Exercises "Mathematical Modeling"

Sheet 1

Due: Wednesday 07.05.2025, 14:00. Letterbox 3.21 in the basement of Ernst-Zermelo-Str.1

Please hand in as pairs of students

Exercise 1: (Nondimensionalization)

We want to compute the power P, which is necessary to move a body with known shape (for example a ship) in a liquid (for example water). We assume that the power depends on the length l and the velocity v of the ship, the density ρ and the kinematic viscosity η of the liquid, and the gravitational acceleration g. The dimensions of the data are $[l] = L, [\rho] = \frac{M}{L^3}, [v] = \frac{L}{T}, [\eta] = \frac{L^2}{T}, [P] = \frac{ML^2}{T^3}$, and $[g] = \frac{L}{T^2}$, where L denotes the length, M the mass and T the time. Show that under these assumptions the power P is given by

$$\frac{P}{\rho l^2 v^3} = \Phi(\text{Fr, Re})$$

with a function $\Phi : \mathbb{R}^2 \to \mathbb{R}$ and the dimensionless quantities

$$Re = \frac{|v|l}{\eta}$$
 (Reynolds number) and $Fr = \frac{|v|}{\sqrt{lg}}$ (Froude number)

Exercise 2: (Consistency versus convergence)

For a parameter $\varepsilon \in [0, \varepsilon_0)$ with $\varepsilon_0 > 0$ we consider the family of operators

$$F(\cdot,\varepsilon): B_1 \coloneqq C_b^2([0,\infty)) \to B_2 \coloneqq C_b^0([0,\infty)) \times \mathbb{R}^2,$$
$$F(y,\varepsilon) = (y'' + (1+\varepsilon)y, y(0), y'(0) - 1).$$

Here $C_b^n([0,\infty))$ denotes the vector space of *n*-times differentiable functions with bounded derivatives up to order *n*. The norms of the spaces B_1 and B_2 are given by

$$\|y\|_{B_1} = \sup_{t \in (0,\infty)} \{|y(t)| + |y'(t)| + |y''(t)|\},\$$
$$\|(f, a, b)\|_{B_2} = \sup_{t \in (0,\infty)} \{|f(t)|\} + |a| + |b|.$$

(a) For the problem $F(y,\varepsilon) = (0,0,0)$ compute the exact solution y_{ε} .

(b) Show: $F(\cdot, \varepsilon)$ is consistent with $F(\cdot, 0)$, but y_{ε} does not converge to y_0 in B_1 as $\varepsilon \to 0$.

(4 Points)

(2+2 Points)

Exercise 3:

Determine the currents and voltages in the following network:

Exercise 4:

(2+2 Points)

Construct a network, without electrical devices for the following incidence matrices:

(a)	<i>B</i> =	0	-1	0	1)		
		1	0	-1	0		
		-1	1	0	0		
		0	-1	1	0		
		1	0	0	-1)		
		/ 1	0	0	_1	0	0.1
(b)	<i>B</i> =		1	1	-1	0	0
		U	-1	1	0	0	0
		-1	0	0	1	0	0
		0	1	0	0	-1	0
		0	0	0	1	0	-1
		0	0	-1	0	1	0,

(4 Points)