Albert-Ludwigs-Universität Freiburg Abteilung für Angewandte Mathematik Prof. Dr. Patrick Dondl Dr. Keith Anguige

Praktikum zu Numerik 1

Blatt 1

(Abgabe: 9. November 2016)

Aufgabe 1 (4 Punkte). (Stabilität)

Die Aufgabe ϕ ist durch

$$\phi(x) = \frac{1}{x} - \frac{1}{x+1} = \frac{1}{x(x+1)}$$

definiert und es ist leicht zu zeigen, dass ϕ gut konditioniert für grosse Werte von x ist (siehe Bartels). ϕ kann z.B. über die Verfahren

$$\tilde{\phi}_1(x) = \left(\frac{1}{x}\right) - \left(\frac{1}{x+1}\right), \quad \tilde{\phi}_2 = \frac{1}{(x(x+1))}$$

realisiert werden, wobei die Klammerung die Reihenfolge der Ausführung der Operationen festlegt. Berechnen Sie $\tilde{\phi}_1$ und $\tilde{\phi}_2$ für verschiedene grosse Werte von x und vergleichen Sie die Ergebnisse tabellarisch/graphisch. Wie würden Sie das Verhalten von $\tilde{\phi}_1$ beschreiben?

Aufgabe 2 (4 Punkte). (Heron-Methode)

Die Wurzel $\phi(x) = \sqrt{x}$ einer Zahl x > 0 ist gegeben als Grenzwert der Folge $\{z_n\}$: $z_{n+1} = (z_n + x/z_n)/2$ (für beliebiges $z_0 > 0$). Benutzen Sie diesen Algorithmus um $\sqrt{2}$ zu approximieren.

[Als Abbruchkriterium sollten Sie $|z_{n+1}-z_n|<10^{-6}$ nehmen.]

Aufgabe 3 (4 Punkte). (Collatz-Vermutung)

Die berühmt/berüchtigte Collatz-Vermutung bezieht sich auf die folgende Konstruktion von Zahlenfolgen:

- Beginne mit einer beliebigen natürlichen Zahl n > 0.
- Ist n gerade, so nimm als nächstes n/2.
- Ist n ungerade, so nimm als nächstes 3n + 1.
- Wiederhole die Vorgehensweise mit der erhaltenen Zahl, usw.

Die Vermutung lautet:

Jede so konstruierte Zahlenfolge mündet in den Zyklus 4, 2, 1, egal, mit welcher natürlichen Zahl n > 0 man beginnt.

Generieren und plotten Sie einige solchen Folgen mit einem Programm; der Algorithmus sollte terminieren wenn der $\{4, 2, 1\}$ -Zyklus erreicht wird.

Aufgabe 4 (4 Punkte). (Die l^p -Normen)

Schreiben Sie ein Programm das es Ihnen erlaubt die Niveaumengen der l^p -Normen, $1 \le p \le \infty$, in \mathbb{R}^2 zu plotten. Zeigen Sie Ihre Ergebnisse für p = 1, 2 und ∞ .

Abgabe der Übungen nach Absprache mit dem Tutor bis zum angegebenen Datum.