Albert-Ludwigs-Universität Freiburg Abteilung für Angewandte Mathematik Prof. Dr. Patrick Dondl Dr. Keith Anguige

Numerik 1

Blatt 3

Abgabe: 23. November 2017

Matrixnormen

Aufgabe 14 (Präsenzaufgabe). Eine inkompatible Matrixnorm

Zeigen Sie, dass durch $||A|| := \max_{1 \le i,j \le n} |a_{ij}|$ eine Norm jedoch keine Operatornorm auf $\mathbb{R}^{n \times n}$ (n > 1) definiert wird.

Aufgabe 15 (4 Punkte). Eigenschaften der Operatornorm

Seien $\|\cdot\|_n$ und $\|\cdot\|_m$ Normen auf \mathbb{R}^n bzw. \mathbb{R}^m und sei $\|\cdot\|_{\text{op}}$ die induzierte Operatornorm auf \mathbb{R}^m

Zeigen Sie:

- (1) $\|\cdot\|_{\text{op}}$ definiert eine Norm auf $\mathbb{R}^{m\times n}$.
- (2) $||A||_{\text{op}} := \sup_{\{x \in \mathbb{R}^n : ||x||_n = 1\}} ||Ax||_m = \inf\{c > 0 : \forall x \in \mathbb{R}^n ||Ax||_m \le c||x||_n\}.$
- (3) Für $A \neq 0$ und $x \in \mathbb{R}^n$, sodass $||x||_n \leq 1$ und $||Ax||_m = ||A||_{\text{op}}$ folgt $||x||_n = 1$.
- (4) Das Infimum und das Supremum in (2) werden angenommen.

Aufgabe 16 (4 Punkte). Die induzierten l^p -Matrixnormen

(1) Seien $A \in \mathbb{R}^{n \times n}$, $\|x\|_p$ die l^p -Norm auf \mathbb{R}^n und $\|A\|_p$ die dazugehörige induzierte Matrixnorm auf $A \in \mathbb{R}^{n \times n}$. Zeigen Sie, dass

$$||A||_2^2 \le ||A||_1 ||A||_{\infty}$$

gilt

(2) Zeigen Sie, dass für jede Matrix $A \in \mathbb{R}^{n \times n}$ die Abschätzungen

$$n^{-1/2} ||A||_2 \le ||A||_1 \le n^{1/2} ||A||_2$$
$$n^{-1} ||A||_{\infty} \le ||A||_1 \le n ||A||_{\infty}$$

gelten und geben Sie Matrizen $A \in \mathbb{R}^{n \times n}$ an, die zeigen, dass sich die Abschätzungen nicht verbessern lassen (d.h. für jede dieser vier Ungleichungen und jedes beliebige $n \in \mathbb{N}$ finden Sie ein A, sodass Gleichheit gilt).

Aufgabe 17 (4 Punkte). Die Frobeniusnorm

Für $A \in \mathbb{R}^{n \times n}$ ist die Frobeniusnorm definiert durch $||A||_{\mathcal{F}}^2 = \sum_{1 \leq i,j \leq n} |a_{ij}|^2$. Zeigen Sie, dass

$$||A||_{\mathcal{F}} = \sqrt{\operatorname{tr}(A^T A)}.$$

Folgern Sie, dass die Frobeniusnorm mit der von der Euklidischen Norm induzierten Operatornorm verträglich ist in dem Sinne, dass

$$||A||_2 \le ||A||_{\mathcal{F}} \le \sqrt{n} ||A||_2.$$

[Sie dürfen dazu die Identität $\operatorname{tr}(A^TA) = \lambda_1 + \ldots + \lambda_n$ mit den (wohlgemerkt nichtnegativen) Eigenwerten $\lambda_1, \ldots, \lambda_n$ von A^TA verwenden.] Aufgabe 18 (4 Punkte). Auslöschungseffekte

Wie lassen sich Auslöschungseffekte bei der praktischen Berechnung der Ausdrücke

$$\frac{1-2x}{1+2x} - \frac{1}{1+x}, \quad \frac{e^x - 1}{x}$$

für $x \neq 0$ mit $|x| \ll 1$ vermeiden?

Abgabe der Übungsblätter in den (mit den Nummern der Übungsgruppen gekennzeichneten) Fächern im 2. Stock in der Hermann-Herder-Str. 10, neben dem Eingang zu Raum 201 (CIP). Die Übungsblätter müssen bis 18:00 Uhr am jeweils angegebenen Abgabedatum eingeworfen werden.