Funktionalanalysis Prof. Dr. Patrick Dondl Dr. Luciano Sciaraffia

Blatt Nr. 5 Dualraum und Schwache Topologie

28. Mai 2025

Abgabe am 4. Juni 2025

- 1. (4 + 2* Punkte) Der Dualraum von $\ell^p(\mathbf{N})$. Sei $1 \leq p < \infty$, und sei $1 < p' \leq \infty$ der konjugierte Exponent.
 - a) Wir wollen zeigen, dass es einen linearen isometrischen Isomorphismus $\ell^p(\mathbf{N})^* \simeq \ell^{p'}(\mathbf{N})$ gibt. Dazu sei $(e_n)_{n=1}^{\infty} \subset \ell^p(\mathbf{N})$ die Standard-Schauderbasis. Zeigen Sie dafür die folgenden Aussagen:
 - Für jedes $f \in \ell^p(\mathbf{N})^*$ ist die Folge $y := \{f(e_n)\}_{n=1}^{\infty} \in \ell^{p'}(\mathbf{N})$, und $\|f\|_{\ell^p(\mathbf{N})^*} = \|y\|_{\ell^{p'}(\mathbf{N})}$;
 - Für jedes $\{y_n\}_{n=1}^{\infty} \in \ell^{p'}(\mathbf{N})$ ist das lineare Funktional

$$f(x) \coloneqq \sum_{n=1}^{\infty} x_n y_n, \quad x = \{x_n\}_{n=1}^{\infty} \in \ell^p(\mathbf{N}),$$

in $\ell^p(\mathbf{N})^*$.

- b) Sei $c_0(\mathbf{N}) \subset \ell^{\infty}(\mathbf{N})$ der Untervektorraum der Folgen mit Limes Null. Zeigen Sie, dass es einen linearen isometrischen Isomorphismus $c_0(\mathbf{N})^* \simeq \ell^1(\mathbf{N})$ gibt.
- *) Es existiert $f \in \ell^{\infty}(\mathbf{N})^*$, sodass $f(x) \neq \sum_{n=1}^{\infty} x_n y_n$ für alle $y \in \ell^1(\mathbf{N})$. (Hinweis: Verallgemeinerte Limiten.)
- 2. (4 Punkte) Schwache Konvergenz in $\ell^1(\mathbf{N})$. Wir wollen zeigen, dass eine Folge $(x_n)_{n=1}^{\infty}$ in ℓ^1 genau dann schwach konvergiert, wenn sie stark konvergiert.
 - a) Es seien $\varepsilon > 0$ und $(x_n)_{n=1}^{\infty}$ eine Folge in $\ell^1(\mathbf{N})$, $x_n = \{x_n^j\}_{j=1}^{\infty}$, sodass $x_n \to 0$ und $||x_n|| \ge 1$ für alle $n \in \mathbf{N}$. Zeigen Sie, dass es monoton wachsende Folgen $n_k, N_k \in \mathbf{N}$ von Indizes gibt, sodass

$$N_0 = 1, \quad \sum_{j=N_{k-1}+1}^{N_k} |x_{n_k}^j| \ge ||x_{n_k}|| - \varepsilon.$$

b) Zeigen Sie, dass eine Folge x_n in $\ell^1(\mathbf{N})$ genau dann schwach konvergiert, wenn sie stark konvergiert. (Hinweis: Wählen Sie eine Teilfolge wie oben

und definieren Sie $f \in \ell^1(\mathbf{N})^* \simeq \ell^\infty(\mathbf{N})$ durch

$$f_j \coloneqq \begin{cases} +1 & \text{wenn} \quad N_{k-1} < j \le N_k \quad \text{und} \quad x_{n_k}^j > 0, \\ -1 & \text{wenn} \quad N_{k-1} < j \le N_k \quad \text{und} \quad x_{n_k}^j \le 0, \end{cases}$$

und betrachten Sie $f(x_{n_k})$.)

3. (4 Punkte) Schwache Topologie in endlichdimensionalen Räumen und Kompakta.

- a) Zeigen Sie, dass in einem endlichdimensionalen Banachraum die starke und die schwache Topologie übereinstimmen.
- b) Sei X ein Banachraum und sei $K \subset X$ kompakt bezüglich der starken Topologie. Sei $(x_n)_{n=1}^{\infty}$ eine Folge in K, $x \in K$, sodass $x_n \rightharpoonup x$. Zeigen Sie, dass $x_n \to x$ (stark).
- **4.** (4 Punkte) Das Lemma von Mazur. Sei X ein Banachraum, $(x_n)_{n=1}^{\infty}$ eine Folge in X, sodass $x_n \rightharpoonup x$ bezüglich der schwachen Topologie.
 - a) Zeigen Sie, dass eine Folge $(y_n)_{n=1}^{\infty}$ in X existiert, sodass
 - $y_n \in \text{conv}\{x_n, x_{n+1}, x_{n+2}, \ldots\}$ für alle $n \in \mathbb{N}$,
 - $y_n \to x \text{ stark}$.
 - b) Zeigen Sie, dass eine Folge $(z_n)_{n=1}^{\infty}$ in X existiert, sodass
 - $z_n \in \text{conv}\{x_1, \dots, x_n\}$ für alle $n \in \mathbb{N}$,
 - $z_n \to x \text{ stark}$.