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1 Introduction

In the following let £ > 1 and €2 C R" be open.

Definition 1.1.1. An expression F(D*u(z), D¥"'u(z),...,u(x),r) = 0 with F : R x
Rnk71
u: Q — R is the desired solution.

X ... X R" xR x Q — R is called partial differential equation of the order k, where

Definition 1.1.2. A partial differential equation is called linear, if it has the form

Z do(z)D%u = f(x)

la|<k
where o denotes a multi-index
Examples. (i) Laplace Equality: —Au = —"" | Ug;z;, =0
(1) Helmholtz Equality: —Au = A\u
(7i7) Telegraph Equality: up + 2duy — uge =0
(iv) Airy Equality: us + tUggy =0
(v) Balken Equality: uy + tzgpze =0
(vi) FEihonal Equality: |Vu| =1

(vit) Burger’s Equality: us + uuy =0

2 Linear partial differential equations

2.1 Transport Equation
Consider u : R™ x [0,00) = R, u = u(x,t) and u; + bVu = 0 on R" x (0, 00), where

beR" b= (by,..,b,)T. How do we solve this equation?

Assume u is a solution and (z,t) € R™ x (0,00). Set z(s) = u(z + sb,t + s) for s € R.
Then we have 2/(s) = Vu(z + sb,t + s) - b+ u(z + sb, t + s) = 0, therefore u is constant
alogn the line of (z,t) in the direction (b,1) € R® x R

2.1.1 Initial Value Problem

Let b € R", g: R" — R be given and

ur + bVu =0 on R" x (0, 00)
u=gonR" x {t =0}



Because u is constant on along lines in the direction (b, 1) € R™ x R, we get
u(z,t) = u(z —tb,0) = g(z — tb), z € R", t > 0.

It is not hard to see that a solution of F(D¥u(z), D*~'u(z),...,u(x),z) = 0 in C! is
always of the form u(z,t) = u(x — tb,0) = g(x — tb) and conversely g € C' is a solution
of F(D*u(x), D" 'u(x),...,u(z),z) = 0.

2.1.2 Finite differentials for the Transport Equation

For z € [0,1] we consider z; = jh, j =0,...,J, h= } and we approximate u € C' by

u(wy) — u(xj—1)

h

U,(CC]) _ U(Ij+1) — U(ﬁj)

h

and u'(z;) =
Definition 2.1.1. For a given step lenght h = %, J € N and a sequence (Uj);=1,..j the
terms

(i) 07 U; = =45

(i) 0y U; = L=t

T

(iii) 9,U; = Y zlit
define the forward-, backward- and central differential
Remark. (i) For u € C%([0,1]), we get

u(z + h) —u(z)
h

with & € [z, x + h] (Taylor)
(1) Finite differentials can be iterated, for example

Uj+1 — 2Uj + Ujfl

0f0, Uj =0, 0,U; = 32

Definition 2.1.2. The equation in (ii) defines the difference quotient of the second
degree.

Proposition 2.1.3. (i) [0Fu(z;) — v/(2;)] < 2|v”|lc (o1
(i1) [Fpula;) — ' (z5)] < 5w oo
(i41) OF Oy u(w;) —u(z)| < 2’|l oo

Proof. by Taylor O



2.1.3 Finite Difference Schemes

We consider for b > 0 and [0, 1] x [0, T] the initial boundary value problem

ug(x,t) + bug(x,t) = 0 on (z,t) € (0,1) x (0,7
(0,t) =0 for t € (0,T]
u(z,0) = ugp(z) for z € [0, 1]

Our domain [0,1] x [0,7] is discretesized using spatial- and temporal step sizes h = &

and 7 = . We write (z;,t;) = (jh, k) for 0<j < J, 0 <k < K.

Our finite difference scheme now simply consists of replacing the partial derivatives by
finite differences, i.e.
+rrk 17k _
0 U7 +b0,Uj =0

or writing out the finite differences

Ukttt _pyk Uk Uk
J J+byh11:0 (%)
T

For k = 0, the values U]O are obtained from the initial condition i.e. U]Q =ug(zy), j =
0,...,J and for j = 0, we use the boundary conditions i.e. Ué“ =0, k=0,.. K.
Then UJ’? can be iteratively computed using (x).

An important consideration is stability. We know that a solution u(z,t) to the initial

boundary value problem satisfies

sup  Ju(z,t)] < sup |ug(x)]
z€[0,1], t€[0,T) z€[0,1]

This is clear from the solution formula (considering also the boundary condition).

Proposition 2.1.4 (Stability). Set u = b%. If 0 < < 1 then the numerical solution
(Ujk) computed by the scheme (x) satisfies

sup  |UF| < sup |U]]
j=0,...,J, k=0,....K j=0,...,J

Proof. We have Uf“ = Uf — ,u(U]'-‘“‘ — Ujk_l) =(1- ,u,)UJk +uUf_1. For 0 < pu <1 this is

a convex combination of Uf and U ]'-“_1 which, after iteration, proves our statement. [J
Remark. (i) The condition on p is sharp (see exercises for counterexamples)

(13) This uniform boundness of solutions is called stability. We proved it under the



condition T < % (for b > 0). That some condition like this must be satisfied is

clear.

Proposition 2.1.5 (Convergence). Set u= %7, If0 < < 1 and u € C*([0,1] x [0, T]),
then we have

133
_sup J|U($jatk) ~-Uj| < 5 (T ) [uflozo.1)x(0.17)
J=Y5

for all k =0,..., K and where Uf is computed according to (x).

Proof. (i) We define the consistency term ijk = O u(wj, ty) — by u(zj,t)) which
measures how much the exact solution fails to satisfy the discrete scheme. Since
Opur + bOzu =0 on (0,1) x (0,T) we get from proposition 1.2.2(!)

|‘5jk| < |0 u(zj, ty) — Opulzj, ty) + b0y ulxj, ty) — bOpau(wj, ty)|

T bh
< 5 sup |0fu(zj, )|+ o sup [Fu(, )| (1)
2te[o,T)} 2 z€(0,1]

(i) We now subtract the equation u(xj,try1) = u(xj,ty) — b0, u(x;,ty) + T%jk and
Ujk*l = U]lf — bTa;UJI-C to deduce for

Z]’-“ = u(zj,ty) — Uf and ZJI?H = Z]]? — bT(?;ZJI»"’ + T‘Kjk

For 0 < p <1 we get |Z]]-“+1| < sup |ZJ’-“|—|—7‘|‘5J.I“| (also using ZF™ > 0). Induction
j:07"'7‘]
over k=0,..., K — 1 with ZJQ =0, j=0,...,J, using (1), yields the result.
0
Remark. (i) The condition u € C? is satisfied if ug € C? with uo(0,0) = 0.

(1i) We used consistency and stability of the scheme.

(7it) The result implies convergence of the approzimate solution to an exact solution.

2.1.4 CFL-Condition

Definition 2.1.6. An explicit numerical scheme of the form
k+1 k k .
Uj+ :¢(tk7xj7Ujfml7'”7Uj+mr77-7.7)

satisfies the CFL-Condition if the characteristic through the part (z;,tyx41) intersects the
line {(x,t) | t = tg, x € R} within the convex hull of all grid points (xj—m,,tk), .-y (Tjm,, tk)-

Examples. (i) For our previous scheme with b > 0 the CFL-Condition is satisfied, if
0<p<l



(1) The scheme B;FU;“ + bBAgCUj’-C = 0 satisfies the CFL-Condition for |u| < 1, however

the scheme is never stable.

Remark. The so-called upwinding scheme

wy(UF =Ufy) 5 =0

1wy (Uf = Uf) iy <0

k+1 _ 77k
Uj =U;

with ,u? = w is stable for b:[0,1] x [0,T] as long as supb(z,t)7 < 1.

Remark. (i) If the finite difference scheme is of the form Ut = AU* (our previous
scheme here was of this form), stability, i.e. non-growth of U* as k increases,
reduces to looking at the spectrum of A( and is stable if all eigenvalues of A are
less than 1).

(13) If the scheme is of the type Uf“ = ez mng’?_E (a discrete convolution) then a
stability analysis in Fourier space can be performed.
2.2 Laplace’s Equation
We consider
(1) —Au =0 (Laplace’s equation)
(1i) —Au = f (Poisson’s equation)
for z € 2, Q C R™ open. The unknown is v : Q — R, u = u(x).
Definition. A C? function satisfying the Laplace’s equation is called harmonic function.

For some context for physics assume u denotes the concentration of some quantity in
equilibrium. Consider the flux of u through the boundary 9V of some smooth subdomain
V C Q. We have from f ov I~ v dS = 0, where F' denotes the flux density of u, but
Joy F-v dS = [, divF doz = 0. Thus divF = 0 in Q as V is arbitrary.

A very typical model assumes that F' = ¢- Vu with ¢ > 0. Thus dive-Vu=c-Au =0

is the results equation.

2.2.1 Fundamental solution

Lets consider the Laplace’s equation on R™. The equation is invariant to rotations

(Exercise). We thus look for a solution u(z) = v(|z|) = v(r). We get for

n

P ,
r= (ZCB?)I/Q that 8; = :1;7] if x #0.
i=1



2 2
Thus g, = V' (1), Uy, = v”(r)% +o/(r) (L = 3) and Au = "(r) + 2=L¢/(+). Thus
v
,U/

r 73 r
if Au =0, we get v 4+ 2210/ = 0. If v/ # 0 we get log(|v'|) = & = =2, We obtain
T T

v'(r) = &y for some constant a. Thus if » > 0 we get

blog(r)+¢ n=2
v(r) =
Lrt+e  n>3

with constants b, c.

Definition 2.2.1. The function

— 5 log |z| n=2

1 1
wh=Da(m) =z 23

O(z) =

defined on x € R™, x #£ 0 is the fundamental solution of Laplace’s equation.
Remark. Note that |[V®(x)| < \:vl% and |V2®(z)| < ﬁ for z #0.

By construction we have A®(z) = 0 for z # 0. Similarly x — ®(z — y) is harmonic as
a function of x for x # y. Taking f: R" — R, we also get z — ®(x —y)f(y) (x # y) is

harmonic for any point y € R"™. By linearity so is the sum of such expressions.
One might get the idea, that

u(w) = [ @~ 9)f(w) dy

solves the Laplace’s equation, but this is wrong.

Instead, we get

Theorem 2.2.2 (Solution Poisson’s Equation). Setting

o fenlog(z —y)f(y) dy n=2

f
rsyat Jan e dy n =3

u(w) = [ @) () dy =

for f € C2(R™), we get
(i) ue C*R")
(i) —Au= f in R"

Proof. 1. We have u(x) = [p., ®(y)f(z —y) dy, so

u(x + he;) — u(x) /nq>(y)f(x+hei_y)_f($_y)

_ d
I h Y



(h#0, e; = (0,...,0,1,0,...,0)). But

(fGo+ hei = y) = (&= y))3 = faule — )

uniformly on R™ as h — 0. Thus

wai@) = [ @) fulz ) dy

and similary

As @ is integrable near the origin (Exercise) and f;,,, has compact support, we get

continuous second derivatives of u, i.e. u € C?(R").

2. Fix € > 0, we get
Au(z) = / B(y)Af(z —y) dy + / B(y)Auf(x —y) dy = I. + J.
- (0) R7\ B (0)

Then

I < C | D?fllgo @ / NEOEE

€

For J., integration by parts yields

J. = / B(y) Ay f(x —y) dy
R7\ B (0)

—— [ V) Vg i+ [ e ey asw
R™\ B (0) 9B:(0) v

= K: + Le,
where v denotes the inward pointing normal on 0B (0). We check

Cellog(e)] n=2
Ce n>3

|Le| < \Vflcoo(w)/ [©(y)| dS(y) < {
8B.(0)

3. Integrating again by parts, we get

0P

o 5(y)f (z —y) dS(y)

K. - AD(y)f(z —y) dy — /
R\ B, (0) OB



since A® = 0 away from origin. Using

-1 y -y -y
VCI) == O a. d = — = —
W) = ey VO ey ==
on 0B:(0), we get
0P 1
(W) =v-Vo(y) =

ov

na(n)en—1

on 0B (0). Taking a(n) to be the volume of the unit ball in n-dimensions, we get

1
Kemoor [ Sy dst)=F f) dS() > ()
na(n)e 9B.(0) 9B.(0)
as € — 0. Combining the estimates and letting ¢ — 0, we get —Au(z) = f(x). O

2.2.2 Mean Value Theorems

A Central property of harmonic functions:

Theorem 2.2.3 (Mean Value Formula). If u € C?(2) is harmonic (i.e. Au =0), then

u(z) = ][ udS = u dy
OBr(x) By ()

for any ball B,(x) C Q.

Proof. Set
o(r) = ]ﬁw) u(y) dS(y) = 7§31<o> u(a + rz) dS(2)

Then

¢ (r) = ]él(o) Vu(z +rz) -z dS(z)

=][ Vu(y) L2 ds(y)
OBr(x)

,
ou

= — dS(y
]([931"(:5) v ( )

Thus ¢ is constant, and

o) = lig 6(0) = fim 7 ww) dS() = (@)
The second formula follows by integrating over r. O



Theorem 2.2.4 (Converse to Mean Value Property). If u € C?(Q) satisfies

for all B,(x) C Q, then u is harmonic.

Proof. By contradiction using the previous theorem O

2.2.3 Properties of Harmonic Functions

Theorem 2.2.5 (Strong Maximum Principle). Assume u € C%(Q) N C(Q) is harmonic
in §2.

(1) Then max u(x) = max u(z) (Mazimum Principle)
zeQ €0

(i7) Furthermore, if Q0 is connected and there exists zg € 2, s.t. u(xp) = maxu(x),

TS
then u is constant (Strong Maximum Principle)

Remark. Similar statement follows for minu, by v = —u

Proof. Assume there exists g € Q, u(zg) = M = maxu(z). Then for 0 < r <
EISY)
dist(xg, 0€2), we have, by theorem 2.2.4 that

M:u(mo):][ udy <M
By (zo)

with equality if and only if w = M in B,(zg), i.e. u(y) = M for all y € B,(zp). Thus,
the set {z € Q | u(x) = M} is both open and relatively closed in 2, thus it equals € if

) is connected. This proves (i7) and (7) follows immediately, O

Remark. Ifu € C2(Q)NC(Q), Au=0in Q, u = g in 0, and if also g(x) > 0 for
some x € 0L2, then u > 0 on .

Theorem 2.2.6 (Uniqueness). Let g € C(09), f € C(Q), the there exists at most one
solution u € C?(2) N C(Q) of the boundary value problem:

—Au=finQ
u =g on OS2

Proof. If u,v both solve the boundary value problem apply Theorem 2.2.5 (Strong Max-

imum Principle) to w = +(u — v) O



Theorem 2.2.7 (Smoothness). If u € C(Q) satisfies the mean value property

u(z) = ][aBT(@ u(y) dS(y)

for each ball B,(xz) C Q, then u € C*(Q)
Remark. u may not be smooth (or even continuous) up to the boundary.

Proof. Consider the standard mollifier

S S

e Pzl <e

Tle = )
0 otherwise

[ore
RTL

we know that u. = u 7. (defined in Q. = {dist(-,0Q) > £}) is smooth.

such that

We show that u(x) = u.(x) for dist(z, Q) < e. Consider

ue(z) = /Q e — y)uly) dy

=5 gy ()

r

= ginu(x) /0677 <7) na(n)r"t dr = u(z)

3

Theorem 2.2.8. Assume u s harmonic in ). Then

. Ck
| D%u(@o)| < g lluller (s, o))

for any ball By(xo) C Q and any multi-index o of order |a| < k. We have

1 2n+1 k
Co= . o = FTnkS

a(n) a(n)
fork=1,2,...

Proof. We prove the statement by induction on k, with k = 0 being obvious from the
mean value formula (Quote: I still think there should be a nice value formula).

For k = 1, note that u,, is harmonic (by smoothness and differentiating Au = 0). We

10



obtain

27’L
f Uz, dx 2/ u-v; dS
By 2(z0) a(n)r 8B, /5 (w0)

For z € 0B, j3(wo), we have B, 5(x) C By(wg) C 2. So, by the k = 0 estimate, we get

1 /2\?
fue)] < — () el o

a(n) \r

2n
|z, (z0)| = < —llullzeo @B, a(w0))-

This yields

2n+1n 1
| D%u(xo)| < WWHUHL%BT@O))
for |a| < 1. The higher derivative estimates follow analogously ... O

Theorem 2.2.9 (Liouville’s Theorem). Suppose u : R™ — R is harmonic and bounded.

Then, u is constant.
Proof. Fix g € R™ , 7 > 0. By Theorem (2.2.8) we get on B,(z0)

V/nCq V/nC*
| Du(zo)| < WHUHU(BT(:EO)) <

HUHLOO(]R") — 0

as r — 0o. Thus Du = 0 and v is constant. O

Theorem 2.2.10. Let f € C2(R"), n > 3. Then any bounded solution of —Au = f in
R™ has the form

u(w)= [ @) dy+C
forx € R"

Proof. Clearly, since ®(x) — 0 as |z| — oo, the rhs. is bounded and & = ® * f is a
bounded solution of Laplace’s equation. If u is any other solution, then v — 4 is bounded

and harmonic, thus constant due to theorem 2.2.9. O
Remark. (i) One can even prove analyticity of harmonic functions.
(ii) There are non-bound harmonic functions on R™.

Theorem 2.2.11 (Harnack’s Inequality). Consider V.CC Q (3K C Q, K compact, s.t
V C K is open). Then there exists C depending only on V, s.t.

sup u < Cinf u
\% |4

for any non-negative harmonic function u in Q.

11



Proof. Take r = %dist(V7 00), x,y € V,st. |x —y| <r. Then

1 1 1
u(x) = u(z dzZ/ u(z) dz = — u(z) dz = —u(y
@=f w@dz [ weds g ue) = g

Thus, 2"u(y) > u(z) > Luly) if z,y €V, |z —y| < r.

Since V is connected and V is compact, we can cover V by finitely many balls {B;}Y,,

each with radius §, and B; N B;_y # 0 for i = 1,..., N and thus u(z) > 2n(]\,#ﬂ)u(y) for

all z,y € V. O

Now, take Q C R”, with 09 in C'. We would like to solve

—Au = fin Q
u = g on Of2.

This is the classic boundary value problem.

Assume u € C?(Q) is given, fix x € Q, € > 0 s.t. Bo(x) C Q and apply the divergence
theorem on V. = Q\ B(z) to u(y) and ®(x — y). We compute

| wav-—a)-a0-aaum) dy= [ )G -0-0-0)500) S (20

Note: A®(x —y) =0 for z # y and

ou 1
_ —y)— < " = .
‘/ OB (z)®(x — y) ey (y) dS(y)' < Ce 6123()6)|(I>| ase — 0

We also, from the proof of theorem 2.2.2 have

o
/835(35) u(y)%(y —x) dS(y) = ]éBg(ac) u(y) dS(y) — u(x)

Takin € — 0 in (2%) the yields

uw) = [ @y =) 50 —ul) 5 (- ) dS() ~ [ By - 2)Auty) dy
(3%)

for any z € R, any u € C?(Q2). We can compute the rhs. except for (3%). Consider thus

a ”correcter” ¢* = p*(y) solving

Ap® =0in Q2
©* = ®(y — ) on ON.

12



This yields using Gauf}-Green again,

—/Qcp (y)Au(y) dy—/ u(y) 5 (y) = (y)a(y) dS(y)

o0
= [ )% ) - 2l — 05 w) dsly) (49
a0 v v

Definition 2.2.12. Green’s function for the domain € is
Glz,y) =2y —2) — ¢"(y)
for x,y € Q with x # y.

Now adding (3x) and (4x), we get

) == [ utn G wn) dS) — [ Gladut) dy (5)

where %—f(aﬁ, y) = V,G(z,y) - v(y). If now u € C%(Q) solves

—Au = fin Q
(6+) =
u = g on 0f2

for given continuous functions f, g, we know by plugging into (5%)

Theorem 2.2.13. If u € C%(Q) solves (6%) then

uw) == [ oG ) asw)+ [ Fw)Gla) dy

for x in Q.

We could say
{—AyG =, in

G(-,y) =0 on 09
Theorem 2.2.14. For x,y € Q), x # y, we have

G(y,z) = G(z,y)
Proof. Fix z,y € Q, x #y. Set
v(z) = Gz, 2), w(z) = Gy, 2), z €Q
then

Av(z) = Aw(z) =0

13



for z # x, z # y respectively. Also, w = v = 0 on 0f). Applying GauB-Green on
V =Q\ (B:(z) UB:(y)) for € > 0 sufficiently small, we get

ov ow ow ov
w—vdSZ:/ —v— —w dS(z T
/;Bs($) (9V 81/ ( ) aBg(y) 81/ 81/ ( ) ( )

Also, v(z) = ®(z — z) — ®*(2), where 7 is smooth in Q. Thus

lim @w dS = lim a—(p(a: —z)w(z) dS(z) = w(z)
e—0 OB (z) 1% e—0 OB.(z) ov

Thus, the lhs. of (7%) converges to w(x) as € — 0, the rhs. converges to v(y), thus

G(y,z) = w(z) =v(y) = G(z,y)

2.2.4 Green’s Function on the Half Space

Consider R"} := {(z1,...,x,) € R™ | 2, > 0}, the so-called half space.

Definition 2.2.15. Green’s function for the half space R} is

G(z,y) = @(y — ) — @(y — ),

z,y € RY, x £y, where

T =(x1,.eyTp_1,—x,) € R".
We obtain, for y € IR}, that

oG -2z, 1
E(x’y) = _Gyn($7y) =

na(n) |z -yl

We would thus expect

na(n) Jorn |z —y|?
solves
Au =0 in R}
u = g on OR"}

(in a limit sense).

14



The function
2z, 1

na(n) [z —y|"

K(z,y) = , xzeR},yedRY

is called Poisson-Kernel of the half space, and (8x) is called Poisson’s formula of the half

space.
Theorem 2.2.16. Assume g € C(R"1) N L®(R"1) and define u by (8x). Then
() ue Co(RY) N L(RY)
(i) Au=0 in R} and

(vi1) limou(x) = g(a) for 2" € OR":
T—T

Proof. 1. For a fixed z, y — G(z,y) is harmonic for x # y. By symmetry of G,

x — G(x,y) is also harmonic for = # y. Thus

T = _aayci(x7y) = K(.%',y)

is harmonic for x € R"}, y € OR],.

2. We note that

K(z,y) dy =1 (9%)
OR™

for any « € R%}. Thus, as g is bounded, u defined by (9%) is also bounded. As z — K(z,y)

is smooth, we see that u € C*°(R"}) (just take derivatives w.r.t. x in (9%) and note that

integration and differentiation can be exchanged here). We get

Au(z) = - A K(z,y)g(y) dy =0
+

as Ay K(z,y) =0 for z # y.
3. Fix now 2 € OR", € >0, take 6 > 0 such that
l9(y) — g(2°)| <& for [y —a"| <6, y € ORYL  (10%)

Then, if |z — 2| < §/2, x € R7, we get
K(z,y)(9(y) — (=) dy
or?

< / K(z,9)lg(y) — 9(a®)] dy + / K (2, 9)lg(y) — 9(«%)| dy
OR™ NBj(a0) OR™\ B (a0)

u(z) — g(a”)| =

15



=I+J
We note I < € by (9%), (10). Further, if |z — 2% < §/2 as |y — 2°| > §/2, we get
J 1
=2l <ly—al+5 <ly—al+;ly— 2"

So, |y — x| > 1/2|y — 2°| and we get

2n+2 o
7 <2l [ Kizy) dy < Z-lol=t | e EY
R\ By (a0) na(n) OR™\By(a0) |y — 2
as x, — 0. This yields
u(z) — g(a”)] < 2¢
for |z — 29| sufficiently small. O

Remark. To get Green’s function for a ball B1(0) C R™, use the dual point & to x # 0
given by & = x/|x|? and set

" (y) = (|z|(y — 7))

and note that * is harmonic in B1(0). The rest follows as before, with
G(z,y) = ®(y —x) = ®(|z|(y — 1)) z,y € B1(0), = #y.

2.2.5 Finite Difference Schemes for Poisson’s Equation

Consider

{—Au = fin Q=1[0,1)?
u =0 on 0f2.
For J > 1, set h =1/J and define grid points

Zjm = (jhymh), 0< j,m < J
and replace the Laplacian by central difference quotients. We thus want to find
{(Uim¥l g CR
M S §,m=0

such that

xr1 X1 T2 7 X2

for1<m<J
Uoymn =Ujsm =Ujo=U; ;=0

16



for j,m =0, ...,J. We see that

~1
~AnUjm = 55 Ujrim + Ujmi1 = 4Ujm + Uj—1m + Ujm—1)

One can also do this for n > 2.

We note that the finite difference scheme (above) can be written as a suitable linear

system of equations, by setting
(Gsm) ~ g+ (m—1)(J -1) =1
for jm=1,..,J -1, 1=1,..,L =(J —1)2

Setting X € RU-Dx(J=1) ¢

4 -1
-1 4 -1
X =
—1
4
we can write (the above scheme) as AU = b with
x - f@1)
.y x
A= b= R f('Z) ,
.=
-1 X fzr)

where I € R/=Dx(/=1) ig the identity-matrix.

To include boundary conditions © = ¢ on 0f), assume that there exists a function
ip € C?(Q), such that iiplsn = g, write u = @ + @ip and note that if u solves the

boundary value problem, we have
—Au = f + A D

in Q and & = 0 on Of).

For the finite difference scheme, just set

(Up)ij = g(xij) x5 € 0Q

17



and solve
—AhU = (F)m' + (AhUD)i,j Tij € Q

and Ui,j = (0 for Tij € oN.

Note that one can also impose so-called Newmann-Conditions on part of the boundary,

where, instead of u, we prescribe the values of

Ou
ov’
We are looking at
{—Au = fin Q= (0,1)
u =0 on 0f2

Discretization
-1
~ArUjm = 25 Ujrim + Ujmis = 4Ujm + Uj-r.m + Unm,j-1)
Lemma 2.2.17 (Discrete Maximum Principle). If U = (Ujm, j,m =0, ..., J) satisfies
—AhUj,m <0

for all jym = 1,...;J — 1, then U attains its mazimum for j =0, j = J, m =0 or

m=.J.

Proof. From —ApU;, <0, we get

Uim < =(Uj—1,m + Ujt1,m + Ujm—1 + Ujm+1)

NG

For 1 < j,m < J—1. So U}, is a convex combination of its surroundings. If, thus, Uj p,
is a maximum, the estimate has to hold with equality and the maximum is also attained

at all of the neighboring points, we can continue this until we reach a boundary. O

Lemma 2.2.18 (Discrete Boundedness). For all (Z;m,, j,m =0,...,J) with Z;, =0
forj =0, 5=J, m=0, m=J, we have

1
a Zim| < = S ALZ;
jhax NZjm| < 2j,m:11,1.1.?,J71’ hZjml

Proof. Write

_ A7
= ax, [AnZsm]

and set W, = (jh)? + (mh)?, which, on the grid points, coincides with w(z1,z2) =

18



22 + 2. Notice Wim >0, jym=0,..,J and AyW;,, =4, jym=1,....,J —1. Now set

S
Vim = Zjm + 4 Wim

and get
—ApVim = —DpZjm — S <0

The discrete maximum principle implies that Vj ,,, attains its maximum on the boundary,

there
Zj,m =0and 0 < Wj7m < 2
Therefore g g
Zjm = Vim = 7 Wim < 5
Similary, the result
S
_Zj,m S 5

holds and we obtain the lemma.

Proposition 2.2.19 (Error Estimate). Let u € C?(Q) and U = (Ujm, j,m =0, ...

be the solution to the Poisson boundary value problem

—Au=fin (0,1)* =0
u =0 on 0N

and its discretization respectively, then we have

h2
~ sup [w(@jm) — Ujm| < ﬂ(”aﬁlunco(m,l]?) + HaifQUHCO([o,l]?))
.77m:07"'7‘]

Proof. Since —Au(zjm) = f(xjm) for j,m =0,...,J, the error
Zjm = w(@jm) — Ujm
satisfies

*AhZﬁm = *Ahu(xxm) + AhU%m
= f(l'j,m) - f(xj,m) + Au(xj,m) - Ahu(xj,m)

= Gilu(xjm) — 8;18;1u(asj7m) + 8£2u(xj,m) — 8;;8;2u(xj,m)
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From our estimates on the difference quotients, we get

h2
| = AnZjm| < ﬁ(”aﬁluucﬂ([o,uzg + Haiguﬂco([o,l]%)

Together with the discrete boundedness lemma we obtain the result. O

2.3 Heat Equation

We study the equation
u— Au =0

and its non-homogeneous pendant
u — Au = f

subjected to appropriate initial and boundary conditions. We taket > 0, x € Q, Q C R”

open. The sought after function is
uw:Qx[0,00) = R, u=u(zt)

and the laplacian is stable w.r.t the spatial variables z. The function f : Q x[0,00) — R

is given.

For a physical interpretation, consider V' C €, then

i udm:—/ F-vdS
dt Jy v

(if the quantity does not get produced or destroyed within V). Again we assume F' =
a-Vu (a > 0) and the divergence theorem yields

u =div(a-Vu) =a-Au

2.3.1 Fundamental Solution

Consider functions of the form
11 Hely(Z R™ ¢ > 0
(11%) u(w, )—t;v(t—ﬁ) zeR"t>

with constants «, 8, and the function v : R® — R to be found.

Equation (11x) shows up if we look for solutions to the heat equation, that are invariant
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under the scaling
u(z,t) = A u(Nx, \t)

for any A > 0, x € R™, ¢t > 0. Setting A = 1/t yields (11x) for v(y) = u(y, 1).

Inserting (11x) into the heat equation, we get
at~ @Dy (y) + Bt @y . YV (y) + TP Av(y) = 0
for y =t Pz, try = 1/2, then our equation reduces to
av + %y -Vou(y) + Av(y) = 0.
Assume u is radial, i.e. v(y) = w(]y|) for some w : R — R. This yields

—1
4 w =0,

1 / 2
ow + —rw +w" +
2 T

where r = |y|, /' = d/dr. Setting o = n/2, we get

(rnflwl)/ + %(7’2’11})/ _ 0’

i.e.
! 17“”w =«
2
Assuming lim, o w,w’ = 0, we conclude that v = 0, so w' = —1/2rw.
solutions

[M]

T

w=>b-e 1

for some constant b. Plugging in our choices for «, 3, we get then

b —|z|?
2 P\ Ty

solves the heat equation. This can easily be concluded for z € R™, ¢ > 0.

Definition 2.3.1. The function

! —laf? R™,t >0
@ty 72 exp | — WS U >
0 r[Rt<0

O(x,t) =

1s called the fundamental solution for the heat equation.

Note that we have a singularity a the origin.

21
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Lemma 2.3.2. Fort > 0, we have
/ O(x,t) de =1

Proof. Exercise. O

We now use the fundamental solution to solve the initial value (or Cauchy) problem
ug — Au=01in R" x (0,00)
u=gonR" x{t=0}

Note that (z,t) — ®(z — y,t) solves the heat equation for any given y € R™,t > 0.

Therefore the convolution

_ 1 |z — y|? n
u(a:,t)—/nq)(x—y,t)g(y) dy—W/RneXP< i 9(y) dy, x e R", ¢t > 0,

should also be a solution to the heat equation.

Theorem 2.3.3. Assume g € C(R™) N L>®(R™) and define u by

u(z,t) = /n (z—y,t)g(y) dy = W /Rn exp (—]x4;y|2) 9(y) dy
then
(i) u e C®(R" x (0,00))
(i7) wi(z,t) — Aulz,t) = 0 forz € R*, ¢ > 0.

(iii) For any z° € R™ we have

li t) = g(z°
(x’t)g?xo’t)U(x, ) =g(z°)

1 —|a|?
tn/2 xp 4t

is infinitely differentiable with uniformly bounded derivatives of all orders on R"™ x [§, 00)

for each 6 > 0, we see then u € C*°(R" x (0,00)). (Exercise)

Proof. 1. Since

Also,
gz t) — Aula, 1) = / (@) — A®) (& — y,1) gly) dy = 0

n

for x € R™,t > 0, as ® solves the heat equation.
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2. Fix 20 € R", € > 0. Choose § > 0 s.t. |g(y) — g(2°)| < ¢, if |y — 2% < 6, for y € R™.
Then for |z — 2°| < §/2, we have

Ju(z, ) — g(a”)] <

[ ¥ 00060) - o) @
< [ Bl u.0low) - o) dy

=/ﬁ <wx—%wg@»—mﬂmdy+/' (x — y.0)lgly) — 9(a)] dy
Bs(z0)

=I+J

But
Iga/ O(z—y,t)dy=c¢

Further, note that if |z — 2°| < §/2 and |y — 2°| > § then
J 1
=2l <ly—al+5 <ly—al+;ly-2"
so, |y — x| > 1/2|y — 2°|. Thus

Jsmgmm/' B(z — y.t) dy
R7\ Bs(z0)

c |z —yP?
< “ it N
— /2 /Rn\Bé(:EO) P ( 4t 4

o 012
<< / exp (V=21 4,
tn/2 R\ B (z0) 16t

ep<—m2
X
Rn\Ba/ﬁ(IO) 16

<C )dz—>0

as t — 0 from above. Thus, if | — 2% < §/2 and ¢ > 0 is small enough,

u(a, ) — g(a)] < 2¢

Remark. Consider g € C(R"™), supp(g) C B1(0), then
u(x,t) = / O(x—y)gy) dy >0 Vr eR" t>0.

— Infinite speed of propagation (different from transport- or wave-equation).

What about the non-homogeneous equation?
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Consider

ur — Au = f in R" x (0, 00)
(12%) =
u=0onR" x {t =0}

Note that (z,t) — ®(x — y,t — s) solves the heat equation for y € R", 0 < s < ¢.
Thus (for fixed s) the function

u=(at)= [ Byt 5)1(.) dy
solves

— Au® =01in R" x (0, 00)
u® = f(-,s) on R" x {t = s}

(This is just the initial value problem with starting time ¢ = s instead of t = 0 and g
replaced by f(-,s).)

Duhamel’s principle suspects we can build a solution of (12x) from this u®.
Consider .
u(z,t) = / u(xz,t) ds x €R"t>0,
0

that is
u(z,t) // (z—y,t—35)f(y,s) dy ds.
Theorem 2.3.4. Consider f € C?(R" x (0,00)), with compact support, s.t. fi, D>f €

C(R™ x [0,00)) and set

t
uet)= [ [ 0yt fs) dy ds
0 n
Then,
(i) We have ug, D*u,u, Vu are in C(R™ x (0, 0))
(i7) ue(z,t) — Au(z,t) = f(z,t) forx € R", ¢t > 0.
(iii) For ° € R™ we have

lim  wu(z,t)=0
(z,t)—(20,t)
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Proof. 1. Change variables to get

w(z, 1) :/Ot/n<1>(y,s)f(3:—y,t—s) dy ds.

The properties of f together with smoothness of ® = ®(y, s) near s = ¢t > 0, we compute

we.) = [ wasta—yt-9 dyds+ [ 5@ —0.0)dy

n

and

t
Uy, () = /O / By, 5) fore, (2 — .t — ) dy ds

Thus, u;, D*u are continuous (and so are u, Vu).
2. We calculate

wlet) = Suet) = [ [ as) (5= 80) (et =] dyds [ 005 -0.0) dy

t €
:/ adyds+/ adyds+/ O(y,t)f(x —y,0) dy
€ 0 n

:I8+JE+K

We immediatly see that

€
] < (el + ||D?fum>~/0 / $dyds=c-C.

Also
t d
I, :/s /n [(ds Ay) q)(y,s)] flx —y,t—s) dyds
=0
+ [ ease-ve—e dy— [ Su.0f-1.0d
K

— [ St -pt-e) dy- K

Thus

ut(x,t) — Au(z, t) = lim O(y,e)f(xr —y,t —e) dy = f(x,t)

e—0 Rn

for z € R™, ¢t > 0 (with this limit being computed as in the proof of theorem 2.3.3.).
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Note also that
[u( )L <t fllLe — 0

ast — 0. O

Remark. Note that theorem 2.53.3. and 2.5.4. can be combined to yield

t
u(z,t) = /n (z —y)g(y) dy + /0 /n O(z —y,t —s)f(y,s) dy ds
as a solution of

ug — Au = f in R"™ x (0,00)
u=g on R" x {t =0}.

2.3.2 Mean Value Formulas

Definition 2.3.5. For Q C R™, T > 0 define
~ the parabolic cylinder Qp = Q x (0,T] and
~ the parabolic boundary I'r = WT\ Qr.

Definition 2.3.6. For fited x € R", t € R, r > 0 we define
7:7’1

1
By (1) = {<y,s> ER™ | s<t, Da—yt—s)> }

a so-called heat ball.

Theorem 2.3.7 (Mean value property of the heat equation). Let u € CZ(Q27) (i.e.
u € C(Qr), Ug,2; € C(Qr)) solve the heat equation, then

1 x —y|?
u(x,t):w// ( t)u(y,s)’(t_s)’2 dy ds

for Ep(z,t) C Qr.

Proof. Assume x =0, t =0, E, = E.(0,0). Set

o(r) = 1// u(y S)w dy ds = // u(ry 7“23)w dy ds
rn . ? 52 o I 82

because ®(rz,r*t) = r~"®(x,t). We differentiate with respect to r

2
¢ (r) = // @(qu(ry,rzs) + 27“sus(7“y,7“28)) dy ds
Ey
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1 2 2
= et [ [ Y out )+ 2t s% b as

|y‘Zv dy d 2 WPdd
_T”+1 yuyv)y5+ RS Usya) Yy as

—A+B

Also introduce | ’2

P = —g log(—4ms) + % +nlog(r) (12x)

and obtain E, = {(y,s) | ¥(y,s) >0
= ¢ =0o0n JFE,

We use (12x) and write

1 Green 1
B = 7’”“//,5 dusyV dy ds = _7'”“//,9 dnusyp + 4pyVus dy ds

Integration by parts in s

1
B = T // dnugst) + dpsyVu dy ds
r

2
=—7 // dnugy) + 4 <_n — |y|) yVu dy ds
,r-n
= 7+1 // —dnugsp — —qu dy ds— A
T s

Consequently, since u solves the heat equation

1 2n
¢(r)y=A+B= s // —AnAuyp — —qu dy ds
GTHWH//‘mvmw—gNuddﬁi)
r
Thus ¢ is constant, and therefore
¢(r) = lim ¢(t) = u( lim — |y|2dyds = 4u(0,0)
t—0 t—0 t" ’

as

1 2 2
//’yldde—// %dyds:él.
tn EtS EIS
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2.3.3 Properties of Solutions

Theorem 2.3.8 (Strong Maximum Principle). Assume u € CZ(Qr) NC(Qr) solves the

heat equation in Qp

(i) Then
maxu = maxu
Qr Iz

(i7) If Q is connected and there exists a point (xg,to) € Qp with

u(zg, to) = maxu
Qr

then u is constant.

Proof. 1. Suppose (xq,to) € Qp with
u(xo,to) = M := maxu

for all sufficiently small » > 0, we employ for E,.(z¢,tp) C €2 the mean value property

1 a2
M = u(zo, to) = — u(y, s) M dy ds < M
4r T(xo,to) (to )

| zo — y?
dy ds.
4rn //r Io,to) )

Equality only holds if w is identically equal to M in E,(zo,to), therefore u(y,s) =

since

M V(y,s) € E.(xg,t9). Let L be a line segment in Qp connecting (xg,ty) € Qp with
(Yo, s0) € Qr, so < tg. Consider ¢ := min{s > so | u(z,t) = M V(z,t) € L, s <t <.

Assume rg > so: u(z9,79) = M for some (zg,r9) on L N Qp, thus u = M on E,(zg,70)

for all sufficiently small » > 0. Since
ET(ZO,TO) D LN {7’0 —o0<t< 7’0}

for small o > 0, we get a contradiction and thus rg = sg and we get u = M on L.

2. Fix any z € Q, 0 <t < ty. There exists points {zg, x1, ..., Ty, = x} such that the line
segments in R"™ connecting z;_1 to xz; lie in  for i = 1,...,;m. (Set of points in Q which
can be connected like this by a polygonal path is non-empty, open and relatively closed
on (.)
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Select times tg > t;... > t,, = t, then the line segments connecting (z;—1,%;—1) to (x;,t;)

lie in Qp. According to 1. w = M on such a segment and thus u(z,t) = M. O
Remark. If Q is connected, u € C23(Qr) N C(Qr) satisfies

up — Au =0 in Qp
u=0 on 0N x [0,T]
u=g onQx{t=0}

where g > 0, then u is positive everywhere within Qr, if g is positive somewhere on ).

Theorem 2.3.9 (Uniqueness on bounded domains). Let g € C(I'r), f € C(Qr). Then
there exists at most one solution u € C%(Qr) N C(Qr) of the initial value problem

{utAu:f mn Qr
(13%) =

u=g onI'r
Proof. If u,u are solutions of (13%), apply theorem 2.3.8. to w := +(u — @) O

Theorem 2.3.10 (Maximum Principle for Cauchy Problem). Suppose u € CZ(R"™ x
(0, 7)) N C(R™ x [0,T7]) solves

ug — Au =0 in R" x (0,7
u=g on R" x {t =0}

and satisfies growth estimate
u(z,t) < Aetll? (xeR",0<t<T)

for constants A,a > 0. Then

sup  u(z) = sup g(z)
2€R" X [0,T] z€R

Proof. 1. Assume first that 4aT < 1, such that
4a(T +¢) < 1

for suitable € > 0. Fix y € R™, u > 0 and set

|z —y|?
TH+e—t)

7!
(T +e—t)n/2

v(z,t) =u(x,t) — exp(4( )
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for x € R™,t > 0. We have
v —Av =20

in R" x (0,7). Fix r > 0, and set Q = B, (y), Qr = B,(y) x (0,T]. Then using theorem
2.3.8., we have

max v(x) = max v(x)
z€Qr zel'r

2. Now, for x € R",

I |z — y|?

U(.I',O) = u(x70> - (T i E)n/? eXp(4(T + 6)

) < u(z,0) = g(x)

and, if [t —y|=7r, 0<t<T,

2

_ N K r
U(:'L‘7t) _u(x7t) (T+€—t)n/2 exp(4(T+5—t))
2
< A»amp o H r
= ¢ T e g
2
< Aeellyl+r)? _ A r
= (T +¢e — t)n/? Ty —
We have )
iT+e) T

for some v > 0, and thus

v(a, 1) < Ae®WH" — py(4(a + 4))"/ el < sup 9(@)
TER™

for r sufficiently large (remember |x — y| = r), since the negative term ”wins” at some

point. This, however, implies that

v(y,t) < sup g(x)
rER"

forall y € R™, 0 <t <T aslong as 4aT < 1. For yy — 0, we obtain

u(e,t) < sup g(y) wE€R, 0<t<T
yeR”

3. In the general case repeatedly apply the above result on time intervals [0, 71, [T, 2T1], ...
for Ty = 1/(va). O

Theorem 2.3.11 (Uniqueness of the Cauchy-Problem). Let g € C(R"™), f € C(R"™ x
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[0,T)), then there exists at most one solution u € CZ(R™ x (0,T]) N C(R™ x [0,T]) of

u— Au = f in R" x (0,T)
u=g onR" x {t =0}

satisfying the growth estimate
u(z,t) < Ae?’ zeR" 0<t<T
for some a, A > 0.

Proof. Apply theorem 2.3.10 to w = +(u—1a) when both u, @ satisfy the assumption. [

Remark. There are so-called "unphysical” solutions to the heat equation on R™ with

very rapid growth and zero initial conditions (so-called Tychonov solutions).

2.3.4 Finite Difference Schemes for the Heat equation

We simply replace the derivatives in the problem

ur —Au=01in (0,1) x (0,7)
u=gon (0,1) x {t =0}
u=0on ({0}U{1}) x (0,7

to get the forward Euler scheme
O UF —0fo,Ur =0, j=1,..,J, k=0,..,K -1

Uk = U§ =0, k=0,...,K—1and U]Q = g(z;), j =0,...,J, with spatial discretization

size h = 1/J, and temporal discretization size 7 = 1/K. We have, equivalently,
UStt = (1= 20)Uf + AUS + AUf
for A\ = 7/h2.

This is an explicit scheme, since Uf“ can be computed explicitly for {U Jk }3-7:0

Proposition 2.3.12 (Stability and Convergence). If A\ < 1/2, then the solution of the

forward Euler scheme satisfies

swp |Uf < sup |07
j:07"'7J ]:07,J
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for all 0 < k < K, and if in addition, we have u € C*([0,1] x [0,T]), then

t
sup u(z;, te) — UF| < gk(T + 12 (I0gull oo, x o)) + 1107 ulleqo,x(0,77))
J=Y;..

forall0 <k < K.

Proof. As 1 — 2\ > 0, we have that

|Uf“\ < (1—-2)\) sup |Uj’-‘:| + 2\ sup ]Uf\ < sup |U]k|
j:O,...,J ]:01,‘] j:07“'7

which implies

sup |UF| < sup |Uf)|
j:O7""J jZO,...,

For the error estimate, consider

Cgf — 8t+u(xj, tr) — 3;_89g_u(xj7 tk)

which satisfies
€F) < |0 u— dyu+ 0%u — 905 u|
<0 u — Bpu| + |07 9, u — 2w
< (7 + 1) (18ullcqoupioiry + 102ullcqopxioiy)
The error Z;“ = u(xj,ty) — Uf satisfies
ofzf —ofo, 7} = 6f
and thus

¥ = (1 =202} + \ZJ | + AZ + 76

Again using the convex combination property, we obtain

_sup |Z]]-“+1\ < sup ]Zf| +7 sup ‘Kjk
7=0,....,J 7=0,....J 7=0,....,J

By induction, we obtain our estimate. O

Remark. The bad news is, that X < 1/2 requires very small time steps. This is the

classical example of a stiff equation.

We therefore instead use an implicit Euler scheme

oy UF—ofo,ur =0, j=,..,J-1,k=1,..K
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Uy=Uy=0 k=1,..K
U) =uo(z;), j=0,...J

that is,
k+1 k+1 k+1 k+1y _ rrk
Uj — )\(Uj_l — 2Uj + Uj+1 ) = Uj
i.e.
AUk — gk
with
(1+2)) -

“A (1420 -

A (14+2)) =X
Remark. The Matrix A is reqular, so the implicit Euler scheme does admit a solution.

Proposition 2.3.13. There exists unique coefficients (UJ’?) that solve the implicit Euler
scheme. They satisfy

sup |Uf| < sup |U]| k=0,. K
j:07“'7'] j:(),...,

(independently of A = 7/h?). If u € C*([0,1] x [0,T]), we have

tx
sup u(z;, te) — US| < 5 (7 + h?)(|105ullso + 1107 ull0)
=0,y

fork=0,.. K.

Proof. 1. The matrix from the scheme is strictly diagonally dominant, hence regular.

2. Take j' € {1,...,J} such that
UE < sup [URH]
7=0,....J
then
(200 < W+ NUE 4N < s 051420 sup (03
=L J=U,...,

So,

(1+2X\) sup |U]]-“+1|§ sup ]Uf!+2)\ sup |U]]f“+1|
§=0,0e0sd §=00ey §=0,00d

and the discrete maximum principle follows.
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3. The error bound follows similarly to the explicit scheme. O

Remark. The implicit Euler scheme is thus unconditionally stable. The error estimate

s the same as for the explicit scheme.
~ Regularity of the heat equation.

Theorem 2.3.14. Suppose u € C?(Qr) solves the heat equation in Qp. Then u €
C>=(Qr)

Remark. This even holds of the boundary values are not smooth.

Proof. Set
Cr(w,t) ={(y,8) | |z —yl <m t-r* <s <t}

(a closed cylinder). Fix (zg,tg) € Qpr and choose r > 0 so that C' = C,(x,tg) C Qr,
define also C" = C3/4.7 (20, t0), C" = C}/9..(x0,t0)-

Pick a smooth cutoff function ((z,t) such that

0<(¢<1,¢(=1on(
¢ = 0 near the parabolic boundary of C.

Extend ¢ by 0 in (R™\ [0,t0]) \ C.
2. Assume for now that u € C*°(Qr) and set

v(z,t) = ((z,t) - u(x, t)

then
v = Cus + Guy, Av = CAu+ 2V({Vu + uAl

Thus, v =0 in R x {t =0} and
vy — Av = Gu — 2V(Vu — ulAf =: f
in R™ x (O,to). Set
t ~
f)(x7t) = / / ‘I)(.ﬁ —y,t— S)f(ya S) dy ds
0 n
Thus

v

o — AD = f in R"™ x (0, 1)
0 on R" x {t =0}
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and theorem 2.3.11. (uniqueness) yields ¢ = v.

Now suppose (x,t) € C”. Since ¢ = 0 away from C, we get

ul, 1) = / /C B — yot — 5) [(Calwr 8) — ALy, 9)u(y. 8)) — 2VC(y,5) - Vuly, )] dy ds

The expression in the square brackets vanishes near the singularity of ®. Integrating by

parts, we get

ulir, 1) = / /C [®(x — .t — )(Cs(0,5) + Ay, 5)) + 2V ®(x — g, — 5)VC(y, 9)] uly, 5) dy ds

We have derived (14x) assuming u € C*°. If u only satisfies the hypothesis of the theo-

rem, we still arrive at (14x) considering u® = 7. * u in the calculation and taking ¢ — 0.

3. Formula (14x%) is of the form

u(z,t) = //CK(x,t,y,s)u(y,s) dy ds

for (z,t) € C", where K(x,t,y,s) = 0 for all points (y,s) € C’ (since ( =1 on C’). Also
K is smooth on C'\ C’. We therefore see that u € C* in C" = C ., (20, to). O

Theorem 2.3.15 (Estimates on the derivatives). For each pair of integers k,1 = 1,2, ...

there exists a constant Cy; such that

max |D¥Dlu| <

kl
C’I‘/Q(r:t) mHUHLI(CT(xvt))

for all cylinders C, j5(z,t) C Cr(z,t) C Qr and all solutions of the heat equation in Qr

Proof. 1. Fix a point in Qp, we may assume that this point is (0,0). Suppose that
C1 = (1(0,0) is in Qp and that Cy/p = C1/2(0,0). Then as in the proof of theorem
2.3.14 we get

u(z,t) :/ : K(z,t,y,s)u(y, s) dy ds
1

for some smooth function K. Thus
DiDiutet) < [ [ 1DEDIK .ty olluto. )| dy ds < Culullieyy (159

for some constant Cl;.

2. Now suppose C, = C;(0,0) lies in Qp, set C,. ;o = C,./5(0,0). Set v(x,t) = u(rz,r?t).
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Then v; — Av =0 in C; and by (15%)
1Dy Dyv(a, )] < Cuallvlliey).

Noting
DEDW(x,t) = 2R DX Dlu(ra, r?t)

and
1
HUHLI(Cl)II - WHUHD(Q)

we get our desired estimate.

2.4 The Wave Equation

We consider solutions to the wave equation
ug — Au = 0.

Note that there is also the non-homogeneous wave equation
Uy — Au = f.

These equations are again subject to suitable boundary and initial conditions.
unkown is
uw: Qx[0, 7] - R, u=u(z,t), €, tel0,T]

Sometimes, the notation
Cu = ttt — Au

can be seen.

The

For one physical interpretation, consider an elastic string, membrane or a solid. Denote

by u(x,t) the displacement of the material at point x, time ¢. Then, Newton’s second

law states (for some V' C Q)

d
— dr = dx — F-vdS.
dt2/‘;u X /‘;utt X /8V 14

Ut = —le(F) in Q.

Again we get

Take (coming from continuum Mechanics)

F=c-Vu,
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and we get

uy — cAu = 0.

This suggests also that we need two initial conditions, one for displacement, one for

velocity (i.e uy).
~ Solution for n = 1.

We consider
{utt — Uge = 0in R x (0, 00)

u—g, uy =hin R x {t =0}.
Note that

9L ON(9 9N, _. _
o, ox) \ot  oz)t T T e

Write

then vy + v, = 0 for x € R, ¢ > 0. Thinking back to the transport equation, we get
v(z,t) =a(x —1t)
for some a(x) = v(x,0). Plugging back in, we get
ug(x,t) — ug(x,t) = alx —t)

This is a non-homogeneous transport equation, with solution

t o+t
u(x,t) :/0 alr+ (t—s)—s)ds+blx+1t)= ;/x_t a(y) dy + b(x +t)
for b(xz) = u(z,0) = g(z). Noting that
a(z) = v(z,0) = u(z,0) — ux(z,0) = h(z) — ¢ ()

S0,

T+t x4+t
wat) =5 [ hw) =g ) di+glat0) = 5o+ 0 o —0)+3 [ hw)dy

This is called d’Alembert’s formula.

Theorem 2.4.1. Assume g € C*(R), h € C1(R) and define u(z,t) by D’Alemberts

formula. Then
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(i) u € C*(R x [0,00))
(13) ug — uge = 0 in R x [0, 00)
(7i1) For all xo € R we have

lim  wu(z,t) = g(xo) and  lim  w(x,t) = h(xo)
(z,t)—(x0,t) (z,t)—(x0,t)

Proof. By direct calculation. ]

Remark. Note that
u(z,t) = F(z —t)+ Gz +1t)

for appropriate functions F, G and any such expression is a solution to the wave equation.
Remark. The initial/boundary value problem

U — Uze = 0 in Ry x (0,00)
u=g, uy=nh on Ry x {t =0}
u=0 on {r =0} x (0,00)

can be solved by reflection, setting

i) = glx) x>0 i) = h(z) x>0
—g(z) <0 —h(—z) <0

and using d’Alembert’s formula (for g, h vanishing at x =0).

~ Solution for n = 2, 3.

Assume u € C™(R"™ x [0, 00)) solves

uy — Au =0 in R"™ x [0, oo]
u=g, uy =honR" x {t =0}

For given £ € R™, t > 0, r > 0 set
Ulwirt) = f  uly.) dy
By (z)

and

Gasr) = 7[3 Ly A = ]i K
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Lemma 2.4.2 (Euler-Poisson-Darboux-Equation). Fiz x € R", and define u,U, G, H
as above. Then

U e C™(R; x [0,50))
and

n—1
Utt_UT‘T‘_

U,=0in Ry x (0,00)
U=G, Uy=H onRy x {t =0}
Proof. We get for r > 0, that

1
U, (a5 t) = f Auly,t) dy= — / Au(y,t) dy. (16%)
OB (x) r B (x)

n nao(n)
Note that hus
lim U,(x;r,t) =0

r—0+t

and

Thus,
1

lim U, (x;r,t) = —Au(z, t).
n

r—0t

Similarly, verify that U,..., etc. are continuous.

Now, from (16x), we get

and so

and

1
n—1 n—1 n—1
T UT r = / Ugr AS =T ][ ug dS =T U
( ) n ( ) () tt (y) (@) tt (y) tt

Which yields the result by product rule and division by r™~!. O

Now take n = 3, and set

to get B B
tt—Um«:OiHR_A,_X(0,00)
U=G, Uy=HonR, x {t=0}
U=0on{r=0}x(0,00)
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by direct calculation.

Using d’Alembert’s formula, we find for 0 < r <t
- 1 - _ 1 T+t
U(m;r,t):2(G(T—|—7§)—G(r—t))—|—/ H(y) dy.

Our definition of U implies

u(z,t) = lim Ulzint)

r—0t r

=G'(t)+ H(t).

From the definitions of G, H, we get

u(x,t) = 9 t][ g ds +t][ h dS. (17x)
ot OBy (x) 9Bu(x)
Noting

][ a(y) dS(y)zf oz + t2) dS(2)
OB () 9B1(0)

we get

gt <]£Bt(x) ! dS) - ]éBl(o) Velwttz) 2 d3z) = ]gBt(x) vow) (y ; w) B

Plugging into (17x), we get

u(z,t) = ][ th(y) + g(y) + Vg(y)(y — =) dS(y).
OB¢(x)

This is Kirchhoff’s formula for the solution of the initial value problem for the wave

equation in 3 dimensions.
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