Funktionalanalysis Prof. Dr. Patrick Dondl Dr. Luciano Sciaraffia

Blatt Nr. 8 L^p -Räume, II

25. Juni 2025

Abgabe am 2. Juli 2025

- 1. (4 Punkte) Geichmäßige Konvexität von L^p , I. Sei $(\Omega, \mathcal{M}, \mu)$ ein Maßraum.
 - a) Beweisen Sie, dass für $2 \le p < \infty$ die erste Ungleichung von Clarkson gilt:

$$\left\| \frac{f+g}{2} \right\|_{L^p}^p + \left\| \frac{f-g}{2} \right\|_{L^p}^p \le \frac{1}{2} \left(\|f\|_{L^p}^p + \|g\|_{L^p}^p \right)$$

für alle $f, g \in L^p(\Omega, \mu)$.

- b) Zeigen Sie, dass $L^p(\Omega,\mu)$ für $2 \le p < \infty$ ein gleichmäßig konvexer Banachraum ist.
- 2. (4 Punkte) Gleichmäßige Konvexität von L^p , II. Sei $(\Omega, \mathcal{M}, \mu)$ ein Maßraum.
 - a) Sei 1 . Beweisen Sie, dass es eine Konstante <math>C (die nur von p abhängt) gibt, sodass

$$|x-y|^p \le C \left(|x|^p + |y|^p\right)^{1-p/2} \left(|x|^p + |y|^p - 2\left|\frac{x+y}{2}\right|^p\right)^{p/2}$$
 für alle $x, y \in \mathbf{R}$.

- b) Folgern Sie, dass $L^p(\Omega, \mu)$ für 1 ein glechmäßig konvexer Banachraum ist.
- 3. (4 Punkte) Die Einheitskugel in L^p . Beweisen Sie, dass die abgeschlossene Einheitskugel von $L^1(0,1)$ keine Extremalpunkte besitzt. Das heißt, jedes $f \in L^1(0,1)$ mit $||f||_{L^1(0,1)}$ kann als konvexe lineare Kombination $f = \lambda g + (1-\lambda)h$ geschrieben werden, $0 < \lambda < 1$, $||g||_{L^1(0,1)}$, $||h||_{L^1(0,1)} \le 1$. Andererseits ist jedes $f \in L^p(0,1)$, mit $||f||_{L^p(0,1)} = 1$, $1 , ein Extremalpunkt der Einheitskugel in <math>L^p(0,1)$.
- 4. (4 + 2* Punkte) Der Dualraum der Summe. Seien $(\Omega, \mathcal{M}, \mu)$ ein Maßraum und $1 \le p < q \le \infty$.
 - a) Betrachten Sie $L^p \cap L^q$ ausgestattet mit

$$||f||_{L^p \cap L^q} = ||f||_{L^p} + ||f||_{L^q}$$

Zeigen Sie, dass $\|\cdot\|_{L^p\cap L^q}$ eine Norm ist, und dass $L^p\cap L^q$ (mit dieser Norm) ein Banachraum ist.

b) Angenommen, $L^p + L^q$ ist definiert als der Vektorraum der messbaren Funktionen f auf Ω , die als Summe $f = f_0 + f_1$ mit $f_0 \in L^p$ und $f_1 \in L^q$ geschrieben werden können. Betrachten Sie

$$||f||_{L^p+L^q} = \inf\{||f_0||_{L^p} + ||f_1||_{L^q}\}$$

wobei das Infimum über alle Zerlegungen $f = f_0 + f_1$ mit $f_0 \in L^p$ und $f_1 \in L^q$ genommen wird. Zeigen Sie, dass $\|\cdot\|_{L^p + L^q}$ eine Norm ist, und dass $L^p + L^q$ (mit dieser Norm) ein Banachraum ist.

- c) Sei $1 . Zeigen Sie, dass es einen linearen isometrischen Isomorphismus <math>(L^p + L^q)^* \simeq L^{p'} \cap L^{q'}$ gibt.
- *) Sei $1 . Zeigen Sie, dass es einen linearen isometrischen Isomorphismus <math>(L^p \cap L^q)^* \simeq L^{p'} + L^{q'}$ gibt. (Hinweis: Betten Sie $L^p \cap L^q$ als abgeschlossenen Untervektorraum der direkten Summe $L^p \oplus L^q$ ein und verwenden Sie den Satz von Hahn-Banach.)