Exercises Mathematical Modeling

Sheet 5

Due: Wednesday 09.07.2025, 14:00. Letterbox 3.21 in the basement of Ernst-Zermelo-Str.1

Please hand in as pairs of students

Exercise 17:

Which quadrature formulas underlie the classical Runge–Kutta method, the 3/8-rule, and the Radau-3 method with three nodes? What are their respective orders of accuracy?

Exercise 18:

Construct a Runge–Kutta method of consistency order p = 4 based on Simpson's rule.

Exercise 19:

Let $A \in \mathbb{R}^{n \times n}$ be negative definite, i.e., there exists $\alpha > 0$ such that

$$z^{\mathsf{T}}Az \leq -\alpha \|z\|^2$$
 for all $z \in \mathbb{R}^n$.

Show that the solution of the initial value problem

$$\dot{y} = Ay, \quad y(0) = y_0$$

converges exponentially fast to zero for any initial value $y_0 \in \mathbb{R}^n$.

Exercise 20:

Consider the Runge–Kutta method defined by the Butcher tableau:

Investigate whether this method is A-stable and/or L-stable.

(3=1+1+1 Points)

(4 Points)

(4 Points)

(4=2+2 Points)