Programming Exercises Mathematical Modeling

Sheet 2

Due: Wednesday 28.05.2025, 14:00, Per email at *eric.trebuchon@math.uni-freiburg.de* Please write your programm in **Octave** or **Python**

Please hand in as pairs of students

Exercise 2:

(8 Points)

Solve the following circuit numerically by using complex impedances. The values are given by: $R_1 = R_3 = R_6 = 1 \Omega$, $L_2 = L_4 = 0,01 H$, $C_5 = 0,02 F$, $\omega = 50/s$ and $U_1 = 10 V$, $U_2 = 5 V$.

(4+2+4 Points)

The circuit is as shown in the figure on the next page (the ground potential is indicated as 0V using the ground symbol). The diodes follow the Shockley equation:

$$I = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right)$$

where:

- *I* is the diode current,
- V_D is the voltage across the diode,
- $I_S = 10^{-12} A$ is the reverse saturation current,
- $V_T = 26 \, mV$ is the thermal voltage.
- (i) For different values of the voltage source U, compute the potentials at the nodes using the Newton-Raphson method.
- (ii) Verify Kirchhoff's laws for the circuit.
- (iii) You should observe that for moderate source voltages, the voltage drop across each silicon diode is approximately 0.7V—this is the typical forward voltage of a silicon diode.

