P. Dondl 04.12.2023

C. Hounkpe

Übung zur Vorlesung

Analysis I

WS 2023/24 — Blatt 7

Aufgabe 1 (Mächtigkeit von Mengen)

(4 Punkte)

Seien A, B Mengen. Wir sagen A ist gleichmächtig wie B, falls eine Bijektion zwischen A und Bexistiert. Zeigen Sie, dass \mathbb{Z} und \mathbb{Q} und \mathbb{N} gleichmächtig sind.

Tipp: Für die Gleichmächtigkeit von Q und N denken Sie an den Beweis zum Cauchy'schen Produktsatz. Bemerkung: Mengen die gleichmächtig zur Menge $\{1, 2, ..., n\}$ für $n \in \mathbb{N}$ haben Kardinalität n (das sind einfach die endlichen Mengen mit n Elementen). Mengen die gleichmächtig zur Menge N sind nennen wir abzählbare Mengen. Mengen die nicht endlich und nicht abzählbar sind nennen wir überabzählbar. Man kann sich überlegen, dass z.B. die Menge der reellen Zahlen überabzählbar ist.

Aufgabe 2 (Die Eulersche Zahl)

(4 Punkte)

Zeigen Sie die folgenden Aussagen

(i) $\exp(1) = \lim_{n \to \infty} (1 + 1/n)^n$.

<u>Hinweis:</u> Zeigen Sie mit dem Binomialsatz, dass $e_n = (1+1/n)^n \le s_n(1)$ für die Partialsummen $s_n(1)$ von $\exp(1)$ gilt, und zeigen Sie für k > n die Ungleichung

$$e_k > 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{k} \right) + \ldots + \frac{1}{n!} \left(1 - \frac{1}{k} \right) \left(1 - \frac{2}{k} \right) \left(1 - \frac{n-1}{k} \right).$$

(ii) $\exp(qx) = \exp(x)^q$ für $q \in \mathbb{Q}$.

Aufgabe 3 (Reihen)

(4 Punkte)

Es seien $(a_k)_{k\in\mathbb{N}}$ und $(b_k)_{k\in\mathbb{N}}$ Folgen mit $b_k\neq 0$ für alle $k\in\mathbb{N}$. Beweisen oder widerlegen Sie folgende Aussagen.

- (i) Ist $\sum_{k=1}^{\infty} a_k$ konvergent, so ist auch $\sum_{k=1}^{\infty} a_k^2$ konvergent.
- (ii) Ist $\sum_{k=1}^{\infty} a_k$ absolut konvergent, so ist auch $\sum_{k=1}^{\infty} a_k^2$ absolut konvergent.
- (iii) Falls $\frac{a_k}{b_k} \to c > 0$, so gilt: $\sum_{k=1}^{\infty} a_k$ absolut konvergent $\Leftrightarrow \sum_{k=1}^{\infty} b_k$ absolut konvergent.

Aufgabe 4 (Reihen)

(4 Punkte)

Untersuchen Sie folgende Reihen auf Konvergenz und auf absolute Konvergenz.

(i)
$$\sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!}$$

(ii)
$$\sum_{k=1}^{\infty} \frac{e^k}{2^k k^5}$$

(i)
$$\sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!}$$
 (ii) $\sum_{k=1}^{\infty} \frac{e^k}{2^k k^5}$ (iii) $\sum_{k=0}^{\infty} (-1)^k \frac{\sqrt{k}}{k+1}$ (iv) $\sum_{k=2}^{\infty} (-1)^k \frac{k}{k^3+1}$

(iv)
$$\sum_{k=2}^{\infty} (-1)^k \frac{k}{k^3 + 1}$$