.
We have xg € U, thus U is an open neighbourhood of 3. However, only finitely many elements
of the sequence can be in U. O

O

Example. u in a Sobolev space W is a minimizer of

¢(a):/ |VU|2—/f~u, D c W bounded
D D

& —Au=f.

Now we turn our attention to separable spaces, which will enable us to extract converging
subsequences, not just find accumulation points.

Lemma 6.33. Subsets of separable metric spaces are separable.

Proof. Take (zy,)
can then pick

nen dense in X (X separable metric space). Take § #Y C X,0 < r, — 0. We

Ymn € By, (xm)NY.

This set is countable and dense in Y. O
Theorem 6.34. Let X be a Banach space. We have

X' separable = X separable.
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Remark. The converse does not necessarily hold. e.g. L' (next week).

Proof. Let (fn) be a dense sequence in X’. Since

”anX' = sup |fn ($)|7

llzllx<1,zeX

neN

there exist z,, € X :

1

Let Ly be the set of all rational, finite linear combinations of elements in {x,}
countable and clearly dense in

nen - This set is

L := span ({xn}neN)
the set of real finite linear combinations of the z,,.

Claim. L is dense in X.

Proof. Let f € X'
f(x)=0, Vaxel.

Therefore, we have Ve > 0: 3{f,}, dense, countable subset:
”f - fn” <e
and we have

Sl < Fo () = (= £) o) + f ().
—_——

<e =0
= ||fl] <3 Ve>0.
= |fl=o0.

We have thus shown that Vf € X', f(z) =0 Vz € L:
f=0.

The statement of Corollary [£.15] says exactly that L must be dense in X. O
In the complex case, as usual we consider the characterization of complex linear functionals as

f () =g (z) —ig (ix)
with g : X — R linear. O
Corollary 6.35. Let X be a reflexive, separable Banach space. Then X' is separable.
Proof. X separable, reflexive. = X' separable B separable. O

Theorem 6.36. Let X be a Banach space. X is separable, if and only if the weak™* topology on Bx:
is metrisable (that is, there exists a metric d : Bx: X Bx: — R that induces the weak™* topology).

Remark. The weak™ topology is never metrisable on the whole space if X is co-dimensional.

Proof. “=" Let (2n),,cy be dense in By. For f,g € By, set

A(f.9) =3 57 107~ 9) ().

n=1

Claim (1). d is a metric.

Proof. e Positive definiteness follows from the density of x,,.
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e Triangle inequality and symmetry follow from respective properties of || as seen
in exercises. O

In the following, we will prove that if

V open neighbourhood of zow.r.t. o (X, X"),
then there exists

U C V open neighbourhood of zow.r.t. d(-,-)

and vice versa.

Question. Why is that enough?

Take a set O open w.r.t. o (X', X) then Vf € O there is an open neighbourhood V' of
fwrt o(X',X) in O. The claim provides an open neighbourhood U C V. C O of f
w.r.t. d(-,-), so

O = 0° (interior of Ow.r.t. d)

and vice versa.

Claim (2). Take fo € Bx/, U a neighbourhood of fo w.r.t. o (X', X). Then 3r > 0:
U:={feBx |d(fo,f)<r}cV.
Proof. We can, as usual, take V' of the form
V={feBx ||(f—fo)y) <eVie{l,.,k}}, y €Xe>0.
Without loss of generality, we can assume
lyall =1 Vi
Now for all ¢ € {1,...,k} we pick n; € N:

<€
1

”yl — In;

We also pick r > 0 :
2" < % Vie{l,.. k}.

For f:d(f, fo) <r, we have

1
2”1'

I(f = fo) (zn,)

<r Vie{l,..k}.
But then we have
|(f = fo) (i)l = |(f = fo) (yi — ;) + (f = fo) (wn,)]
—_——— —  —/

I-1<2 l-<% [I<2mir<s

g g
2.4 =¢ 0
< 4+2 €

Claim (3). Take fo € Bx/,r > 0. Then there exists a neighbourhood V of fy w.r.t.
o(X', X):
VcU:= {f € Bx |d(f,f0) < 7‘}.
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6 The weak topology 6.3 Reflexive spaces and separable spaces

Proof. We have

A fo) =3 55 107 = fo) (a)
Y L@+ S =) @)
= 27 J Pl 27 \ﬂ,_/\ﬁ./

l-1<2 Ji-li<1

oo 2 _ 1
S372 k41 37 =T

Now take L r
Vi={f e B 1(f — fo) (@) < 5 Vi€ {1k},

where we pick k :

Then, for all feV:

Therefore V C U. O

This proves, that in a separable Banach space the weak* topology on By is metrisable.
Take
U, = {feBX/d(f,O) < Tll}, n € N.
By assumption, there exists a neighbourhood V,, of the origin w.r.t. o (X', X) :
Vi, CU,.

We can take
Vo= {f € Bxr | |f (@)] < 20 Vo € @},

where ®,, C By finite. Thus, the Set
D= U P,
neN
is countable.

Claim. D is dense in Bx.

Proof. Assume that
f(x)=0 VzeD.

Then
fev, ¥n
= fe()Va
neN
= fe()Un
neN
= d(f,00=0
= f=0.
By corollary D is dense in By, since span D is dense in X. O
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6 The weak topology 6.3 Reflexive spaces and separable spaces

O

Theorem 6.37. Let X be a Banach space. Then X' is separable, if and only if Bx is metrisable
w.rt o (X, X').

Proof. Exactly as in the proof of [6.306}
X' separable = (Bx,o (X, X’)) metrisable. O
Remark. The other direction holds as well, but the proof is much harder.

Corollary 6.38. Let X be a separable Banach space, (fpn),cy @ bounded sequence in X'. Then

there exists a weakly* convergent subsequence of (fn),cn-

Proof. Since K - Bx- is compact and metric, there exists a convergent subsequence of

{fbne € K B, O

Remark. See the exercises for an example where X is not separable and a bounded sequence in X'
does not admit a convergent subsequence.

Theorem 6.39. Let X be a reflexive Banach space and let (x,)
Then there exists a weakly converging subsequence.

nen e a bounded sequence in X.

Proof. Let

My :=span{z,}, .y and M := M.

M is separable and reflexive as a closed subspace of a reflexive space. = M" is separable = M’
separable. Therefore
(BMag(MvM/))

is metrisable and weakly compact as the closed unit ball in a reflexive space. Thus, there exists a
subsequence of (x,,),, .y that converges w.r.t. o (M,M’). Vf e X' :3f € M’ :

flv = f.
Therefore, the subsequence also converges w.r.t. o (X, X’). O
We even have the converse statement:

Theorem 6.40 (Eberlein-Shmulian). Let X be a Banach space, such that every sequence admits
a weakly converging subsequence. Then X is reflexive.

Proof. See Rudin. O
Definition 6.41. A Banach space is called uniformly convez, if Ve > 0:35 > 0 :

T+
Vey e X ol <Lyl <Lle -yl >e: ZE s

Example. X = (RQ, ||~||p>,

P p\/p
, 1<p<
Hl‘”pz {(|x1| +‘$2‘ ) =P OO, $:($1,$2) e X.

max {|z1|,|z2]}, p=o0

The unit balls X are uniformly convex V1 < p < oo.

Theorem 6.42 (Milman-Pettis). Every uniformly convex Banach space is reflezive.
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6 The weak topology 6.3 Reflexive spaces and separable spaces

Proof. Let £ € X”. W.lo.g. assume [|{|| ., = 1. We show
¢eJ(Bx).
Since J (E) strongly closed, it is enough to show, that Ve > 0: 3z € By :

1€ =T (@) xn <e.
Let now € > 0 and fix ¢ to be the constant from uniform convexity. Let f € X’ :

4]

E()>1-3

(this f exists since

€l = sup [€(f)]=1.)
IflI<1
fex’

Let 5
Vi {nex"lln- o<}
be a neighbourhood of £ w.r.t. o (X", X’). Since J (Bx) is weakly* dense in By~ (by Goldstine),

we have o
vnJ (BX) # (.

Now let « € By :
J(z) e V.

Claim. ||€ — J (x)|| x.» <e.

Proof. Assume for a contradiction that
§e(BAJ@»)::WK

With that, W is an open neighbourhood of £ w.r.t. o (X", X’), since eBx~ is weakly* compact
and thus closed. Therefore, we have

(Vnw)nJ(Bx) #0.
Now we pick & € By :
J(@)eVnw
We have 5 5
F@-eWl<s F@-€l<s
and thus

2 (NI <|f(x+2)|+0
< ||z + x| + 9.

Since [€(f)] > 1— g, we have
218 ()l >2-4,

thus
le+z|+d>2-4

and therefore

R s,
Due to uniform convexity we now have
[ — &l <e.
However, ||z — Z|| > ¢, since J (&) € W. This is a contradiction. O
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7 Lebesgue-Spaces Part 11

Theorem 6.43. Let X be a uniformly conver Banach space, (), cn @ sequence in X :

T, =z and limsup |[z,] < [|z]].
n— o0

Then we have
Ty — X.

Proof. Let ||z|| # 0 (otherwise the statement is trivial). Take

)\n = maX{Hxn“ 5 ||JJ||},

S0
An = |z -
Now let
_ -1
Yn =Ny, yi= |z T
We have
ly|l < lim inf WH .
n—o00 2
However, [yl = 1, ||lyn|l < 1, so we have
Yn +¥y
— 1.
=
Using uniform convexity, it follows that
1y — yull — 0.

7 Lebesgue-Spaces Part II

7.1 The Dual of L?
7.1.1 Casel<p<oo
Theorem 7.1. LP is reflexive for 1 < p < oc.

Proof. 1. 2 <p < oo. Then LP is a strictly convex space.

(This is a consequence of Carlson’s first inequality and will be proven as an exercise.)

Thus by the theorem of Milman and Pettis [6.42] L? is reflexive for 2 < p < cc.

2. 1 < p< 2. First define for 1 < p < o0:

// /
T:Lp—><Lp) . u—Tu: P SK, fl—>/u-f.

This map is well defined, since Tu is a linear functional on L*" and continuous by Holder’s

inequality
Claim.
Tl gy = Il Ve L7

Proof. By Holder’s inequality, we have

|(Tu) ()] < Null o (11l VS € 27

Therefore,
1Tl (g < Nl
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7 Lebesgue-Spaces Part 11 7.1 The Dual of L?

For the other direction, set

fo (z) ::{|u(x)|l’— u (z), U(CL’)%O.

0, else

A short calculation shows

I foll o = llull?y' <0 = fo €L,
(T0) (o) = [ 1al™ @ =l
=lul?
Therefore,
|(Tw) (fo)l
TU N> —— = |lu p -
|| ||(Lp) fetl HfO”Lp’ H ||L
This proves the claim. [

We have thus shown that ,
T:LP = (LP’)

, !
is an isometry. Therefore, T' (L) is a closed subset of (LP ) forall 1 < p < 0.

For 1 < p <2, we have p’ > 2 and thus by 1. L' is reflexive.

, /
By Corollary [6.29 (LP ) is reflexive and by Lemma6.28] T (L?) is reflexive.

Since
T:LP —T(LP)

is a surjective isometry, LP is also reflexive.

X// : Y//
JtL T gl rsrer O
X = Y
T

Notation. For the dual pairing, f € (L?)',g € LP, we often write

fg)=(f.9).

This is very common on LP or Sobolev spaces and somewhat common in general.

Theorem 7.2 (Riesz representation theorem). Let 1 < p < 0o and ¢ € (LP)'. Then there exists a
unique function u € LP :

<¢,f>=<z>(f>=/u-f Ve .

Furthermore,
lull o = H¢||(Lp)’~

Remark. The elements of the abstract space (LP)’ can be uniquely identified with a concrete
function in LP . We systematically make this identification

(LY =L
Proof. We consider the operator T : P — (Lp)/ defined by
<Tu,f>:/u-f Vue LV, feLP.
The argument in the proof of Theorem [7.1] shows that

||T“H(pr = Jlull o -
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7 Lebesgue-Spaces Part 11 7.1 The Dual of L?

It remains to show that T is surjective. Take
E=T (Lp) .

Since F is a closed subspace of (L?)’, we only have to show that E is dense. Consider h € (LP)”

such that

(h,Tu)y=0 VYuelL? (%)
< (hyu)=0 VYwekE.

Claim. h = 0.

Proof. Since LP is reflexive, we can simply take h € LP and then (x) implies that
/u-hz() Yu e LY.

By the choice B
w=|hP%h
we see h = 0 and the claim is proven. O

By Corollary for a subspace FE :
((h,v) =0 YwveFE = h=0) = FEisdense.

)

So the Theorem is proven. O

7.1.2 The space L' (i)
For o-additive p.

Theorem 7.3 (Riesz representation theorem). Take ¢ € (Ll)/. Then there exists a unique function
u € L

o= [u-s vrert

Moreover,
[l poe = ll¢llzry -

Remark. This allows us to identify (Ll)l with L.

Proof. Let (2,) be a sequence of measurable sets in €2 such that:

neN

Q= U Q, and p(Q,) <oo Vn.
n=1

Set xn := xq,,-
Claim (1). If such a u exists, it is unique.

Proof (1). Suppose, we have uy,ug € L™ :

/ul-f:/ZuQ-f Vf e L.

Then
/(ulfUQ)f:() Vfe L'
—
Choosing
= Xnsgnu,

we see Vn :

/ a]=0 = @ =0 on,.

Qp
= 4 =0on Q. O



7 Lebesgue-Spaces Part 11 7.1 The Dual of L?

Now for existence: Consider a function 6 € L? (Q) :
0(x) >e, >0 Vrel,.
(It is clear, that such a function exists, take eg.

0 := oy on Qq,
0:=a, on Q,\Qp—1 Vn>1

and pick «,, such that 6 remains square integrable.) The map
L =K, f=¢@-f)
is a continuous linear functional on L?, since by Hélder’s inequality, 6 - f € L' :

10~ Flle < 10112 [1F1 22

and ¢ is a continuous linear functional on L'. By Theorem there exists a function v € L? :

6(0-H=[v s ver@. (7.1)
Set
u(x) = ZEB (0 > Oon Q)
u is measurable and
u-xn € L.

Claim (2). u is the sought after function.

Proof (2). Note

6 (0) = [wxag Vo€ L% (@)n. (72)
This follows from picking
_ Xng
I="9

in (7.1)). Further note f € L?, since it is bounded on ,, on zero otherwise.
Claim (2a).
[ull oo < [l (1 - (7.3)

Proof (2a). Fix any constant C' > [|¢|| ;1) and set
A={zeQ]|u(x)]>C}.

Further choose
g = XA -sgnu
in (7.2) and get
|l <1l - u(ane).
AN,
Therefore, we have
Cou(ANQ) < 6l ey - H(ANQ,).

Since C' > ||| 11, this can only hold, if

pw(ANQ,) =0.
By arbitrary choice of n,
p(A) => p(AnQ,) =0. O
neN
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7 Lebesgue-Spaces Part 11 7.1 The Dual of L?

Claim (2b). We have
¢(h):/u~h Vh e L' (Q). (7.4)

Proof (2b). Choose
gn :=Tph € L™

and apply (7.2]). Note

1
Tl 225 1
and take limits on both sides of (7.2 to prove Claim (2b). O

Claim (2c). We have
[ull oo = 110l L1y -

Proof (2¢). By (7.4), we immediately have

|6 (W] < llull oo - I2ll L1 -

Therefore,
||¢H(L1)’ < lull oo -

Together with (7.3)), we get Claim (2c). O

Those claims prove Claim (2). O
The theorem follows from the claims. O
Remark. 1. L' (R") is not reflexive. Let &, — 0 and take

1
AT

We have
1 fnllp = 1.

If L (R™) were reflexive, we could extract a weakly converging subsequence with limit f, i.e.
/fn-u—>/f~u Yu € L.

/f,,u%() Vu € L*,0 ¢ supp (u),

Since

in particular for
U = XR»\B., (0) vk € N,

we have,

f=0 ae.

/fn~1:1%17é/0~1.

2. Indeed, L' (i) is never reflexive, unless p consists of finitely many atoms (and L! (u) is thus
finite dimensional).

However
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7 Lebesgue-Spaces Part 11 7.1 The Dual of L?

7.1.3 Study of L
We already know by that L> = (Ll)/ is the dual of a separable space. Therefore, we have

1. Bpe is weakly* compact. (Banach-Alaoglu)
2. If © C R™ measurable, (f,), cy bounded in L*>°, by Corollary and there exists a

subsequence (fp,),cy and f € L% :

*
fry ——

k—o0

3. However, L™ is not reflexive (otherwise, L' would be reflexive by Corollary [6.29)) as long as

1 does not consist of finitely many atoms.

Hence, the dual space of L™ is not equal to L', i.e. there are continuous linear functionals

on L that can not be expressed as an integral with an L! function.

Example. Let
¢o: Cc(R") = R, ¢o(f):=f(0).

¢o is a continuous linear functional on &, (R™). €. (R™) is a linear subspace of L> (R™). By

Hahn-Banach we can extend it to L™ and have

¢(f)=r(0) Vfe?(R").
Claim. There is no u € L* (R") :

¢<f>=/u-f Vi e L.

Proof. By contradiction: Note

/uf:O Vf € G, (R, £(0) = 0.

This implies
u=0 a.e onR"
Thus
¢(f)=0 VfeL*(R"),

which is a contradiction.

Example. Take Q = (0,1), u = Lebesgue measure. Then L (u) is not separable.
Proof. Take

ug = X0,), t€(0,1).
We have

t?ét/ = ||ut—utr||Lm Z 1.
Assume now that there were a countable dense set (v;);y in L. Let
O, = Bl/Q (ut) , te€ (0, 1) .
=Vt € (0,1) : Jv; € O;. This produces a map
t—j(t).

This map is injective: Assume j (t) = j (). =

Ui = Vi) € O NOp.
However, O, N Oy = 0, unless ¢ = t'. So (0, 1) has to be countable, which is a contradiction.

Conclusion. For 0 C R™ open, u Lebesgue measure, 1 < p < o0, % + 5 =1

‘Reﬂexivity Separability Dual

P v v LY
Lt x v L>®
L> X X DLt
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8 Hilbert spaces 7.2 Weak convergence in L (1)

7.2 Weak convergence in L? (1)
Corollary 7.4. 1. Let (fr)pen be a sequence in LP,1 < p < oco. Then

ng e [(h-ng-0 ver
Q
2. Let (fx),en be a sequence in L>°. Then

RN N /Q(fk—f)g—>0 Vg e L.

Proof. The theorem follows immediately from Riesz representation and characterisation of
weak* convergence in Proposition [6.19 O

Corollary 7.5. Let (fx),cy be a sequence in LP () :

sup || fell L» < oo
keN

1. 1 <p < 0. There exists a subsequence (fkj)

jEN
LP
Jo, —
2. p=o00. There exists a subsequence (fkj)jeN :
L™ %
Sy ——
j—o0
Proof. Follows from Corollaries to metrisability of weak(*) convergence. O

Example. A typical weakly convergent sequence looks like this:

= -1, z€(0,1/2) .
= dicall tended to R.
f(x) {1’ v e (12,1) periodically extended to

We have
DO g 1<p<oo

Idea of the proof:
1. Show fol fe-9—0 VYpee. (0,1).
2. Use density of €. (0,1) in LP (0,1) (be careful with L°°).

8 Hilbert spaces

In the following, let H denote a Hilbert space. Thus, we have
1. Cauchy-Schwarz inequality:

(@) pl < llzllg vy Vey e H.

2. Parallelogram identity
1 2 1 2 2 2
3l +ylly + 5 lle =yl = llely + vl Vo.y € H

Example. o [2(Q) with
(x7y)L2 :/.’Ey*
Q

e H! (Q) with
(@, 9) i =/my*+/ DaDy*.
Q Q
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8 Hilbert spaces 8.1 Projection onto convex sets

8.1 Projection onto convex sets
Proposition 8.1. H is uniformly convex, thus reflexive.

Proof. Follows from the Parallelogram identity: Take e > 0,2,y € H : ||z < 1, ||y]| < 1, ||z — y|| >
€=

1 2 52
- 1——.
eyl <1-5
Thus y
2 2
xnga—a, 5::1-(1-‘1) > 0. O

Theorem 8.2 (Projection). Take K C H closed, not empty, convex. Further take f € H. Then
there exists a unique u € K :
llu = £II = min flv — £

and u is characterised as the only u € K :
Re(f —u,v—u) <0 VveK.

Notation. We write
u = PKf.

Proof. 1. Ezxistence:
p: K—=>R, v | f—v

is strongly continuous, convex and

V) — Q.
llof =00

By Theorem there exists a minimiser u of .
2. Characterisation: Exercise.

3. Uniqueness: Exercise as well.
O

Proposition 8.3. For K C H not empty, closed, convex, Px : H — H 1is continuous, in particular
[Pefi — Pefoll < 1 = foll  Vfi, fo € H.
Proof. Take u;j := Pxf;, j € [2]. By Theorem 8.2] we have
Re(fi —u1,v—u1) <0 YveK,
Re(fo —ug,v —ug) <0 Vv €eK.
Take v = usg in the first and v = w1 in the second inequality.
Re(f1 —Ur,U2 — U1) S 0
Re (fg — Ug2,U1 — UQ) S 0
= Re(fi — fo+us —u,upg —u;) <0
Re (fi — fa,uz — u1) + Jlug — wy || <0
Juz — wi]|* < —Re (fi — fa,us — w1)
< |If2 = full - llue — uq] (CS inequality) O
Corollary 8.4. Let M C H be a closed subspace. Then
u=Pyf

is characterised by u € M :
(f —u,v)=0 VYove M.

Proof. Exercise. O
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8 Hilbert spaces 8.2 Dual spaces of Hilbert spaces and the theorem of Lax and Milgram

8.2 Dual spaces of Hilbert spaces and the theorem of Lax and Milgram
Theorem 8.5 (Riesz-Fréchet). Take ¢ € H'. Then there exists a unique f € H :
o (u) = (f,u)y YueH.

Proof. Take
T:H—H, Tf:H—-R, (Tf)(u):=(fu)y.

We certainly have
NTfll g =1fll g - (CS inequality and u = fas a test function)

Thus T is a linear isometry and 7' (H) is a closed subspace of H'.
It remains to show density of T (H) in H'. Let h € H" :

hip) =0 YpeT(H).
By reflexivity, we can represent h by he H:
p(h)=h(p)=0 VoeT(H).
Thus

(Tf)(h)=0 VfeH
(f.h)y =0 VfeH
h=0.

It follows immediately that 2 = 0 and thus T (H) is dense in H’. By closedness,
T(H)=H
and T is a linear, isometric bijection. O
Definition 8.6. A sesquilinear map
a:HxH—-K

is called

e continuous, if 3C' > 0 :
|a (u,v)] < Cllul vl Vu,v e H.

e coercive, if Ja > 0 :
la (v,v)| > a|jv||® VYve H.

Theorem 8.7 (Lax-Milgram, real version). Let H be a real Hilbert space, a : H x H — R a
continuous, coercive, bilinear form and f € H'. Then there exists a unique u € H :

a(u,v)=f(v) VveH.

Furthermore, if a is symmetric, u is characterised by v € H :

veH

%a (u,u) — f (u) = min (;a (v,0) = f (v)> :

Proof. Fix v € H. The map
ur a(u,v)

is a continuous linear functional an H. By Theorem there exists a unique w € H :
a(“?”) = (’LU,’U)H .
Doing that, we created a map A : H — H given by

A:u— Au:=w.

64
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Claim (1). A is linear and continuous.
1. Linearity follows immediately by bilinearity of a (-,-). We also have

HAuH?{ = (Au, Au) ; = a (u, Au) < C'||ull 4 |Aul| 4 - (acontinuous)
Dividing by ||Au||;; yields continuity. O
Claim (2). A is injective and A (H) is a closed subspace of H.

2.
2
allully < a(u,u) = (u, Au)y < [lully [[Aull
= allully <[lAuly
and injectivity follows. Closedness of A (H) follows by the sequence criterion. O

Claim (3). A(H) = H.
Proof. Due to closedness, it suffices to show density. Consider thus h € H' :
h(v)=0 Yve A(H).
By Riesz-Fréchet equivalently take h € H :
(v,h)y =0 Yve A(H).

‘We have
0= (Ah,h)y = a(h,h) > |k .

= ||h||; = 0 and the claim follows. O
A second application of Riesz-Fréchet [B.5] yields the existence of a unique w € H :
f)=(v,w), YveH.

Now pick u € H :
Au = w.

With this choice, we have
a(u,v) = (Au,v)y = (w,v)y = f(v) YveH.

Existence is thus proven.
Uniqueness follows from coercivity:

a(u,v) = f(v) =a(ug,v) YveH
= a(uy —uz,v) =0 Yve H
= a(u; —us,u; —ug) =0
= lur —uz| g = 0.

Let now a be symmetrical. Then (H,a (-,-)) is also a Hilbert space and the norm from the a-scalar
product is equivalent to the original norm. Using Riesz-Fréchet we can thus represent the
continuous linear form f by an element g € H :

a(g,v) = f(v) YveH.

By a(u,v) = f (v), it follows that
a(lu—g,v)=0 VYo
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This however, is nothing but the projection of g onto the whole space H w.r.t. the new a-scalar
product. Therefore, u solves the minimisation problem

min \/a (g — w,g — w),

weH

which is equivalent to minimising

w—a(g—w,g—w)=a(ww)—2a(g,w)+algg),
——

constant

and therefore equivalent to minimzing
w— a(w,w) —2(g,w). O

Remark. We see, that in the symmetic case, the proof reduces to a single application of Riesz-
Fréchet .5

Theorem 8.8 (Complex version of Lax-Milgram). Assume A € £ (H),a > 0 satisfy
|(Au,u)| > a||ul® Vue H.
Then A is bijective.

Proof. Follows from exactly as the proof of the claims in the real version. O

8.3 Orthonormal basis in Hilbert spaces

Definition 8.9. Let (E,,)
sum of the FE,, and write

be a sequence of closed subspaces of H. We say that H is the Hilbert

H=E,,

neN

if we have

1. The E, are pairwise orthogonal, i.e.
(u,v)y =0 VueE,veE,n#m.
2. span{E,},  is dense in H.
Lemma 8.10. Let (vy,),y be a sequence in H :
(Un,vm) =0 VYn#£m

and assume that

o0
> okl < e
k=1

Define
Sy, = Z Un-
k=1
Then
S:= lim S,
n— o0
exists and

2 = 2
1517 = llowllz -
k=1
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Proof. For m > n, we have

m

1S — Sz = Z lvnl> + mixed terms
k=n+1 =0 by orthogonality

Therefore S, is a Cauchy sequence and converges to S € H. Furthermore, for alln € N :

n

15l = lloe]®

k=1
and the claim follows in the limit. O

Theorem 8.11 (Bessel-Parseval identity). Take H = @,, E,,u € H and consider
Uy, 1= Py u.
Let .
Sy, = Z U, -
k=1

Then we have -
. 2 2
Tim S, = 3 el = ul
k=1
Proof. Let u, = Pg,u. By the projection theorem [8.2] we have
(u—up,v)y =0 YvekE,.
In particular,

() g = (U = U ) gy + (s ) g = |13y -

Thus,
(4, 8n) = Y [luxl*-
k=1

At the same time, we have

> lunllz = 118all7 (by Lemma [8.10)
k=1

and therefore,
2
(w, Sn) g = [1Snll3 -
Using Cauchy-Schwarz inequality on the left, we get
2
[l [1Snll g = 1Snll e
and thus
1Snllg < llullg -
This yields
n
2 2 2
D Munliz = 1Sallz < llull -
k=1
Using Lemma [8.10) we get
S = lim S,.

n—r oo

Claim. Let F':= span E,,. Then S = Pru.
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8 Hilbert spaces 8.3 Orthonormal basis in Hilbert spaces

Proof. Note that we have

u—Sp = (u—up) Zuk Ym < n.
k<n
k#m

It follows
(u—=5p,v)yp =0 YveE,,m<n.

Taking n — oo, we get
(u=Sv)y=0 YwekE,meN
= (u—-95v);=0 Yvespank, =F
= (u—S8v);=0 YWweF (continuity.)
This proves the claim. O
By density of span E,, in H it follows that
S = Pgu = u.

The Bessel-Parseval identity follows with

n

2 2
> sl = 1150l

j=1
in the limit. O
Definition 8.12. A sequence (ey,),cy in H is called Hilbert basis (or ONB) of H, if

L |lenlly =1, (én,em)y =0 Vn#m.

2. span{en}, oy is dense in H.

Corollary 8.13. Let (e,) be a Hilbert basis of H, w € H. Then

neN

n

oo
U, ex) g er = lim u,e e
E k) €k n—>oo§(7k)Hk

k=1 k=1

and
oo
2
lullf = 1(u,ex)
k=1

Conversely, for (ax),ey € ?

arep = u, (u,en)y = an.

gl

Proof.
H= @En E, :=Ke,.

We thus have
Pg,u = (u,ep) en.

The claim follows with Theorem and Lemma [8.10) O

Remark. We don’t necessarily have absolute convergence. Find an example, such that
o0
>~ I ce)
k=1

Eg H=101?u= (%)keN, ey, as usual.
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9 Some theory of compact operators

Theorem 8.14. FEvery separable Hilbert space admits a Hilbert basis.

Proof. Take (vy,) dense (countable) in H and

neN
F, =span{vg};_; .

(Fy),, is a sequence of finite dimensional, thus closed subspaces of H. We have

FyD>F; Vk>j and |JF,=H.
k=1

We now iteratively pick

er € F: ledlly =1,
€2€Fj,j>15 diijZQ, H€2||H:17 (61’62)H:O7
er € Fy, jrk > Jr—1 :dim Fj, =k, ”eKHH =1, (ei,ek)H =0 Vi<k.

Remark. Tt follows that every separable co-dimensional Hilbert space is isomorphic to 2.

9 Some theory of compact operators

In the following, X,Y are Banach spaces and By is the unit ball in X.

9.1 Compact Operators and the adjoint Operator

Definition 9.1. A bounded linear operator T' € .Z (X,Y) is called compact, if T (E) is compact
in Y (w.r.t. strong topology).
The set of compact operators from X to Y is called # (X,Y). We write # (X) := % (X, X).

Theorem 9.2. 7 (X,Y) is a closed subspace of £ (X,Y) (w.r.t. operator norm
HAHf(X,Y) = sup [|Az|y).
reX
llzll x <1

Proof. Linearity is obvious. To show closedness, consider (7)) TeZ(X,)Y):

neN>»

T, € # (X,Y) ¥n, and |Tu—Tlyxy) — 0.

FixneN: .
T, —T —.
| lzxy) < 9

By compactness of T),, there exists a finite cover of T, (E) by §-balls:

N
T, (Bx) € |JB..(y;), yj€Y.
=1

It follows N
T (Bx) C UBa(yi)7 Y €Y.
j=1
Thus T (E) is precompact and T' (E) is compact. O

Definition 9.3. The range of an operator T' € .Z (X,Y) is
RT):={yeY |FxeX :T(z)=y}.
The null space of T is
NT)={zeX|T(z)=0}.
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9 Some theory of compact operators 9.1 Compact Operators and the adjoint Operator

Definition 9.4. An operator T' € Z (X,Y) has finite range, if
dim R(T') < oc.
Remark. Every finite range operator is compact.
Corollary 9.5. The limit of a sequence of finite range operators is compact.
Proof. The space of compact operators is closed. O
Proposition 9.6. Let X,Y,Z be Banach spaces, T € ¥ (Y, Z),S € L (X,Y). Then
ToSeX (X,Z).
Toke U € £ (Y,2),V e X (X,Y), Then
UoVexX (X, 2).
Proof. Exercise. O
Definition 9.7. Let T € £ (X,Y). The adjoint operator T* € £ (Y’, X') is defined by
(T*f)(z):=f(Tx) VeeX,feY'
Remark. Take v € Y’'. We define Vu € X :
g(w)i=v(Tu) = lg(u)| <Clully.
Write T*v = g. It follows, that
HT*H.Z(Y’,X’) = HTHz(X,Y)-
Remark. Hilbertspaces.
Theorem 9.8 (Schauder).
Tex (X,)Y) & Trex (Y X).

Proof. “=" Consider (vy,),cy @ sequence in Bys. We show that (Tv,), .y admits a con-
verging subsequence. Take

S ::T(BX).

S is a compact metric space. Define

Hi={pn:S =K, z=v,(x)},cny CE(9).
These functions are not only continuous, but uniformly equicontinuous.
By Arzela-Ascoli, it follows 3¢ : S — K, (©n, ) en

unif. €(S)
N

Thus,

sup [, (z) — @ (z)] ——0
x€ES k—oco

= sup |vp, (Tu) — ¢ (Tu)] —— 0
u€EBx k—o0

sup |vn, (Tu) — vy, (Tu)] —— 0
uE€Bx k,l—o0

HT*'Unk - T*’Um ||$(Y’,X’) m 0

= T*v,, converges in X'.
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9 Some theory of compact operators 9.1 Compact Operators and the adjoint Operator

‘=" J(T (Bx)) = T** (Bx) is precompact in Y and J(Y) is closed in Y. O
Remark. Tt follows that @, = 2, T € % (X,Y) =

Tx, L) Tx.

Definition 9.9 (Anihilator). Let X be a Banach space, M C X a linear subspace. the anihilator
of M is
M+ ={feX'|f(x)=0 Vo e M}.

Let N C X’ be a linear subspace. The anihilator of N is
Nt :={zeX|f(z)=0VYfeN}.
Remark. e This simplifies in Hilbert spaces.
e It is clear that M+, Nt are both closed subspaces.
e By definition N+ C X and not N* c X”!

Proposition 9.10. We have
1. (MYt =71,
2. (NH)' oW,
Proof. 1. From the definition, it is clear that (MJ-)J' D M, since
reM = f(x)=0VYfeM+ = ze(ML)L.
Since (M L)L is closed, we also have
(M) > L.
Assume that 3z € (Ml)l \M.
By the second separation theorem there exists f € X', a e R:
Ref(z) <a<Ref(zg) Vre M.
By—M = M, it follows

Ref(z)=0 Vxe M.
Re f (z9) > 0.

Thus, by iM C M,
f(x)y=0 Vzel
= feMt
= f(z0)=0 4.
2. The inclusion follows as in 1. O
Remark. N = (N J-)J‘ only holds in reflexive spaces.

Proposition 9.11. Consider A € £ (X). We have
1. N (4*) = R(A)",
2. N(A)=R(A")™".
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9 Some theory of compact operators 9.1 Compact Operators and the adjoint Operator

Proof. 1. Take f € N (4%), i.e.

feRA)"
2. Analogous. O
Corollary 9.12.
N (4%) = R{A).
Proof. Follows immediately from and O

We state the following theorem only in Hilbert spaces, for a full version in Banach spaces (which
is slightly more technical to prove), see the book by Brezis.

Theorem 9.13 (Fredholm alternative). Let H be a Hilbert space, K € # (H,H) a compact
operator. Then

1. N(id —K) is finite dimensional,

=

. R(id —K) is closed,
: —K)

K

Lo o

R
4. N(id —K) = {0} if and only if R(id—K) = H,
5. dim N(id —K) = dim N(id —K™).

(
(id—K) = N(id —K*)*,

Remark. The theorem concerns the solvability of the equation u — Tu = f:
e Either the equation admits a unique solution for all f € X
e or the homogeneous equation v — T'u = 0 has n linearly independent solutions.
e y — Tu = f is then solvable exactly if f admits n orthogonal solutions, i.e.
feN(id-T*)".
Proof. See Evans, Partial Differential Equations, Appendix D.5. O

For information on applications and Sobolev spaces I recommend Chapter 5 in the book by
Evans.
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