Lecture notes

Introduction to the Theory and Numerics of Partial Differential Equations

Patrick Dondl

Winter semester 2025/2026

Contents

1	Introduction		1	
2	Line	Linear partial differential equations		
	2.1	Trans	port Equation	1
		2.1.1	Initial Value Problem	1
		2.1.2	Finite differentials for the Transport Equation	2
		2.1.3	Finite Difference Schemes	3
		2.1.4	CFL-Condition	4
	2.2	Laplac	ce's Equation	5
		2.2.1	Fundamental solution	5
		2.2.2	Mean Value Theorems	8
		2.2.3	Properties of Harmonic Functions	9
		2.2.4	Green's Function on the Half Space	14
		2.2.5	Finite Difference Schemes for Poisson's Equation	16
	2.3	Heat 1	Equation	20
		2.3.1	Fundamental Solution	20
		2.3.2	Mean Value Formulas	26
		2.3.3	Properties of Solutions	28
		2.3.4	Finite Difference Schemes for the Heat equation	31
	2.4	The V	Vave Equation	36

1 Introduction

In the following let $k \geq 1$ and $\Omega \subset \mathbb{R}^n$ be open.

Definition 1.1.1. An expression $F(D^k u(x), D^{k-1} u(x), ..., u(x), x) = 0$ with $F: \mathbb{R}^{n^k} \times \mathbb{R}^{n^{k-1}} \times ... \times \mathbb{R}^n \times \mathbb{R} \times \Omega \to \mathbb{R}$ is called partial differential equation of the order k, where $u: \Omega \to \mathbb{R}$ is the desired solution.

Definition 1.1.2. A partial differential equation is called linear, if it has the form

$$\sum_{|\alpha| \le k} q_{\alpha}(x) D^{\alpha} u = f(x)$$

where α denotes a multi-index

Examples. (i) Laplace Equality: $-\Delta u = -\sum_{i=1}^{n} u_{x_i x_i} = 0$

- (ii) Helmholtz Equality: $-\Delta u = \lambda u$
- (iii) Telegraph Equality: $u_t + 2du_t u_{xx} = 0$
- (iv) Airy Equality: $u_t + u_{xxx} = 0$
- (v) Balken Equality: $u_{tt} + u_{xxxx} = 0$
- (vi) Ethonal Equality: $|\nabla u| = 1$
- (vii) Burger's Equality: $u_t + uu_x = 0$

2 Linear partial differential equations

2.1 Transport Equation

Consider $u: \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$, u = u(x, t) and $u_t + b\nabla u = 0$ on $\mathbb{R}^n \times (0, \infty)$, where $b \in \mathbb{R}^n$, $b = (b_1, ..., b_n)^T$. How do we solve this equation?

Assume u is a solution and $(x,t) \in \mathbb{R}^n \times (0,\infty)$. Set z(s) = u(x+sb,t+s) for $s \in \mathbb{R}$. Then we have $z'(s) = \nabla u(x+sb,t+s) \cdot b + u_t(x+sb,t+s) = 0$, therefore u is constant alogn the line of (x,t) in the direction $(b,1) \in \mathbb{R}^n \times \mathbb{R}$

2.1.1 Initial Value Problem

Let $b \in \mathbb{R}^n$, $g: \mathbb{R}^n \to \mathbb{R}$ be given and

$$\begin{cases} u_t + b\nabla u = 0 \text{ on } \mathbb{R}^n \times (0, \infty) \\ u = g \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Because u is constant on along lines in the direction $(b,1) \in \mathbb{R}^n \times \mathbb{R}$, we get

$$u(x,t) = u(x-tb,0) = g(x-tb), x \in \mathbb{R}^n, t \ge 0.$$

It is not hard to see that a solution of $F(D^k u(x), D^{k-1} u(x), ..., u(x), x) = 0$ in C^1 is always of the form u(x,t) = u(x-tb,0) = g(x-tb) and conversely $g \in C^1$ is a solution of $F(D^k u(x), D^{k-1} u(x), ..., u(x), x) = 0$.

2.1.2 Finite differentials for the Transport Equation

For $x \in [0,1]$ we consider $x_j = jh$, j = 0,...,J, $h = \frac{1}{J}$ and we approximate $u \in C^1$ by

$$u'(x_j) = \frac{u(x_{j+1}) - u(x_j)}{h}$$
 and $u'(x_j) = \frac{u(x_j) - u(x_{j-1})}{h}$

Definition 2.1.1. For a given step length $h = \frac{1}{J}$, $J \in \mathbb{N}$ and a sequence $(U_j)_{j=1,...,J}$ the terms

$$(i) \ \partial_x^+ U_j = \frac{U_{j+1} - U_j}{h}$$

$$(ii) \ \partial_x^- U_j = \frac{U_j - U_{j-1}}{h}$$

(iii)
$$\hat{\partial}_x U_j = \frac{U_{j+1} - U_{j-1}}{2h}$$

define the forward-, backward- and central differential

Remark. (i) For $u \in C^2([0,1])$, we get

$$\frac{u(x+h) - u(x)}{h} = u'(x) + \frac{1}{2}u''(\xi)h$$

with $\xi \in [x, x+h]$ (Taylor)

(ii) Finite differentials can be iterated, for example

$$\partial_x^+ \partial_x^- U_j = \partial_x^- \partial_x^+ U_j = \frac{U_{j+1} - 2U_j + U_{j-1}}{h^2}$$

Definition 2.1.2. The equation in (ii) defines the difference quotient of the second degree.

Proposition 2.1.3. (i) $|\partial_x^{\pm} u(x_j) - u'(x_j)| \le \frac{h}{2} ||u''||_{C([0,1])}$

(ii)
$$|\hat{\partial}_x u(x_j) - u'(x_j)| \le \frac{h^2}{6} ||u''||_{C([0,1])}$$

(iii)
$$\partial_x^+ \partial_x^- u(x_j) - u''(x_j) | \le \frac{h^2}{12} ||u''||_{C([0,1])}$$

Proof. by Taylor

2.1.3 Finite Difference Schemes

We consider for b > 0 and $[0,1] \times [0,T]$ the initial boundary value problem

$$\begin{cases} u_t(x,t) + bu_x(x,t) = 0 \text{ on } (x,t) \in (0,1) \times (0,T] \\ (0,t) = 0 \text{ for } t \in (0,T] \\ u(x,0) = u_0(x) \text{ for } x \in [0,1] \end{cases}$$

Our domain $[0,1] \times [0,T]$ is discretesized using spatial- and temporal step sizes $h = \frac{1}{J}$ and $\tau = \frac{1}{K}$. We write $(x_j, t_k) = (jh, k\tau)$ for $0 \le j \le J, \ 0 \le k \le K$.

Our finite difference scheme now simply consists of replacing the partial derivatives by finite differences, i.e.

$$\partial_t^+ U_i^k + b \partial_x^- U_i^k = 0$$

or writing out the finite differences

$$\frac{U_j^{k+1} - U_j^k}{\tau} + b \frac{U_j^k - U_{j-1}^k}{h} = 0 \quad (*)$$

For k=0, the values U_j^0 are obtained from the initial condition i.e. $U_j^0=u_0(x_j),\ j=0,...,J$ and for j=0, we use the boundary conditions i.e. $U_0^k=0,\ k=0,...,K$. Then U_j^k can be iteratively computed using (*).

An important consideration is stability. We know that a solution u(x,t) to the initial boundary value problem satisfies

$$\sup_{x \in [0,1], \ t \in [0,T]} |u(x,t)| \le \sup_{x \in [0,1]} |u_0(x)|$$

This is clear from the solution formula (considering also the boundary condition).

Proposition 2.1.4 (Stability). Set $\mu = \frac{b \cdot \tau}{h}$. If $0 \le \mu \le 1$ then the numerical solution (U_i^k) computed by the scheme (*) satisfies

$$\sup_{j=0,\dots,J,\ k=0,\dots,K} |U_j^k| \le \sup_{j=0,\dots,J} |U_j^0|$$

Proof. We have $U_j^{k+1} = U_j^k - \mu(U_j^k - U_{j-1}^k) = (1-\mu)U_j^k + \mu U_{j-1}^k$. For $0 \le \mu \le 1$ this is a convex combination of U_j^k and U_{j-1}^k which, after iteration, proves our statement. \square

Remark. (i) The condition on μ is sharp (see exercises for counterexamples)

(ii) This uniform boundness of solutions is called stability. We proved it under the

condition $\tau \leq \frac{h}{b}$ (for b > 0). That some condition like this must be satisfied is clear.

Proposition 2.1.5 (Convergence). Set $\mu = \frac{b \cdot \tau}{h}$. If $0 \le \mu \le 1$ and $u \in C^2([0,1] \times [0,T])$, then we have

$$\sup_{j=0,\dots,J} |u(x_j,t_k) - U_j^k| \le \frac{t_k}{2} (\tau + bh) ||u||_{C^2([0,1] \times [0,T])}$$

for all k = 0, ..., K and where U_i^k is computed according to (*).

Proof. (i) We define the consistency term $\mathscr{C}_j^k := \partial_t^+ u(x_j, t_k) - b\partial_x^- u(x_j, t_k)$ which measures how much the exact solution fails to satisfy the discrete scheme. Since $\partial_t u_t + b\partial_x u = 0$ on $(0, 1) \times (0, T)$ we get from proposition 1.2.2(!)

$$|\mathscr{C}_{j}^{k}| \leq |\partial_{t}^{+}u(x_{j}, t_{k}) - \partial_{t}u(x_{j}, t_{k}) + b\partial_{x}^{-}u(x_{j}, t_{k}) - b\partial_{x}xu(x_{j}, t_{k})|$$

$$\leq \frac{\tau}{2} \sup_{t \in [0, T)]} |\partial_{t}^{2}u(x_{j}, \cdot)| + \frac{bh}{2} \sup_{x \in [0, 1]} |\partial_{x}^{2}u(\cdot, t_{k})| \quad (1)$$

(ii) We now subtract the equation $u(x_j, t_{k+1}) = u(x_j, t_k) - b\tau \partial_x^- u(x_j, t_k) + \tau \mathscr{C}_j^k$ and $U_j^{k+1} = U_j^k - b\tau \partial_x^- U_j^k$ to deduce for

$$Z_j^k = u(x_j, t_k) - U_j^k$$
 and $Z_j^{k+1} = Z_j^k - b\tau \partial_x^- Z_j^k + \tau \mathscr{C}_j^k$

For $0 \le \mu \le 1$ we get $|Z_j^{k+1}| \le \sup_{j=0,\dots,J} |Z_j^k| + \tau |\mathscr{C}_j^k|$ (also using $Z_0^{k+1} \ge 0$). Induction over $k=0,\dots,K-1$ with $Z_j^0=0,\ j=0,\dots,J$, using (1), yields the result.

Remark. (i) The condition $u \in C^2$ is satisfied if $u_0 \in C^2$ with $u_0(0,0) = 0$.

- (ii) We used consistency and stability of the scheme.
- (iii) The result implies convergence of the approximate solution to an exact solution.

2.1.4 CFL-Condition

Definition 2.1.6. An explicit numerical scheme of the form

$$U_{i}^{k+1} = \phi(t_k, x_j, U_{i-m_l}^k, ..., U_{i+m_r}^k, \tau, j)$$

satisfies the CFL-Condition if the characteristic through the part (x_j, t_{k+1}) intersects the line $\{(x,t) \mid t=t_k, x \in \mathbb{R}\}$ within the convex hull of all grid points $(x_{j-m_l}, t_k), ..., (x_{j+m_r}, t_k)$.

Examples. (i) For our previous scheme with $b \ge 0$ the CFL-Condition is satisfied, if $0 \le \mu \le 1$.

(ii) The scheme $\partial_t^+ U_j^k + b \hat{\partial_x} U_j^k = 0$ satisfies the CFL-Condition for $|\mu| \leq 1$, however the scheme is never stable.

Remark. The so-called upwinding scheme

$$U_j^{k+1} = U_j^k - \begin{cases} \mu_j^k (U_j^k - U_{j-1}^k) & \mu_j^k \ge 0\\ \mu_j^k (U_{j+1}^k - U_j^k) & \mu_j^k < 0 \end{cases}$$

with $\mu_j^k = \frac{b(x_j, t_k)\tau}{h}$ is stable for $b: [0, 1] \times [0, T]$ as long as $\sup b(x, t) \frac{\tau}{h} \leq 1$.

- **Remark.** (i) If the finite difference scheme is of the form $U^{k+1} = AU^k$ (our previous scheme here was of this form), stability, i.e. non-growth of U^k as k increases, reduces to looking at the spectrum of A(and is stable if all eigenvalues of A are less than 1).
 - (ii) If the scheme is of the type $U_j^{k+1} = \sum_{\ell \in \mathbb{Z}} m_\ell U_{j-\ell}^k$ (a discrete convolution) then a stability analysis in Fourier space can be performed.

2.2 Laplace's Equation

We consider

- (i) $-\Delta u = 0$ (Laplace's equation)
- (ii) $-\Delta u = f$ (Poisson's equation)

for $x \in \Omega$, $\Omega \subset \mathbb{R}^n$ open. The unknown is $u : \overline{\Omega} \to \mathbb{R}$, u = u(x).

Definition. A C^2 function satisfying the Laplace's equation is called harmonic function.

For some context for physics assume u denotes the concentration of some quantity in equilibrium. Consider the flux of u through the boundary ∂V of some smooth subdomain $V \subset \Omega$. We have from $\int_{\partial V} F \cdot \nu \ dS = 0$, where F denotes the flux density of u, but $\int_{\partial V} F \cdot \nu \ dS = \int_{V} \operatorname{div} F \ dx = 0$. Thus $\operatorname{div} F = 0$ in Ω as V is arbitrary.

A very typical model assumes that $F = c \cdot \nabla u$ with c > 0. Thus $\operatorname{div} c \cdot \nabla u = c \cdot \Delta u = 0$ is the results equation.

2.2.1 Fundamental solution

Lets consider the Laplace's equation on \mathbb{R}^n . The equation is invariant to rotations (Exercise). We thus look for a solution u(x) = v(|x|) = v(r). We get for

$$r = (\sum_{i=1}^{n} x_j^2)^{1/2}$$
 that $\frac{\partial r}{\partial x_j} = \frac{x_j}{r}$ if $x \neq 0$.

Thus $u_{x_j} = v'(r) \frac{x_j}{r}$, $u_{x_j x_j} = v''(r) \frac{x_j^2}{r^2} + v'(r) (\frac{1}{r} - \frac{x_j^2}{r^3})$ and $\Delta u = v''(r) + \frac{n-1}{r} v'(r)$. Thus if $\Delta u = 0$, we get $v'' + \frac{n-1}{r} v' = 0$. If $v' \neq 0$ we get $\log(|v'|)' = \frac{v''}{v'} = \frac{1-n}{r}$. We obtain $v'(r) = \frac{a}{r^{n-1}}$ for some constant a. Thus if r > 0 we get

$$v(r) = \begin{cases} b\log(r) + c & n = 2\\ \frac{b}{r^{n-2}} + c & n \ge 3 \end{cases}$$

with constants b, c.

Definition 2.2.1. The function

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log |x| & n = 2\\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}} & n \ge 3 \end{cases}$$

defined on $x \in \mathbb{R}^n$, $x \neq 0$ is the fundamental solution of Laplace's equation.

Remark. Note that $|\nabla \Phi(x)| \leq \frac{C}{|x|^{n-1}}$ and $|\nabla^2 \Phi(x)| \leq \frac{C}{|x|^n}$ for $x \neq 0$.

By construction we have $\Delta\Phi(x)=0$ for $x\neq 0$. Similarly $x\mapsto \Phi(x-y)$ is harmonic as a function of x for $x\neq y$. Taking $f:\mathbb{R}^n\to\mathbb{R}$, we also get $x\mapsto \Phi(x-y)f(y)$ $(x\neq y)$ is harmonic for any point $y\in\mathbb{R}^n$. By linearity so is the sum of such expressions.

One might get the idea, that

$$u(x) = \int_{\mathbb{R}^n} \Phi(x - y) f(y) \ dy$$

solves the Laplace's equation, but this is wrong. Instead, we get

Theorem 2.2.2 (Solution Poisson's Equation). Setting

$$u(x) = \int_{\mathbb{R}^n} \Phi(x - y) f(y) \ dy = \begin{cases} \frac{1}{2\pi} \int_{\mathbb{R}^n} \log(|x - y|) f(y) \ dy & n = 2\\ \frac{1}{n(n - 2)\alpha(n)} \int_{\mathbb{R}^n} \frac{f(y)}{(x - y)^{n - 2}} \ dy & n \ge 3 \end{cases}$$

for $f \in C_c^2(\mathbb{R}^n)$, we get

- (i) $u \in C^2(\mathbb{R}^n)$
- (ii) $-\Delta u = f$ in \mathbb{R}^n

Proof. 1. We have $u(x) = \int_{\mathbb{R}^n} \Phi(y) f(x-y) dy$, so

$$\frac{u(x+he_i)-u(x)}{h} = \int_{\mathbb{R}^n} \Phi(y) \frac{f(x+he_i-y)-f(x-y)}{h} dy$$

 $(h \neq 0, e_i = (0, ..., 0, 1, 0, ..., 0))$. But

$$(f(x + he_i - y) - f(x - y))\frac{1}{h} \to f_{x_i}(x - y)$$

uniformly on \mathbb{R}^n as $h \to 0$. Thus

$$u_{x_i}(x) = \int_{\mathbb{R}^n} \Phi(y) f_{x_i}(x - y) \ dy$$

and similary

$$u_{x_i x_j} = \int_{\mathbb{R}^n} \Phi(y) f_{x_i x_j}(x - y) \ dy.$$

As Φ is integrable near the origin (Exercise) and $f_{x_ix_j}$ has compact support, we get continuous second derivatives of u, i.e. $u \in C^2(\mathbb{R}^n)$.

2. Fix $\varepsilon > 0$, we get

$$\Delta u(x) = \int_{B_{\varepsilon}(0)} \Phi(y) \Delta_x f(x - y) \ dy + \int_{\mathbb{R}^n \setminus B_{\varepsilon}(0)} \Phi(y) \Delta_x f(x - y) \ dy = I_{\varepsilon} + J_{\varepsilon}$$

Then

$$I_{\varepsilon} \le C \cdot \|D^2 f\|_{C^{\infty}(\mathbb{R}^n)} \int_{B_{\varepsilon}(0)} |\Phi(y)| \ dy \le \begin{cases} C \varepsilon^2 |\log \varepsilon| & n = 2\\ C \varepsilon^2 & n \ge 3 \end{cases}$$

For J_{ε} , integration by parts yields

$$J_{\varepsilon} = \int_{\mathbb{R}^n \backslash B_{\varepsilon}(0)} \Phi(y) \Delta_y f(x - y) \ dy$$

$$= -\int_{\mathbb{R}^n \backslash B_{\varepsilon}(0)} \nabla_y \Phi(y) \cdot \nabla_y f(x - y) \ dy + \int_{\partial B_{\varepsilon}(0)} \Phi(y) \frac{\partial f}{\partial \nu} (x - y) \ dS(y)$$

$$= K_{\varepsilon} + L_{\varepsilon},$$

where ν denotes the inward pointing normal on $\partial B_{\varepsilon}(0)$. We check

$$|L_{\varepsilon}| \leq |\nabla f|_{C^{\infty}(\mathbb{R}^{n})} \int_{\partial B_{\varepsilon}(0)} |\Phi(y)| \ dS(y) \leq \begin{cases} C\varepsilon |\log(\varepsilon)| & n = 2\\ C\varepsilon & n \geq 3 \end{cases}$$

3. Integrating again by parts, we get

$$K_{\varepsilon} = \int_{\mathbb{R}^n \setminus B_{\varepsilon}(0)} \Delta \Phi(y) f(x - y) \ dy - \int_{\partial B_{\varepsilon}(0)} \frac{\partial \Phi}{\partial \nu}(y) f(x - y) \ dS(y)$$

since $\Delta \Phi = 0$ away from origin. Using

$$\nabla \Phi(y) = \frac{-1}{n\alpha(n)} \frac{y}{|y|^n} \ (y \neq 0) \text{ and } \nu = \frac{-y}{|y|} = \frac{-y}{\varepsilon}$$

on $\partial B_{\varepsilon}(0)$, we get

$$\frac{\partial \Phi}{\partial \nu}(y) = \nu \cdot \nabla \Phi(y) = \frac{1}{n\alpha(n)\varepsilon^{n-1}}$$

on $\partial B_{\varepsilon}(0)$. Taking $\alpha(n)$ to be the volume of the unit ball in n-dimensions, we get

$$K_{\varepsilon} = -\frac{1}{n\alpha(n)\varepsilon^{n-1}} \int_{\partial B_{\varepsilon}(0)} f(x-y) \ dS(y) = \int_{\partial B_{\varepsilon}(0)} f(y) \ dS(y) \to -f(x)$$

as $\varepsilon \to 0$. Combining the estimates and letting $\varepsilon \to 0$, we get $-\Delta u(x) = f(x)$.

2.2.2 Mean Value Theorems

A Central property of harmonic functions:

Theorem 2.2.3 (Mean Value Formula). If $u \in C^2(\Omega)$ is harmonic (i.e. $\Delta u = 0$), then

$$u(x) = \int_{\partial B_r(x)} u \ dS = \int_{B_r(x)} u \ dy$$

for any ball $B_r(x) \subset \Omega$.

Proof. Set

$$\phi(r) = \oint_{\partial B_r(x)} u(y) \ dS(y) = \oint_{\partial B_1(0)} u(x + rz) \ dS(z)$$

Then

$$\phi'(r) = \int_{B_1(0)} \nabla u(x + rz) \cdot z \, dS(z)$$

$$= \int_{\partial B_r(x)} \nabla u(y) \frac{y - x}{r} \, dS(y)$$

$$= \int_{\partial B_r(x)} \frac{\partial u}{\partial \nu} \, dS(y)$$

$$= \frac{r}{n} \int_{B_r(x)} \Delta u(y) \, dy = 0.$$

Thus ϕ is constant, and

$$\phi(r) = \lim_{t \to \infty} \phi(t) = \lim_{t \to \infty} \int_{\partial B_t(x)} u(y) \ dS(y) = u(x)$$

The second formula follows by integrating over r.

Theorem 2.2.4 (Converse to Mean Value Property). If $u \in C^2(\Omega)$ satisfies

$$u(x) = \int_{\partial B_r(x)} u \ dS$$

for all $B_r(x) \subset \Omega$, then u is harmonic.

Proof. By contradiction using the previous theorem

2.2.3 Properties of Harmonic Functions

Theorem 2.2.5 (Strong Maximum Principle). Assume $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is harmonic in Ω .

- $(i) \ \ Then \max_{x \in \overline{\Omega}} \, u(x) = \max_{x \in \partial \Omega} \, u(x) \, \, (\textit{Maximum Principle})$
- (ii) Furthermore, if Ω is connected and there exists $x_0 \in \Omega$, s.t. $u(x_0) = \max_{x \in \overline{\Omega}} u(x)$, then u is constant (Strong Maximum Principle)

Remark. Similar statement follows for min u, by v = -u

Proof. Assume there exists $x_0 \in \Omega$, $u(x_0) = M = \max_{x \in \overline{\Omega}} u(x)$. Then for $0 < r < \operatorname{dist}(x_0, \partial \Omega)$, we have, by theorem 2.2.4 that

$$M = u(x_0) = \int_{B_r(x_0)} u \ dy \le M$$

with equality if and only if $u \equiv M$ in $B_r(x_0)$, i.e. u(y) = M for all $y \in B_r(x_0)$. Thus, the set $\{x \in \Omega \mid u(x) = M\}$ is both open and relatively closed in Ω , thus it equals Ω if Ω is connected. This proves (ii) and (i) follows immediately,

Remark. If $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $\Delta u = 0$ in Ω , u = g in $\partial \Omega$, and if also g(x) > 0 for some $x \in \partial \Omega$, then u > 0 on Ω .

Theorem 2.2.6 (Uniqueness). Let $g \in C(\partial\Omega)$, $f \in C(\Omega)$, the there exists at most one solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$ of the boundary value problem:

$$\begin{cases} -\Delta u = f \text{ in } \Omega \\ u = g \text{ on } \partial \Omega \end{cases}$$

Proof. If u,v both solve the boundary value problem apply Theorem 2.2.5 (Strong Maximum Principle) to $w=\pm(u-v)$

Theorem 2.2.7 (Smoothness). If $u \in C(\Omega)$ satisfies the mean value property

$$u(x) = \int_{\partial B_r(x)} u(y) \ dS(y)$$

for each ball $B_r(x) \subset \Omega$, then $u \in C^{\infty}(\Omega)$

Remark. u may not be smooth (or even continuous) up to the boundary.

Proof. Consider the standard mollifier

$$\eta_{\varepsilon} = \begin{cases} e^{-\frac{1}{1-|x|^2/\varepsilon}} & |x| < \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

such that

$$\int_{\mathbb{R}^n} \eta_{\varepsilon} = 1$$

we know that $u_{\varepsilon} = u * \eta_{\varepsilon}$ (defined in $\Omega_{\varepsilon} = \{ \operatorname{dist}(\cdot, \partial \Omega) > \varepsilon \})$ is smooth.

We show that $u(x) = u_{\varepsilon}(x)$ for $\operatorname{dist}(x, \partial \Omega) < \varepsilon$. Consider

$$u_{\varepsilon}(x) = \int_{\Omega} \eta_{\varepsilon}(x - y)u(y) \ dy$$
$$= \frac{1}{\varepsilon^{n}} \int_{B_{\varepsilon}(x)} \eta\left(\frac{(x - y)}{\varepsilon}\right) u(y) \ dy$$
$$= \frac{1}{\varepsilon^{n}} u(x) \int_{0}^{\varepsilon} \eta\left(\frac{r}{\varepsilon}\right) n\alpha(n) r^{n-1} \ dr = u(x)$$

Theorem 2.2.8. Assume u is harmonic in Ω . Then

$$|D^{\alpha}u(x_0)| \le \frac{Ck}{r^{n+k}} ||u||_{C^1(B_r(x_0))}$$

for any ball $B_r(x_0) \subset \Omega$ and any multi-index α of order $|\alpha| \leq k$. We have

$$C_0 = \frac{1}{\alpha(n)}, \ C_k = \frac{(2^{n+1}nk)^k}{\alpha(n)}$$

for k = 1, 2, ...

Proof. We prove the statement by induction on k, with k = 0 being obvious from the mean value formula (Quote: I still think there should be a nice value formula).

For k=1, note that u_{x_i} is harmonic (by smoothness and differentiating $\Delta u=0$). We

obtain

$$|u_{x_i}(x_0)| = \left| \int_{B_{r/2}(x_0)} u_{x_i} \, dx \right| = \left| \frac{2^n}{\alpha(n)r^2} \int_{\partial B_{r/2}(x_0)} u \cdot \nu_i \, dS \right| \le \frac{2n}{r} ||u||_{L^{\infty}(\partial B_{r/2}(x_0))}.$$

For $x \in \partial B_{r/2}(x_0)$, we have $B_{r/2}(x) \subset B_r(x_0) \subset \Omega$. So, by the k=0 estimate, we get

$$|u(x)| \le \frac{1}{\alpha(n)} \left(\frac{2}{r}\right)^2 ||u||_{L^1(B_r(x_0))}$$

This yields

$$|D^{\alpha}u(x_0)| \le \frac{2^{n+1}n}{\alpha(n)} \frac{1}{r^{n+1}} ||u||_{L^1(B_r(x_0))}$$

for $|\alpha| \leq 1$. The higher derivative estimates follow analogously ...

Theorem 2.2.9 (Liouville's Theorem). Suppose $u : \mathbb{R}^n \to \mathbb{R}$ is harmonic and bounded. Then, u is constant.

Proof. Fix $x_0 \in \mathbb{R}^n$, r > 0. By Theorem (2.2.8) we get on $B_r(x_0)$

$$|Du(x_0)| \le \frac{\sqrt{nC_1}}{r^{n+1}} ||u||_{L^1(B_r(x_0))} \le \frac{\sqrt{nC^1}}{r} ||u||_{L^{\infty}(\mathbb{R}^n)} \to \infty$$

as $r \to \infty$. Thus $Du \equiv 0$ and u is constant.

Theorem 2.2.10. Let $f \in C_c^2(\mathbb{R}^n)$, $n \geq 3$. Then any bounded solution of $-\Delta u = f$ in \mathbb{R}^n has the form

$$u(x) = \int_{\mathbb{R}^n} \Phi(x - y) f(y) \ dy + C$$

for $x \in \mathbb{R}^n$

Proof. Clearly, since $\Phi(x) \to 0$ as $|x| \to \infty$, the rhs. is bounded and $\tilde{u} = \Phi * f$ is a bounded solution of Laplace's equation. If u is any other solution, then $u - \tilde{u}$ is bounded and harmonic, thus constant due to theorem 2.2.9.

Remark. (i) One can even prove analyticity of harmonic functions.

(ii) There are non-bound harmonic functions on \mathbb{R}^n .

Theorem 2.2.11 (Harnack's Inequality). Consider $V \subset\subset \Omega$ ($\exists K \subset \Omega$, K compact, s.t $V \subset K$ is open). Then there exists C depending only on V, s.t.

$$\sup_{V} u \le C \inf_{V} u$$

for any non-negative harmonic function u in Ω .

Proof. Take $r = \frac{1}{4} \operatorname{dist}(V, \partial \Omega), \ x, y \in V$, s.t. |x - y| < r. Then

$$u(x) = \int_{B_{2r}(x)} u(z) \ dz \ge \frac{1}{\alpha(n)2^n r^n} \int_{B_r(y)} u(z) \ dz = \frac{1}{2^n} \int_{B_r(y)} u(z) \ dz = \frac{1}{2^n} u(y)$$

Thus, $2^n u(y) \ge u(x) \ge \frac{1}{2^n} u(y)$ if $x, y \in V, |x - y| < r$.

Since V is connected and \overline{V} is compact, we can cover \overline{V} by finitely many balls $\{B_i\}_{i=1}^N$, each with radius $\frac{r}{2}$, and $B_i \cap B_{i-1} \neq \emptyset$ for i=1,...,N and thus $u(x) \geq \frac{1}{2^{n(N+1)}}u(y)$ for all $x,y \in V$.

Now, take $\Omega \subset \mathbb{R}^n$, with $\partial \Omega$ in C^1 . We would like to solve

$$\begin{cases} -\Delta u = f \text{ in } \Omega \\ u = g \text{ on } \partial \Omega. \end{cases}$$

This is the classic boundary value problem.

Assume $u \in C^2(\overline{\Omega})$ is given, fix $x \in \Omega$, $\varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subset \Omega$ and apply the divergence theorem on $V_{\varepsilon} = \Omega \setminus B_{\varepsilon}(x)$ to u(y) and $\Phi(x - y)$. We compute

$$\int_{V_{\varepsilon}} u(y) \Delta \Phi(y-x) - \Phi(y-x) \Delta u(y) \ dy = \int_{\partial V_{\varepsilon}} u(y) \frac{\partial \Phi}{\partial \nu}(y-x) - \Phi(y-x) \frac{\partial u}{\partial \nu}(y) \ dS(y) \quad (2*)$$

Note: $\Delta\Phi(x-y) = 0$ for $x \neq y$ and

$$\left| \int -\partial B_{\varepsilon}(x) \Phi(x-y) \frac{\partial u}{\partial \nu}(y) \ dS(y) \right| \le C \varepsilon^{n-1} \max_{\partial B_{\varepsilon}(0)} |\Phi| = \text{ as } \varepsilon \to 0.$$

We also, from the proof of theorem 2.2.2 have

$$\int_{\partial B_{\varepsilon}(x)} u(y) \frac{\partial \Phi}{\partial \nu}(y - x) \ dS(y) = \oint_{\partial B_{\varepsilon}(x)} u(y) \ dS(y) \to u(x)$$

Takin $\varepsilon \to 0$ in (2*) the yields

$$u(x) = \int_{\partial\Omega} \underbrace{\Phi(y-x) \frac{\partial u}{\partial \nu}(y)}_{(3*)} - u(y) \frac{\partial \Phi}{\partial \nu}(y-x) \ dS(y) - \int_{\Omega} \Phi(y-x) \Delta u(y) \ dy$$

for any $x \in \mathbb{R}$, any $u \in C^2(\overline{\Omega})$. We can compute the rhs. except for (3*). Consider thus a "correcter" $\varphi^x = \varphi^x(y)$ solving

$$\begin{cases} \Delta \varphi^x = 0 \text{ in } \Omega \\ \varphi^x = \Phi(y - x) \text{ on } \partial \Omega. \end{cases}$$

This yields using Gauß-Green again,

$$-\int_{\Omega} \varphi^{x}(y) \Delta u(y) \ dy = \int_{\partial \Omega} u(y) \frac{\partial \varphi^{x}}{\partial \nu}(y) - \varphi^{x}(y) \frac{\partial u}{\partial \nu}(y) \ dS(y)$$
$$= \int_{\partial \Omega} u(y) \frac{\partial \varphi^{x}}{\partial \nu}(y) - \Phi(y - x) \frac{\partial u}{\partial \nu}(y) \ dS(y) \quad (4*)$$

Definition 2.2.12. Green's function for the domain Ω is

$$G(x,y) = \Phi(y-x) - \varphi^x(y)$$

for $x, y \in \Omega$ with $x \neq y$.

Now adding (3*) and (4*), we get

$$u(x) = -\int_{\partial\Omega} u(y) \frac{\partial G}{\partial \nu}(x, y) \ dS(y) - \int_{\Omega} G(x, y) \Delta u(y) \ dy \quad (5*)$$

where $\frac{\partial G}{\partial \nu}(x,y) = \nabla_y G(x,y) \cdot \nu(y)$. If now $u \in C^2(\overline{\Omega})$ solves

$$(6*) = \begin{cases} -\Delta u = f \text{ in } \Omega \\ u = g \text{ on } \partial \Omega \end{cases}$$

for given continuous functions f, g, we know by plugging into (5*)

Theorem 2.2.13. If $u \in C^2(\overline{\Omega})$ solves (6*) then

$$u(x) = -\int_{\partial \Omega} g(y) \frac{\partial G}{\partial \nu}(x, y) \ dS(y) + \int_{\Omega} f(y)G(x, y) \ dy$$

for x in Ω .

We could say

$$\begin{cases} -\Delta_y G = \delta_x \text{ in } \Omega \\ G(\cdot, y) = 0 \text{ on } \partial\Omega \end{cases}$$

Theorem 2.2.14. For $x, y \in \Omega$, $x \neq y$, we have

$$G(y,x) = G(x,y)$$

Proof. Fix $x, y \in \Omega$, $x \neq y$. Set

$$v(z) = G(x, z), \ w(z) = G(y, z), \ z \in \Omega$$

then

$$\Delta v(x) = \Delta w(z) = 0$$

for $z \neq x$, $z \neq y$ respectively. Also, w = v = 0 on $\partial\Omega$. Applying Gauß-Green on $V = \Omega \setminus (B_{\varepsilon}(x) \cup B_{\varepsilon}(y))$ for $\varepsilon > 0$ sufficiently small, we get

$$\int_{\partial B_{\varepsilon}(x)} \frac{\partial v}{\partial \nu} w - \frac{\partial w}{\partial \nu} v \ dS(z) = \int_{\partial B_{\varepsilon}(y)} \frac{\partial w}{\partial \nu} v - \frac{\partial v}{\partial \nu} w \ dS(z) \quad (7*)$$

Also, $v(z) = \Phi(z - x) - \Phi^{x}(z)$, where Φ^{x} is smooth in Ω . Thus

$$\lim_{\varepsilon \to 0} \int_{\partial B_{\varepsilon}(x)} \frac{\partial v}{\partial \nu} w \ dS = \lim_{\varepsilon \to 0} \int_{\partial B_{\varepsilon}(x)} \frac{\partial \Phi}{\partial \nu} (x - z) w(z) \ dS(z) = w(x)$$

Thus, the lhs. of (7*) converges to w(x) as $\varepsilon \to 0$, the rhs. converges to v(y), thus

$$G(y,x) = w(x) = v(y) = G(x,y)$$

2.2.4 Green's Function on the Half Space

Consider $\mathbb{R}^n_+ := \{(x_1,...,x_n) \in \mathbb{R}^n \mid x_n > 0\}$, the so-called half space.

Definition 2.2.15. Green's function for the half space \mathbb{R}^n_+ is

$$G(x,y) = \Phi(y-x) - \Phi(y-\tilde{x}),$$

 $x, y \in \mathbb{R}^n_+, \ x \neq y, \ where$

$$\tilde{x} = (x_1, ..., x_{n-1}, -x_n) \in \mathbb{R}^n_-.$$

We obtain, for $y \in \partial \mathbb{R}^n_+$, that

$$\frac{\partial G}{\partial \nu}(x,y) = -G_{y_n}(x,y) = \frac{-2x_n}{n\alpha(n)} \frac{1}{|x-y|^n}$$

We would thus expect

$$u(x) = \frac{2x_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n} \frac{g(y)}{|x - y|^n} dy, \quad x \in \mathbb{R}^n_+ \quad (8*)$$

solves

$$\Delta u = 0$$
 in \mathbb{R}^n_+

$$u = g \text{ on } \partial \mathbb{R}^n_{\perp}$$

(in a limit sense).

The function

$$K(x,y) = \frac{2x_n}{n\alpha(n)} \frac{1}{|x-y|^n}, \quad x \in \mathbb{R}^n_+, y \in \partial \mathbb{R}^n_+$$

is called Poisson-Kernel of the half space, and (8*) is called Poisson's formula of the half space.

Theorem 2.2.16. Assume $g \in C(\mathbb{R}^{n-1}) \cap L^{\infty}(\mathbb{R}^{n-1})$ and define u by (8*). Then

- (i) $u \in C^{\infty}(\mathbb{R}^n_+) \cap L^{\infty}(\mathbb{R}^n_+)$
- (ii) $\Delta u = 0$ in \mathbb{R}^n_+ and
- (iii) $\lim_{x \to x^0} u(x) = g(x^0)$ for $x^0 \in \partial \mathbb{R}^n_+$

Proof. 1. For a fixed $x, y \mapsto G(x, y)$ is harmonic for $x \neq y$. By symmetry of G, $x \mapsto G(x, y)$ is also harmonic for $x \neq y$. Thus

$$x \mapsto -\frac{\partial G}{\partial y_n}(x,y) = K(x,y)$$

is harmonic for $x \in \mathbb{R}^n_+$, $y \in \partial \mathbb{R}^n_n$.

2. We note that

$$\int_{\partial \mathbb{R}^n_{\perp}} K(x, y) \ dy = 1 \ (9*)$$

for any $x \in \mathbb{R}^n_+$. Thus, as g is bounded, u defined by (9*) is also bounded. As $x \mapsto K(x,y)$ is smooth, we see that $u \in C^{\infty}(\mathbb{R}^n_+)$ (just take derivatives w.r.t. x in (9*) and note that integration and differentiation can be exchanged here). We get

$$\Delta u(x) = \int_{\partial \mathbb{R}^n_{\perp}} \Delta_x K(x, y) g(y) \ dy = 0$$

as $\Delta_x K(x,y) = 0$ for $x \neq y$.

3. Fix now $x^0 \in \partial \mathbb{R}^n_+$, $\varepsilon > 0$, take $\delta > 0$ such that

$$|g(y) - g(x^0)| < \varepsilon \text{ for } |y - x^0| < \delta, \ y \in \partial \mathbb{R}^n_+ \quad (10*)$$

Then, if $|x - x^0| < \delta/2$, $x \in \mathbb{R}^n_+$, we get

$$|u(x) - g(x^{0})| = \left| \int_{\partial \mathbb{R}^{n}_{+}} K(x, y)(g(y) - g(x^{0})) \ dy \right|$$

$$\leq \int_{\partial \mathbb{R}^{n}_{+} \cap B_{\delta}(x^{0})} K(x, y)|g(y) - g(x^{0})| \ dy + \int_{\partial \mathbb{R}^{n}_{+} \setminus B_{\delta}(x^{0})} K(x, y)|g(y) - g(x^{0})| \ dy$$

$$=I+J$$

We note $I < \varepsilon$ by (9*), (10*). Further, if $|x - x^0| < \delta/2$ as $|y - x^0| \ge \delta/2$, we get

$$|y - x^0| \le |y - x| + \frac{\delta}{2} \le |y - x| + \frac{1}{2}|y - x^0|$$

So, $|y - x| \ge 1/2|y - x^0|$ and we get

$$J \le 2\|g\|_{L^{\infty}} \int_{\partial \mathbb{R}^{n}_{\perp} \setminus B_{\delta}(x^{0})} K(x,y) \ dy \le \frac{2^{n+2} \|g\|_{L^{\infty} x_{n}}}{n\alpha(n)} \int_{\partial \mathbb{R}^{n}_{\perp} \setminus B_{\delta}(x^{0})} \frac{1}{|y - x^{0}|^{n}} \ dy \to 0$$

as $x_n \to 0$. This yields

$$|u(x) - g(x^0)| \le 2\varepsilon$$

for $|x - x^0|$ sufficiently small.

Remark. To get Green's function for a ball $B_1(0) \subset \mathbb{R}^n$, use the dual point \tilde{x} to $x \neq 0$ given by $\tilde{x} = x/|x|^2$ and set

$$\varphi^{x}(y) = \Phi(|x|(y - \tilde{x}))$$

and note that φ^x is harmonic in $B_1(0)$. The rest follows as before, with

$$G(x,y) = \Phi(y-x) - \Phi(|x|(y-\tilde{x})) \quad x,y \in B_1(0), \ x \neq y.$$

2.2.5 Finite Difference Schemes for Poisson's Equation

Consider

$$\begin{cases} -\Delta u = f \text{ in } \Omega = [0, 1]^2 \\ u = 0 \text{ on } \partial \Omega. \end{cases}$$

For $J \geq 1$, set h = 1/J and define grid points

$$x_{i,m} = (jh, mh), \ 0 \le j, m \le J$$

and replace the Laplacian by central difference quotients. We thus want to find

$$\{U_{j,m}\}_{j,m=0}^J \subset \mathbb{R}$$

such that

$$-\partial_{x_1}^+ \partial_{x_1}^- U_{j,m} - \partial_{x_2}^+ \partial_{x_2}^- U_{j,m} = f(x_{j,m}) = (F)_{j,m}$$

for $1 \le m \le J$

$$U_{0,m} = U_{J,m} = U_{i,0} = U_{i,J} = 0$$

for j, m = 0, ..., J. We see that

$$-\Delta_h U_{j,m} = \frac{-1}{h^2} (U_{j+1,m} + U_{j,m+1} - 4U_{j,m} + U_{j-1,m} + U_{j,m-1})$$

One can also do this for n > 2.

We note that the finite difference scheme (above) can be written as a suitable linear system of equations, by setting

$$(j,m) \sim j + (m-1)(J-1) = l$$

for
$$j, m = 1, ..., J - 1, l = 1, ..., L = (J - 1)^2$$
.

Setting $X \in \mathbb{R}^{(J-1)\times(J-1)}$ to

$$X = \begin{pmatrix} 4 & -1 & & \\ -1 & 4 & -1 & & \\ & -1 & \ddots & \ddots & \\ & & \ddots & 4 \end{pmatrix}$$

we can write (the above scheme) as AU = b with

$$A = \begin{pmatrix} X & -I & & \\ -I & \ddots & \ddots & \\ & \ddots & \ddots & -I \\ & & -I & X \end{pmatrix}, b = h^2 \begin{pmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_L) \end{pmatrix},$$

where $I \in \mathbb{R}^{(J-1)\times (J-1)}$ is the identity-matrix.

To include boundary conditions u = g on $\partial\Omega$, assume that there exists a function $\tilde{u}_D \in C^2(\overline{\Omega})$, such that $\tilde{u}_D|_{\partial\Omega} = g$, write $u = \hat{u} + \tilde{u}_D$ and note that if u solves the boundary value problem, we have

$$-\Delta \hat{u} = f + \Delta \tilde{u}_D$$

in Ω and $\hat{u} = 0$ on $\partial \Omega$.

For the finite difference scheme, just set

$$(\tilde{U}_D)_{i,j} = g(x_{i,j}) \quad x_{i,j} \in \partial \Omega$$

and solve

$$-\Delta_h \hat{U} = (F)_{i,j} + (\Delta_h \tilde{U}_D)_{i,j} \quad x_{i,j} \in \Omega$$

and $\hat{U}_{i,j} = 0$ for $x_{i,j} \in \partial \Omega$.

Note that one can also impose so-called Newmann-Conditions on part of the boundary, where, instead of u, we prescribe the values of

 $\frac{\partial u}{\partial \nu}$.

We are looking at

$$\begin{cases} -\Delta u = f \text{ in } \Omega = (0, 1)^2 \\ u = 0 \text{ on } \partial \Omega \end{cases}$$

Discretization

$$-\Delta_h U_{j,m} = \frac{-1}{h^2} (U_{j+1,m} + U_{j,m+1} - 4U_{j,m} + U_{j-1,m} + U_{m,j-1})$$

Lemma 2.2.17 (Discrete Maximum Principle). If $U = (U_{j,m}, j, m = 0, ..., J)$ satisfies

$$-\Delta_h U_{i,m} \leq 0$$

for all j, m = 1, ..., J - 1, then U attains its maximum for j = 0, j = J, m = 0 or m = J.

Proof. From $-\Delta_h U_{j,m} \leq 0$, we get

$$U_{j,m} \le \frac{1}{4}(U_{j-1,m} + U_{j+1,m} + U_{j,m-1} + U_{j,m+1})$$

For $1 \leq j, m \leq J-1$. So $U_{j,m}$ is a convex combination of its surroundings. If, thus, $U_{j,m}$ is a maximum, the estimate has to hold with equality and the maximum is also attained at all of the neighboring points, we can continue this until we reach a boundary.

Lemma 2.2.18 (Discrete Boundedness). For all $(Z_{j,m}, j, m = 0, ..., J)$ with $Z_{j,m} = 0$ for j = 0, j = J, m = 0, m = J, we have

$$\max_{j,m=0,...,J} |Z_{j,m}| \le \frac{1}{2} \sup_{j,m=1,...,J-1} |\Delta_h Z_{j,m}|$$

Proof. Write

$$S = \max_{j,m=1,\dots,J-1} |\Delta_h Z_{j,m}|$$

and set $W_{j,m} = (jh)^2 + (mh)^2$, which, on the grid points, coincides with $w(x_1, x_2) =$

 $x_1^2 + x_2^2$. Notice $W_{j,m} \ge 0, \ j, m = 0, ..., J$ and $\Delta_h W_{j,m} = 4, \ j, m = 1, ..., J - 1$. Now set

$$V_{j,m} = Z_{j,m} + \frac{S}{4}W_{j,m}$$

and get

$$-\Delta_h V_{j,m} = -\Delta_h Z_{j,m} - S \le 0$$

The discrete maximum principle implies that $V_{j,m}$ attains its maximum on the boundary, there

$$Z_{i,m} = 0$$
 and $0 \leq W_{i,m} \leq 2$

Therefore

$$Z_{j,m} = V_{j,m} - \frac{S}{4}W_{j,m} \le \frac{S}{2}$$

Similary, the result

$$-Z_{j,m} \le \frac{S}{2}$$

holds and we obtain the lemma.

Proposition 2.2.19 (Error Estimate). Let $u \in C^2(\overline{\Omega})$ and $U = (U_{j,m}, j, m = 0, ..., J)$ be the solution to the Poisson boundary value problem

$$-\Delta u = f \text{ in } (0,1)^2 = \Omega$$
$$u = 0 \text{ on } \partial \Omega$$

and its discretization respectively, then we have

$$\sup_{j,m=0,\dots,J} |u(x_{j,m}) - U_{j,m}| \le \frac{h^2}{24} (\|\partial_{x_1}^4 u\|_{C^0([0,1]^2)} + \|\partial_{x_2}^4 u\|_{C^0([0,1]^2)})$$

Proof. Since $-\Delta u(x_{j,m}) = f(x_{j,m})$ for j, m = 0, ..., J, the error

$$Z_{i,m} = u(x_{i,m}) - U_{i,m}$$

satisfies

$$-\Delta_h Z_{j,m} = -\Delta_h u(x_{j,m}) + \Delta_h U_{j,m}$$

$$= f(x_{j,m}) - f(x_{j,m}) + \Delta_u u(x_{j,m}) - \Delta_h u(x_{j,m})$$

$$= \partial_{x_1}^2 u(x_{j,m}) - \partial_{x_1}^+ \partial_{x_1}^- u(x_{j,m}) + \partial_{x_2}^2 u(x_{j,m}) - \partial_{x_2}^+ \partial_{x_2}^- u(x_{j,m})$$

From our estimates on the difference quotients, we get

$$|-\Delta_h Z_{j,m}| \le \frac{h^2}{24} (\|\partial_{x_1}^4 u\|_{C^0([0,1]^29} + \|\partial_{x_2}^4 u\|_{C^0([0,1]^2)}))$$

Together with the discrete boundedness lemma we obtain the result.

2.3 Heat Equation

We study the equation

$$u_t - \Delta u = 0$$

and its non-homogeneous pendant

$$u_t - \Delta u = f$$

subjected to appropriate initial and boundary conditions. We take $t > 0, \ x \in \Omega, \ \Omega \subset \mathbb{R}^n$ open. The sought after function is

$$u: \overline{\Omega} \times [0, \infty) \to \mathbb{R}, \ u = u(x, t)$$

and the laplacian is stable w.r.t the spatial variables x. The function $f: \Omega \times [0, \infty) \to \mathbb{R}$ is given.

For a physical interpretation, consider $V \subset \Omega$, then

$$\frac{d}{dt} \int_{V} u \ dx = -\int_{\partial V} F \cdot \nu \ dS$$

(if the quantity does not get produced or destroyed within V). Again we assume $F = a \cdot \nabla u$ (a > 0) and the divergence theorem yields

$$u_t = \operatorname{div}(a \cdot \nabla u) = a \cdot \Delta u$$

2.3.1 Fundamental Solution

Consider functions of the form

$$(11*) \ u(x,t) = \frac{1}{t^{\alpha}} v\left(\frac{x}{t^{\beta}}\right) \quad x \in \mathbb{R}^{n}, t > 0$$

with constants α, β , and the function $v : \mathbb{R}^n \to \mathbb{R}$ to be found.

Equation (11*) shows up if we look for solutions to the heat equation, that are invariant

under the scaling

$$u(x,t) \mapsto \lambda^{\alpha} u(\lambda^{\beta} x, \lambda t)$$

for any $\lambda > 0, \ x \in \mathbb{R}^n, t > 0$. Setting $\lambda = 1/t$ yields (11*) for v(y) = u(y, 1).

Inserting (11*) into the heat equation, we get

$$\alpha t^{-(\alpha+1)}v(y) + \beta t^{-(\alpha+1)}y \cdot \nabla V(y) + t^{-\alpha+2\beta}\Delta v(y) = 0$$

for $y=t^{-\beta}x,$ try $\beta=1/2,$ then our equation reduces to

$$\alpha v + \frac{1}{2}y \cdot \nabla v(y) + \Delta v(y) = 0.$$

Assume u is radial, i.e. v(y) = w(|y|) for some $w : \mathbb{R} \to \mathbb{R}$. This yields

$$\alpha w + \frac{1}{2}rw' + w'' + \frac{u-1}{r}w' = 0,$$

where r = |y|, ' = d/dr. Setting $\alpha = n/2$, we get

$$(r^{n-1}w')' + \frac{1}{2}(r^2w)' = 0,$$

i.e.

$$r^{n-1}w' + \frac{1}{2}r^n w = \alpha$$

Assuming $\lim_{r\to\infty} w, w'=0$, we conclude that u=0, so w'=-1/2rw. This has solutions

$$w = b \cdot e^{-\frac{r^2}{4}}$$

for some constant b. Plugging in our choices for α, β , we get then

$$\frac{b}{t^{n/2}} \exp\left(\frac{-|x|^2}{4t}\right)$$

solves the heat equation. This can easily be concluded for $x \in \mathbb{R}^n, t > 0$.

Definition 2.3.1. The function

$$\Phi(x,t) = \begin{cases} \frac{1}{(4\pi t)^{n/2}} \exp\left(\frac{-|x|^2}{4t}\right) & x \in \mathbb{R}^n, t > 0\\ 0 & x \int \mathbb{R}^n, t < 0 \end{cases}$$

is called the fundamental solution for the heat equation.

Note that we have a singularity a the origin.

Lemma 2.3.2. *For* t > 0, *we have*

$$\int_{\mathbb{R}^n} \Phi(x,t) \ dx = 1$$

Proof. Exercise. \Box

We now use the fundamental solution to solve the initial value (or Cauchy) problem

$$\begin{cases} u_t - \Delta u = 0 \text{ in } \mathbb{R}^n \times (0, \infty) \\ u = g \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Note that $(x,t) \mapsto \Phi(x-y,t)$ solves the heat equation for any given $y \in \mathbb{R}^n, t > 0$. Therefore the convolution

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x - y, t) g(y) \ dy = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} \exp\left(\frac{|x - y|^2}{4t}\right) g(y) \ dy, \ x \in \mathbb{R}^n, t > 0,$$

should also be a solution to the heat equation.

Theorem 2.3.3. Assume $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ and define u by

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x - y, t) g(y) \ dy = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} \exp\left(\frac{-|x - y|^2}{4t}\right) g(y) \ dy$$

then

- (i) $u \in C^{\infty}(\mathbb{R}^n \times (0, \infty))$
- (ii) $u_t(x,t) \Delta u(x,t) = 0$ for $x \in \mathbb{R}^n, t > 0$.
- (iii) For any $x^0 \in \mathbb{R}^n$ we have

$$\lim_{(x,t)\to(x^0,t)} u(x,t) = g(x^0)$$

Proof. 1. Since

$$\frac{1}{t^{n/2}} \exp\left(\frac{-|x|^2}{4t}\right)$$

is infinitely differentiable with uniformly bounded derivatives of all orders on $\mathbb{R}^n \times [\delta, \infty)$ for each $\delta > 0$, we see then $u \in C^{\infty}(\mathbb{R}^n \times (0, \infty))$. (Exercise)

Also,

$$u_t(x,t) - \Delta u(x,t) = \int_{\mathbb{R}^n} (\Phi_t - \Delta_x \Phi)(x - y, t) \ g(y) \ dy = 0$$

for $x \in \mathbb{R}^n$, t > 0, as Φ solves the heat equation.

2. Fix $x^0 \in \mathbb{R}^n$, $\varepsilon > 0$. Choose $\delta > 0$ s.t. $|g(y) - g(x^0)| < \varepsilon$, if $|y - x^0| < \delta$, for $y \in \mathbb{R}^n$. Then for $|x - x^0| < \delta/2$, we have

$$|u(x,t) - g(x^{0})| \le \left| \int_{\mathbb{R}^{n}} \Phi(x - y, t) (g(y) - g(x^{0})) \, dy \right|$$

$$\le \int_{\mathbb{R}^{n}} \Phi(x - y, t) |g(y) - g(x^{0})| \, dy$$

$$= \int_{B_{\delta}(x^{0})} \Phi(x - y, t) |g(y) - g(x^{0})| \, dy + \int_{\mathbb{R}^{n} \setminus B_{\delta}(x^{0})} \Phi(x - y, t) |g(y) - g(x^{0})| \, dy$$

$$= I + J$$

But

$$I \le \varepsilon \int_{\mathbb{R}^n} \Phi(x - y, t) \ dy = \varepsilon$$

Further, note that if $|x-x^0| \le \delta/2$ and $|y-x^0| \ge \delta$ then

$$|y - x^{0}| \le |y - x| + \frac{\delta}{2} \le |y - x| + \frac{1}{2}|y - x^{0}|$$

so, $|y - x| \ge 1/2|y - x^0|$. Thus

$$J \leq 2\|g\|_{L^{\infty}} \int_{\mathbb{R}^n \backslash B_{\delta}(x^0)} \Phi(x - y, t) \ dy$$

$$\leq \frac{C}{t^{n/2}} \int_{\mathbb{R}^n \backslash B_{\delta}(x^0)} \exp\left(\frac{-|x - y|^2}{4t}\right) \ dy$$

$$\leq \frac{C}{t^{n/2}} \int_{\mathbb{R}^n \backslash B_{\delta}(x^0)} \exp\left(\frac{-|y - x^0|^2}{16t}\right) \ dy$$

$$\leq C \int_{\mathbb{R}^n \backslash B_{\delta/\sqrt{t}}(x^0)} \exp\left(\frac{-|z|^2}{16}\right) \ dz \to 0$$

as $t \to 0$ from above. Thus, if $|x - x^0| < \delta/2$ and t > 0 is small enough,

$$|u(x,t) - q(x^0)| < 2\varepsilon$$

Remark. Consider $g \in C(\mathbb{R}^n)$, $supp(g) \subset B_1(0)$, then

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y)g(y) \ dy > 0 \quad \forall x \in \mathbb{R}^n, t > 0.$$

 \rightarrow Infinite speed of propagation (different from transport- or wave-equation).

What about the non-homogeneous equation?

Consider

$$(12*) = \begin{cases} u_t - \Delta u = f \text{ in } \mathbb{R}^n \times (0, \infty) \\ u = 0 \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Note that $(x,t) \mapsto \Phi(x-y,t-s)$ solves the heat equation for $y \in \mathbb{R}^n, \ 0 < s < t$.

Thus (for fixed s) the function

$$u = u^{s}(x,t) = \int_{\mathbb{R}^{n}} \Phi(x-y,t-s) f(y,s) \ dy$$

solves

$$u_t^s - \Delta u^s = 0 \text{ in } \mathbb{R}^n \times (0, \infty)$$

 $u^s = f(\cdot, s) \text{ on } \mathbb{R}^n \times \{t = s\}$

(This is just the initial value problem with starting time t=s instead of t=0 and g replaced by $f(\cdot,s)$.)

Duhamel's principle suspects we can build a solution of (12*) from this u^s .

Consider

$$u(x,t) = \int_0^t u^s(x,t) \ ds \quad x \in \mathbb{R}^n, t \ge 0,$$

that is

$$u(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) \ dy \ ds.$$

Theorem 2.3.4. Consider $f \in C^2(\mathbb{R}^n \times (0, \infty))$, with compact support, s.t. $f_t, D^2 f \in C(\mathbb{R}^n \times [0, \infty))$ and set

$$u(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) \ dy \ ds$$

Then,

- (i) We have $u_t, D^2u, u, \nabla u$ are in $C(\mathbb{R}^n \times (0, \infty))$
- (ii) $u_t(x,t) \Delta u(x,t) = f(x,t)$ for $x \in \mathbb{R}^n, t > 0$.
- (iii) For $x^0 \in \mathbb{R}^n$ we have

$$\lim_{(x,t)\to(x^0,t)} u(x,t) = 0$$

Proof. 1. Change variables to get

$$u(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(y,s) f(x-y,t-s) \ dy \ ds.$$

The properties of f together with smoothness of $\Phi = \Phi(y, s)$ near s = t > 0, we compute

$$u_t(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(y,s) f_t(x-y,t-s) \ dy \ ds + \int_{\mathbb{R}^n} \Phi(y,t) f(x-y,0) \ dy$$

and

$$u_{x_i x_j}(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(y,s) f_{x_i x_j}(x-y,t-s) \ dy \ ds$$

Thus, u_t, D^2u are continuous (and so are $u, \nabla u$).

2. We calculate

$$u_{t}(x,t) - \Delta u(x,t) = \int_{0}^{t} \int_{\mathbb{R}^{n}} \underbrace{\Phi(y,s) \left[\left(\frac{\partial}{\partial t} - \Delta_{x} \right) \left(f(x-y,t-s) \right) \right]}_{=:a} dy \ ds + \int_{\mathbb{R}^{n}} \Phi(y,t) f(x-y,0) \ dy$$
$$= \int_{\varepsilon}^{t} a \ dy \ ds + \int_{0}^{\varepsilon} a \ dy \ ds + \int_{\mathbb{R}^{n}} \Phi(y,t) f(x-y,0) \ dy$$
$$= I_{\varepsilon} + J_{\varepsilon} + K$$

We immediatly see that

$$|J_{\varepsilon}| \leq (\|f_t\|_{L^{\infty}} + \|D^2 f\|_{L^{\infty}}) \cdot \int_0^{\varepsilon} \int_{\mathbb{R}^n} \Phi \ dy \ ds = \varepsilon \cdot C.$$

Also

$$I_{\varepsilon} = \int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \underbrace{\left[\left(\frac{d}{ds} - \Delta_{y}\right) \Phi(y, s)\right]}_{=0} f(x - y, t - s) \ dy \ ds$$

$$+ \int_{R^{n}} \Phi(y, \varepsilon) f(x - y, t - \varepsilon) \ dy - \underbrace{\int_{R^{n}} \Phi(y, t) f(x - y, 0) \ dy}_{=-K}$$

$$= \int_{\mathbb{R}^{n}} \Phi(y, \varepsilon) f(x - y, t - \varepsilon) \ dy - K$$

Thus

$$u_t(x,t) - \Delta u(x,t) = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} \Phi(y,\varepsilon) f(x-y,t-\varepsilon) \ dy = f(x,t)$$

for $x \in \mathbb{R}^n, t > 0$ (with this limit being computed as in the proof of theorem 2.3.3.).

Note also that

$$||u(\cdot,t)||_{L^{\infty}} \le t||f||_{L^{\infty}} \to 0$$

as $t \to 0$.

Remark. Note that theorem 2.3.3. and 2.3.4. can be combined to yield

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y)g(y) \ dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s)f(y,s) \ dy \ ds$$

as a solution of

$$u_t - \Delta u = f \text{ in } \mathbb{R}^n \times (0, \infty)$$

 $u = g \text{ on } \mathbb{R}^n \times \{t = 0\}.$

2.3.2 Mean Value Formulas

Definition 2.3.5. For $\Omega \subset \mathbb{R}^n$, T > 0 define

- ~ the parabolic cylinder $\Omega_T = \Omega \times (0,T]$ and
- \sim the parabolic boundary $\Gamma_T = \overline{\Omega_T} \setminus \Omega_T$.

Definition 2.3.6. For fixed $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, r > 0 we define

$$E_r(x,t) = \left\{ (y,s) \in \mathbb{R}^{n+1} \mid s \le t, \ \Phi(x-y,t-s) \ge \frac{1}{r^n} \right\}$$

a so-called heat ball.

Theorem 2.3.7 (Mean value property of the heat equation). Let $u \in C_1^2(\Omega_T)$ (i.e. $u \in C(\Omega_T)$, $u_{x_i,x_j} \in C(\Omega_T)$) solve the heat equation, then

$$u(x,t) = \frac{1}{4r^n} \int \int_{E_r(x,t)} u(y,s) \frac{|x-y|^2}{(t-s)^2} dy ds$$

for $E_r(x,t) \subset \Omega_T$.

Proof. Assume x = 0, t = 0, $E_r = E_r(0,0)$. Set

$$\phi(r) = \frac{1}{r^n} \int \int_{E_r} u(y, s) \frac{|y|^2}{s^2} dy ds = \int \int_{E_1} u(ry, r^2 s) \frac{|y|^2}{s^2} dy ds$$

because $\Phi(rx, r^2t) = r^{-n}\Phi(x, t)$. We differentiate with respect to r

$$\phi'(r) = \int \int_{E_1} \frac{|y|^2}{s^2} (y \nabla u(ry, r^2 s) + 2rsu_s(ry, r^2 s)) \ dy \ ds$$

$$\begin{split} &= \frac{1}{r^{n+1}} \int \int_{E_r} \frac{|y|^2}{s^2} y \nabla u(y,s) + 2u_s(y,s) \frac{|y|^2}{s^2} \ dy \ ds \\ &= \frac{1}{r^{n+1}} \int \int_{E_r} \frac{|y|^2}{s^2} y \nabla u(y,s) \ dy \ ds + \frac{1}{r^{n+1}} \int \int_{E_r} 2u_s(y,s) \frac{|y|^2}{s^2} \ dy \ ds \\ &= A + B \end{split}$$

Also introduce

$$\psi := -\frac{n}{2}\log(-4\pi s) + \frac{|y|^2}{4s} + n\log(r) \quad (12*)$$

and obtain $E_r = \{(y,s) \mid \psi(y,s) \geq 0$

$$\Rightarrow \psi = 0 \text{ on } \partial E_r$$

We use (12*) and write

$$B = \frac{1}{r^{n+1}} \int \int_{E_r} 4u_s y \nabla \psi \ dy \ ds \stackrel{\text{Green}}{=} -\frac{1}{r^{n+1}} \int \int_{E_r} 4n u_s \psi + 4\psi y \nabla u_s \ dy \ ds$$

Integration by parts in s

$$\begin{split} B &= \frac{1}{r^{n+1}} \int \int_{E_r} 4nu_s \psi + 4\psi_s y \nabla u \ dy \ ds \\ &= \frac{1}{r^{n+1}} \int \int_{E_r} 4nu_s \psi + 4\left(-\frac{n}{2s} - \frac{|y|^2}{4s^2}\right) y \nabla u \ dy \ ds \\ &= \frac{1}{r^{n+1}} \int \int_{E_r} -4nu_s \psi - \frac{2n}{s} y \nabla u \ dy \ ds - A \end{split}$$

Consequently, since u solves the heat equation

$$\phi'(r) = A + B = \frac{1}{r^{n+1}} \int \int_{E_r} -4n\Delta u \psi - \frac{2n}{s} y \nabla u \, dy \, ds$$

$$\stackrel{\text{Green}}{=} \frac{1}{r^{n+1}} \int \int_{E_r} 4n\nabla u \nabla \psi - \frac{2n}{s} y \nabla u \, dy \, ds \stackrel{(12*)}{=} 0$$

Thus ϕ is constant, and therefore

$$\phi(r) = \lim_{t \to 0} \phi(t) = u(0,0) \left(\lim_{t \to 0} \frac{1}{t^n} \int \int_{E_t} \frac{|y|^2}{s^2} \ dy \ ds \right) = 4u(0,0)$$

as

$$\frac{1}{t^n} \int \int_{E_t} \frac{|y|^2}{s^2} \ dy \ ds = \int \int_{E_1} \frac{|y|^2}{s^2} \ dy \ ds = 4.$$

2.3.3 Properties of Solutions

Theorem 2.3.8 (Strong Maximum Principle). Assume $u \in C_1^2(\Omega_T) \cap C(\Omega_T)$ solves the heat equation in Ω_T

(i) Then

$$\max_{\overline{\Omega_T}} u = \max_{\Gamma_T} u$$

(ii) If Ω is connected and there exists a point $(x_0, t_0) \in \Omega_T$ with

$$u(x_0, t_0) = \max_{\overline{\Omega_T}} u$$

then u is constant.

Proof. 1. Suppose $(x_0, t_0) \in \Omega_T$ with

$$u(x_0, t_0) = M := \max_{\overline{\Omega_T}} u$$

for all sufficiently small r > 0, we employ for $E_r(x_0, t_0) \subset \Omega$ the mean value property

$$M = u(x_0, t_0) = \frac{1}{4r^n} \int \int_{E_r(x_0, t_0)} u(y, s) \frac{|x_0 - y|^2}{(t_0 - s)^2} dy ds \le M$$

since

$$1 = \frac{1}{4r^n} \int \int_{E_r(x_0, t_0)} \frac{|x_0 - y|^2}{(t_0 - s)^2} \ dy \ ds.$$

Equality only holds if u is identically equal to M in $E_r(x_0, t_0)$, therefore $u(y, s) = M \ \forall (y, s) \in E_r(x_0, t_0)$. Let L be a line segment in Ω_T connecting $(x_0, t_0) \in \Omega_T$ with $(y_0, s_0) \in \Omega_T$, $s_0 < t_0$. Consider $r_0 := \min\{s \ge s_0 \mid u(x, t) = M \ \forall (x, t) \in L, \ s \le t \le t_0$.

Assume $r_0 > s_0$: $u(z_0, r_0) = M$ for some (z_0, r_0) on $L \cap \Omega_T$, thus $u \equiv M$ on $E_r(z_0, r_0)$ for all sufficiently small r > 0. Since

$$E_r(z_0, r_0) \supset L \cap \{r_0 - \sigma \le t \le r_0\}$$

for small $\sigma > 0$, we get a contradiction and thus $r_0 = s_0$ and we get u = M on L.

2. Fix any $x \in \Omega$, $0 \le t < t_0$. There exists points $\{x_0, x_1, ..., x_m = x\}$ such that the line segments in \mathbb{R}^n connecting x_{i-1} to x_i lie in Ω for i = 1, ..., m. (Set of points in Ω which can be connected like this by a polygonal path is non-empty, open and relatively closed on Ω .)

Select times $t_0 > t_1 ... > t_m = t$, then the line segments connecting (x_{i-1}, t_{i-1}) to (x_i, t_i) lie in Ω_T . According to 1. $u \equiv M$ on such a segment and thus u(x, t) = M.

Remark. If Ω is connected, $u \in C_1^2(\Omega_T) \cap C(\overline{\Omega_T})$ satisfies

$$\begin{cases} u_t - \Delta u = 0 \text{ in } \Omega_T \\ u = 0 \text{ on } \partial\Omega \times [0, T] \\ u = g \text{ on } \Omega \times \{t = 0\} \end{cases}$$

where $g \geq 0$, then u is positive everywhere within Ω_T , if g is positive somewhere on Ω .

Theorem 2.3.9 (Uniqueness on bounded domains). Let $g \in C(\Gamma_T)$, $f \in C(\Omega_T)$. Then there exists at most one solution $u \in C_1^2(\Omega_T) \cap C(\overline{\Omega_T})$ of the initial value problem

$$(13*) = \begin{cases} u_t - \Delta u = f \text{ in } \Omega_T \\ u = g \text{ on } \Gamma_T \end{cases}$$

Proof. If u, \tilde{u} are solutions of (13*), apply theorem 2.3.8. to $w := \pm (u - \tilde{u})$

Theorem 2.3.10 (Maximum Principle for Cauchy Problem). Suppose $u \in C_1^2(\mathbb{R}^n \times (0,T]) \cap C(\mathbb{R}^n \times [0,T])$ solves

$$\begin{cases} u_t - \Delta u = 0 \text{ in } \mathbb{R}^n \times (0, T) \\ u = g \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

and satisfies growth estimate

$$u(x,t) \le Ae^{a|x|^2} \quad (x \in \mathbb{R}^n, 0 \le t \le T)$$

for constants A, a > 0. Then

$$\sup_{x \in \mathbb{R}^n \times [0,T]} u(x) = \sup_{x \in \mathbb{R}^n} g(x)$$

Proof. 1. Assume first that 4aT < 1, such that

$$4a(T+\varepsilon) < 1$$

for suitable $\varepsilon > 0$. Fix $y \in \mathbb{R}^n, \mu > 0$ and set

$$v(x,t) = u(x,t) - \frac{\mu}{(T+\varepsilon-t)^{n/2}} \exp\left(\frac{|x-y|^2}{4(T+\varepsilon-t)}\right)$$

for $x \in \mathbb{R}^n, t > 0$. We have

$$v_t - \Delta v = 0$$

in $\mathbb{R}^n \times (0,T)$. Fix r > 0, and set $\Omega = B_r(y)$, $\Omega_T = B_r(y) \times (0,T]$. Then using theorem 2.3.8., we have

$$\max_{x\in\overline{\Omega_T}}v(x)=\max_{x\in\Gamma_T}v(x)$$

2. Now, for $x \in \mathbb{R}^n$,

$$v(x,0) = u(x,0) - \frac{\mu}{(T+\varepsilon)^{n/2}} \exp(\frac{|x-y|^2}{4(T+\varepsilon)}) \le u(x,0) = g(x)$$

and, if |x - y| = r, $0 \le t \le T$,

$$v(x,t) = u(x,t) - \frac{\mu}{(T+\varepsilon-t)^{n/2}} \exp\left(\frac{r^2}{4(T+\varepsilon-t)}\right)$$

$$\leq Ae^{a|x|^2} - \frac{\mu}{(T+\varepsilon-t)^{n/2}} \exp\left(\frac{r^2}{4(T+\varepsilon-t)}\right)$$

$$\leq Ae^{a(|y|+r)^2} - \frac{\mu}{(T+\varepsilon-t)^{n/2}} \exp\left(\frac{r^2}{4(T+\varepsilon-t)}\right)$$

We have

$$\frac{1}{4(T+\varepsilon)} = a + \gamma$$

for some $\gamma > 0$, and thus

$$v(x,t) \le Ae^{a(|y|+r)^2} - \mu(4(a+\gamma))^{n/2}e^{(a+\gamma)r^2} \le \sup_{x \in \mathbb{R}^n} g(x)$$

for r sufficiently large (remember |x - y| = r), since the negative term "wins" at some point. This, however, implies that

$$v(y,t) \le \sup_{x \in \mathbb{R}^n} g(x)$$

for all $y \in \mathbb{R}^n$, $0 \le t \le T$ as long as 4aT < 1. For $\mu \to 0$, we obtain

$$u(x,t) \le \sup_{y \in \mathbb{R}^n} g(y) \quad x \in \mathbb{R}^n, \ 0 \le t \le T$$

3. In the general case repeatedly apply the above result on time intervals $[0, T_1], [T_1, 2T_1], ...$ for $T_1 = 1/(\gamma a)$.

Theorem 2.3.11 (Uniqueness of the Cauchy-Problem). Let $g \in C(\mathbb{R}^n)$, $f \in C(\mathbb{R}^n \times \mathbb{R}^n)$

[0,T]), then there exists at most one solution $u \in C_1^2(\mathbb{R}^n \times (0,T]) \cap C(\mathbb{R}^n \times [0,T])$ of

$$\begin{cases} u_t - \Delta u = f \text{ in } \mathbb{R}^n \times (0, T) \\ u = g \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

satisfying the growth estimate

$$u(x,t) \le Ae^{a|x|^2}$$
 $x \in \mathbb{R}^n, \ 0 \le t \le T$

for some a, A > 0.

Proof. Apply theorem 2.3.10 to $w = \pm (u - \tilde{u})$ when both u, \tilde{u} satisfy the assumption. \square

Remark. There are so-called "unphysical" solutions to the heat equation on \mathbb{R}^n with very rapid growth and zero initial conditions (so-called Tychonov solutions).

2.3.4 Finite Difference Schemes for the Heat equation

We simply replace the derivatives in the problem

$$\begin{cases} u_t - \Delta u = 0 \text{ in } (0,1) \times (0,T) \\ u = g \text{ on } (0,1) \times \{t = 0\} \\ u = 0 \text{ on } (\{0\} \cup \{1\}) \times (0,T] \end{cases}$$

to get the forward Euler scheme

$$\partial_t^+ U_j^k - \partial_x^+ \partial_x^- U_j^k = 0, \ j = 1, ..., J, \ k = 0, ..., K - 1$$

 $U_0^k = U_J^k = 0$, k = 0, ..., K - 1 and $U_j^0 = g(x_j)$, j = 0, ..., J, with spatial discretization size h = 1/J, and temporal discretization size $\tau = 1/K$. We have, equivalently,

$$U_i^{k+1} = (1 - 2\lambda)U_i^k + \lambda U_{i-1}^k + \lambda U_{i+1}^k$$

for $\lambda = \tau/h^2$.

This is an explicit scheme, since U_j^{k+1} can be computed explicitly for $\{U_j^k\}_{j=0}^J$

Proposition 2.3.12 (Stability and Convergence). If $\lambda \leq 1/2$, then the solution of the forward Euler scheme satisfies

$$\sup_{j=0,...,J} |U_j^k| \le \sup_{j=0,...,J} |U_j^0|$$

for all $0 \le k \le K$, and if in addition, we have $u \in C^4([0,1] \times [0,T])$, then

$$\sup_{j=0,\dots,J} |u(x_j,t_k) - U_j^k| \le \frac{t_k}{2} (\tau + h^2) \left(\|\partial_x^4 u\|_{C([0,1] \times [0,T])} + \|\partial_t^2 u\|_{C([0,1] \times [0,T])} \right)$$

for all $0 \le k \le K$.

Proof. As $1 - 2\lambda \ge 0$, we have that

$$|U_j^{k+1}| \le (1-2\lambda) \sup_{j=0,\dots,J} |U_j^k| + 2\lambda \sup_{j=0,\dots,J} |U_j^k| \le \sup_{j=0,\dots,J} |U_j^k|$$

which implies

$$\sup_{j=0,...,J} |U_j^k| \le \sup_{j=0,...,J} |U_j^0|$$

For the error estimate, consider

$$\mathscr{C}_j^k = \partial_t^+ u(x_j, t_k) - \partial_x^+ \partial_x^- u(x_j, t_k)$$

which satisfies

$$\begin{split} |\mathscr{C}_{j}^{k}| &\leq |\partial_{t}^{+}u - \partial_{t}u + \partial_{x}^{2}u - \partial_{x}^{+}\partial_{x}^{-}u| \\ &\leq |\partial_{t}^{+}u - \partial_{t}u| + |\partial_{x}^{+}\partial_{x}^{-}u - \partial_{x}^{2}u| \\ &\leq \frac{1}{2}(\tau + h^{2}) \left(\|\partial_{x}^{4}u\|_{C([0,1]\times[0,T])} + \|\partial_{t}^{2}u\|_{C([0,1]\times[0,T])} \right) \end{split}$$

The error $Z_j^k = u(x_j, t_k) - U_j^k$ satisfies

$$\partial_t^+ Z_i^k - \partial_x^+ \partial_x^- Z_i^k = \mathscr{C}_i^k$$

and thus

$$Z_{i}^{k+1} = (1 - 2\lambda)Z_{i}^{k} + \lambda Z_{i-1}^{k} + \lambda Z_{i+1}^{k} + \tau \mathcal{C}_{i}^{k}$$

Again using the convex combination property, we obtain

$$\sup_{j=0,\dots,J}|Z_j^{k+1}| \leq \sup_{j=0,\dots,J}|Z_j^k| + \tau \sup_{j=0,\dots,J}\mathscr{C}_j^k$$

By induction, we obtain our estimate.

Remark. The bad news is, that $\lambda \leq 1/2$ requires very small time steps. This is the classical example of a stiff equation.

We therefore instead use an implicit Euler scheme

$$\partial_t^- U_j^k - \partial_x^+ \partial_x^- U_j^k = 0, \quad j = ,..., J - 1, \ k = 1,..., K$$

$$U_0^k = U_j^k = 0 \quad k = 1, ..., K$$

 $U_j^0 = u_0(x_j), \quad j = 0, ..., J$

that is,

$$U_j^{k+1} - \lambda (U_{j-1}^{k+1} - 2U_j^{k+1} + U_{j+1}^{k+1}) = U_j^k$$

i.e.

$$AU^{k+1} = U^k$$

with

$$A = \begin{pmatrix} (1+2\lambda) & -\lambda & & & \\ -\lambda & (1+2\lambda) & -\lambda & & & \\ & \ddots & \ddots & \ddots & \\ & & -\lambda & (1+2\lambda) & -\lambda \end{pmatrix}$$

Remark. The Matrix A is regular, so the implicit Euler scheme does admit a solution.

Proposition 2.3.13. There exists unique coefficients (U_j^k) that solve the implicit Euler scheme. They satisfy

$$\sup_{j=0,...,J} |U_j^k| \le \sup_{j=0,...,J} |U_j^0| \quad k = 0,...,K$$

(independently of $\lambda = \tau/h^2$). If $u \in C^4([0,1] \times [0,T])$, we have

$$\sup_{j=0,\dots,J} |u(x_j, t_k) - U_j^k| \le \frac{t_k}{2} (\tau + h^2) (\|\partial_x^4 u\|_{\infty} + \|\partial_t^2 u\|_{\infty})$$

for k = 0, ..., K.

Proof. 1. The matrix from the scheme is strictly diagonally dominant, hence regular.

2. Take $j' \in \{1, ..., J\}$ such that

$$|U_{j'}^{k+1}| \le \sup_{i=0,\dots,I} |U_{j}^{k+1}|,$$

then

$$(1+2\lambda)|U_{j'}^{k+1}| \leq |U_{j'}^k| + \lambda |U_{j'-1}^{k+1}| + \lambda |U_{j'+1}^{k+1}| \leq \sup_{j=1,\dots,J} |U_j^k| + 2\lambda \sup_{j=0,\dots,J} |U_j^{k+1}|$$

So,

$$(1+2\lambda) \sup_{j=0,\dots,J} |U_j^{k+1}| \leq \sup_{j=0,\dots,J} |U_j^k| + 2\lambda \sup_{j=0,\dots,J} |U_j^{k+1}|$$

and the discrete maximum principle follows.

3. The error bound follows similarly to the explicit scheme.

Remark. The implicit Euler scheme is thus unconditionally stable. The error estimate is the same as for the explicit scheme.

 \sim Regularity of the heat equation.

Theorem 2.3.14. Suppose $u \in C_1^2(\Omega_T)$ solves the heat equation in Ω_T . Then $u \in C^{\infty}(\Omega_T)$

Remark. This even holds of the boundary values are not smooth.

Proof. Set

$$C_r(x,t) = \{(y,s) \mid |x-y| \le r, \ t \cdot r^2 \le s \le t\}$$

(a closed cylinder). Fix $(x_0, t_0) \in \Omega_T$ and choose r > 0 so that $C = C_r(x_0, t_0) \subset \Omega_T$, define also $C' = C_{3/4 \cdot r}(x_0, t_0)$, $C'' = C_{1/2 \cdot r}(x_0, t_0)$.

Pick a smooth cutoff function $\zeta(x,t)$ such that

$$\begin{cases} 0 \le \zeta \le 1, \ \zeta \equiv 1 \text{ on } C' \\ \zeta \equiv 0 \text{ near the parabolic boundary of } C. \end{cases}$$

Extend ζ by 0 in $(\mathbb{R}^n \setminus [0, t_0]) \setminus C$.

2. Assume for now that $u \in C^{\infty}(\Omega_T)$ and set

$$v(x,t) = \zeta(x,t) \cdot u(x,t)$$

then

$$v_t = \zeta u_t + \zeta_t u_t, \ \Delta v = \zeta \Delta u + 2\nabla \zeta \nabla u + u \Delta \zeta$$

Thus, v = 0 in $\mathbb{R}^n \times \{t = 0\}$ and

$$v_t - \Delta v = \zeta_t u - 2\nabla \zeta \nabla u - u \Delta f =: \tilde{f}$$

in $\mathbb{R}^n \times (0, t_0)$. Set

$$\tilde{v}(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s)\tilde{f}(y,s) \ dy \ ds$$

Thus

$$\begin{cases} \tilde{v}_t - \Delta \tilde{v} = \tilde{f} \text{ in } \mathbb{R}^n \times (0, t_0) \\ \tilde{v} = 0 \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

and theorem 2.3.11. (uniqueness) yields $\tilde{v} = v$.

Now suppose $(x,t) \in C''$. Since $\zeta = 0$ away from C, we get

$$u(x,t) = \int \int_C \Phi(x-y,t-s) \left[\left(\zeta_s(y,s) - \Delta \zeta(y,s) u(y,s) \right) - 2\nabla \zeta(y,s) \cdot \nabla u(y,s) \right] dy ds$$

The expression in the square brackets vanishes near the singularity of Φ . Integrating by parts, we get

$$u(x,t) = \int \int_C \left[\Phi(x-y,t-s)(\zeta_s(y,s) + \Delta\zeta(y,s)) + 2\nabla_y \Phi(x-y,t-s)\nabla\zeta(y,s) \right] u(y,s) \, dy \, ds \quad (14*)$$

We have derived (14*) assuming $u \in C^{\infty}$. If u only satisfies the hypothesis of the theorem, we still arrive at (14*) considering $u^{\varepsilon} = \eta_{\varepsilon} * u$ in the calculation and taking $\varepsilon \to 0$.

3. Formula (14*) is of the form

$$u(x,t) = \int \int_C K(x,t,y,s)u(y,s) \ dy \ ds$$

for $(x,t) \in C''$, where K(x,t,y,s) = 0 for all points $(y,s) \in C'$ (since $\zeta = 1$ on C'). Also K is smooth on $C \setminus C'$. We therefore see that $u \in C^{\infty}$ in $C'' = C_{1/2 \cdot r}(x_0, t_0)$.

Theorem 2.3.15 (Estimates on the derivatives). For each pair of integers k, l = 1, 2, ... there exists a constant $C_{k,l}$ such that

$$\max_{C_{r/2}(x,t)} |D_x^k D_t^l u| \le \frac{C_{kl}}{r^{k+2l+n+2}} ||u||_{L^1(C_r(x,t))}$$

for all cylinders $C_{r/2}(x,t) \subset C_r(x,t) \subset \Omega_T$ and all solutions of the heat equation in Ω_T

Proof. 1. Fix a point in Ω_T , we may assume that this point is (0,0). Suppose that $C_1 = C_1(0,0)$ is in Ω_T and that $C_{1/2} = C_{1/2}(0,0)$. Then as in the proof of theorem 2.3.14 we get

$$u(x,t) = \int \int_{C_1} K(x,t,y,s)u(y,s) \ dy \ ds$$

for some smooth function K. Thus

$$|D_x^k D_t^l u(x,t)| \le \int \int_C |D_x^k D_t^l K(x,t,y,s)| |u(y,s)| \ dy \ ds \le C_{kl} ||u||_{L^1(C_1)} \quad (15*)$$

for some constant C_{kl} .

2. Now suppose $C_r = C_r(0,0)$ lies in Ω_T , set $C_{r/2} = C_{r/2}(0,0)$. Set $v(x,t) = u(rx,r^2t)$.

Then $v_t - \Delta v = 0$ in C_1 and by (15*)

$$|D_x^k D_t^l v(x,t)| \le C_{kl} ||v||_{L^1(C_1)}.$$

Noting

$$D^k_x D^l_t v(x,t) = r^{2l+k} D^k_x D^l_t u(rx,r^2t)$$

and

$$||v||_{L^1(C_1)||} = \frac{1}{r^{n+2}} ||u||_{L^1(C_r)}$$

we get our desired estimate.

2.4 The Wave Equation

We consider solutions to the wave equation

$$u_{tt} - \Delta u = 0.$$

Note that there is also the non-homogeneous wave equation

$$u_{tt} - \Delta u = f$$
.

These equations are again subject to suitable boundary and initial conditions. The unkown is

$$u: \overline{\Omega} \times [0,T] \to \mathbb{R}, \ u = u(x,t), \quad x \in \Omega, \ t \in [0,T].$$

Sometimes, the notation

$$\Box u = t_{tt} - \Delta u$$

can be seen.

For one physical interpretation, consider an elastic string, membrane or a solid. Denote by u(x,t) the displacement of the material at point x, time t. Then, Newton's second law states (for some $V \subset \Omega$)

$$\frac{d}{dt^2} \int_V u \ dx = \int_V u_{tt} \ dx - \int_{\partial V} F \cdot \nu \ dS.$$

Again we get

$$u_{tt} = -\text{div}(F) \text{ in } \Omega.$$

Take (coming from continuum Mechanics)

$$F = c \cdot \nabla u$$
.

and we get

$$u_{tt} - c\Delta u = 0.$$

This suggests also that we need two initial conditions, one for displacement, one for velocity (i.e u_t).

 \sim Solution for n=1.

We consider

$$\begin{cases} u_{tt} - u_{xx} = 0 \text{ in } \mathbb{R} \times (0, \infty) \\ u - g, \ u_t = h \text{ in } \mathbb{R} \times \{t = 0\}. \end{cases}$$

Note that

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x}\right) u = u_{tt} - u_{xx}.$$

Write

$$v(x,t) = \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x}\right)u,$$

then $v_t + v_x = 0$ for $x \in \mathbb{R}$, t > 0. Thinking back to the transport equation, we get

$$v(x,t) = a(x-t)$$

for some a(x) = v(x, 0). Plugging back in, we get

$$u_t(x,t) - u_x(x,t) = a(x-t)$$

This is a non-homogeneous transport equation, with solution

$$u(x,t) = \int_0^t a(x + (t-s) - s) \ ds + b(x+t) = \frac{1}{2} \int_{x-t}^{x+t} a(y) \ dy + b(x+t)$$

for b(x) = u(x, 0) = g(x). Noting that

$$a(x) = v(x,0) = u_t(x,0) - u_x(x,0) = h(x) - g'(x)$$

so.

$$u(x,t) = \frac{1}{2} \int_{x-t}^{x+t} h(y) - g'(y) \ dy + g(x+t) = \frac{1}{2} (g(x+t) + g(x-t)) + \frac{1}{2} \int_{x-t}^{x+t} h(y) \ dy.$$

This is called d'Alembert's formula.

Theorem 2.4.1. Assume $g \in C^2(\mathbb{R})$, $h \in C^1(\mathbb{R})$ and define u(x,t) by D'Alemberts formula. Then

(i)
$$u \in C^2(\mathbb{R} \times [0, \infty))$$

(ii)
$$u_{tt} - u_{xx} = 0$$
 in $\mathbb{R} \times [0, \infty)$

(iii) For all $x_0 \in \mathbb{R}$ we have

$$\lim_{(x,t)\to(x_0,t)} u(x,t) = g(x_0) \text{ and } \lim_{(x,t)\to(x_0,t)} u_t(x,t) = h(x_0)$$

Proof. By direct calculation.

Remark. Note that

$$u(x,t) = F(x-t) + G(x+t)$$

for appropriate functions F, G and any such expression is a solution to the wave equation.

Remark. The initial/boundary value problem

$$\begin{cases} u_{tt} - u_{xx} = 0 \text{ in } \mathbb{R}_+ \times (0, \infty) \\ u = g, \ u_t = h \text{ on } \mathbb{R}_+ \times \{t = 0\} \\ u = 0 \text{ on } \{x = 0\} \times (0, \infty) \end{cases}$$

can be solved by reflection, setting

$$\tilde{g}(x) = \begin{cases} g(x) & x \ge 0 \\ -g(x) & x < 0 \end{cases}, \quad \tilde{h}(x) = \begin{cases} h(x) & x \ge 0 \\ -h(-x) & x < 0 \end{cases}$$

and using d'Alembert's formula (for g, h vanishing at x = 0).

 \sim Solution for n=2,3.

Assume $u \in C^m(\mathbb{R}^n \times [0, \infty))$ solves

$$\begin{cases} u_{tt} - \Delta u = 0 \text{ in } \mathbb{R}^n \times [0, \infty] \\ u = g, \ u_t = h \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

For given $x \in \mathbb{R}^n$, t > 0, r > 0 set

$$U(x;r,t) = \int_{B_r(x)} u(y,t) \ dy$$

and

$$G(x;r) = \int_{B_r(x)} g(y) \ dy, \quad H(x;r) = \int_{B_r(x)} h(y) \ y$$

Lemma 2.4.2 (Euler-Poisson-Darboux-Equation). Fix $x \in \mathbb{R}^n$, and define u, U, G, H as above. Then

$$U \in C^m(\overline{\mathbb{R}_+} \times [0, \infty))$$

and

$$\begin{cases} U_{tt} - U_{rr} - \frac{n-1}{r} U_r = 0 \text{ in } \mathbb{R}_+ \times (0, \infty) \\ U = G, \ U_t = H \text{ on } \mathbb{R}_+ \times \{t = 0\} \end{cases}$$

Proof. We get for r > 0, that

$$U_r(x;r,t) = \frac{r}{n} \oint_{\partial B_r(x)} \Delta u(y,t) \ dy = \frac{1}{n\alpha(n)r^{n-1}} \int_{B_r(x)} \Delta u(y,t) \ dy. \quad (16*)$$

Note that hus

$$\lim_{r \to 0^+} U_r(x; r, t) = 0$$

and

$$U_{rr}(x;r,t) = \int_{\partial B_r(x)} \Delta u(y) \ dS(y) + \frac{1-n}{n} \int_{B_r(x)} \Delta u(y) \ dy$$

Thus,

$$\lim_{r \to 0^+} U_{rr}(x; r, t) = \frac{1}{n} \Delta u(x, t).$$

Similarly, verify that U_{rrr} , etc. are continuous.

Now, from (16*), we get

$$U_r = \frac{r}{n} \oint_{B_r(x)} u_{tt} \ dy,$$

and so

$$r^{n-1}U_r = \frac{1}{n\alpha(n)} \int_{B_r(x)} u_{tt} \ dy$$

and

$$(r^{n-1}U_r)_r = \frac{1}{n\alpha(n)} \int_{\partial B_r(x)} u_{tt} \ dS(y) = r^{n-1} \int_{\partial B_r(x)} u_{tt} \ dS(y) = r^{n-1}U_{tt}$$

Which yields the result by product rule and division by r^{n-1} .

Now take n = 3, and set

$$\tilde{U} = rU, \ \tilde{G} = rG, \ \tilde{H} = rH$$

to get

$$\begin{cases} \tilde{U}_{tt} - \tilde{U}_{rr} = 0 \text{ in } \mathbb{R}_+ \times (0, \infty) \\ \tilde{U} = \tilde{G}, \ \tilde{U}_t = \tilde{H} \text{ on } \mathbb{R}_+ \times \{t = 0\} \\ \tilde{U} = 0 \text{ on } \{r = 0\} \times (0, \infty) \end{cases}$$

by direct calculation.

Using d'Alembert's formula, we find for $0 \le r \le t$

$$\tilde{U}(x;r,t) = \frac{1}{2}(\tilde{G}(r+t) - \tilde{G}(r-t)) + \frac{1}{2} \int_{-r+t}^{r+t} \tilde{H}(y) \ dy.$$

Our definition of \tilde{U} implies

$$u(x,t) = \lim_{r \to 0^+} \frac{\tilde{U}(x;r,t)}{r} = \tilde{G}'(t) + \tilde{H}(t).$$

From the definitions of \tilde{G}, \tilde{H} , we get

$$u(x,t) = \frac{\partial}{\partial t} \left(t \oint_{\partial B_t(x)} g \ dS \right) + t \oint_{\partial B_t(x)} h \ dS. \quad (17*)$$

Noting

$$\oint_{\partial B_t(x)} g(y) \ dS(y) = \oint_{\partial B_1(0)} g(x + tz) \ dS(z)$$

we get

$$\frac{\partial}{\partial t} \left(\oint_{\partial B_t(x)} g \ dS \right) = \oint_{\partial B_1(0)} \nabla g(x + tz) \cdot z \ dS(z) = \oint_{\partial B_t(x)} \nabla g(y) \left(\frac{y - x}{t} \right) \ dS(y)$$

Plugging into (17*), we get

$$u(x,t) = \int_{\partial B_t(x)} th(y) + g(y) + \nabla g(y)(y-x) \ dS(y).$$

This is Kirchhoff's formula for the solution of the initial value problem for the wave equation in 3 dimensions.