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1 Introduction

In the following let k ≥ 1 and Ω ⊂ Rn be open.

Definition 1.1.1. An expression F (Dku(x), Dk−1u(x), ..., u(x), x) = 0 with F : Rnk ×
Rnk−1 × ...×Rn ×R×Ω → R is called partial differential equation of the order k, where

u : Ω → R is the desired solution.

Definition 1.1.2. A partial differential equation is called linear, if it has the form∑
|α|≤k

qα(x)D
αu = f(x)

where α denotes a multi-index

Examples. (i) Laplace Equality: −∆u = −
∑n

i=1 uxixi = 0

(ii) Helmholtz Equality: −∆u = λu

(iii) Telegraph Equality: ut + 2dut − uxx = 0

(iv) Airy Equality: ut + uxxx = 0

(v) Balken Equality: utt + uxxxx = 0

(vi) Eihonal Equality: |∇u| = 1

(vii) Burger’s Equality: ut + uux = 0

2 Linear partial differential equations

2.1 Transport Equation

Consider u : Rn × [0,∞) → R, u = u(x, t) and ut + b∇u = 0 on Rn × (0,∞), where

b ∈ Rn, b = (b1, ..., bn)
T . How do we solve this equation?

Assume u is a solution and (x, t) ∈ Rn × (0,∞). Set z(s) = u(x + sb, t + s) for s ∈ R.
Then we have z′(s) = ∇u(x+ sb, t+ s) · b+ ut(x+ sb, t+ s) = 0, therefore u is constant

alogn the line of (x, t) in the direction (b, 1) ∈ Rn × R

2.1.1 Initial Value Problem

Let b ∈ Rn, g : Rn → R be given and{
ut + b∇u = 0 on Rn × (0,∞)

u = g on Rn × {t = 0}
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Because u is constant on along lines in the direction (b, 1) ∈ Rn × R, we get

u(x, t) = u(x− tb, 0) = g(x− tb), x ∈ Rn, t ≥ 0.

It is not hard to see that a solution of F (Dku(x), Dk−1u(x), ..., u(x), x) = 0 in C1 is

always of the form u(x, t) = u(x− tb, 0) = g(x− tb) and conversely g ∈ C1 is a solution

of F (Dku(x), Dk−1u(x), ..., u(x), x) = 0.

2.1.2 Finite differentials for the Transport Equation

For x ∈ [0, 1] we consider xj = jh, j = 0, ..., J, h = 1
J and we approximate u ∈ C1 by

u′(xj) =
u(xj+1)− u(xj)

h
and u′(xj) =

u(xj)− u(xj−1)

h

Definition 2.1.1. For a given step lenght h = 1
J , J ∈ N and a sequence (Uj)j=1,...,J the

terms

(i) ∂+x Uj =
Uj+1−Uj

h

(ii) ∂−x Uj =
Uj−Uj−1

h

(iii) ∂̂xUj =
Uj+1−Uj−1

2h

define the forward-, backward- and central differential

Remark. (i) For u ∈ C2([0, 1]), we get

u(x+ h)− u(x)

h
= u′(x) +

1

2
u′′(ξ)h

with ξ ∈ [x, x+ h] (Taylor)

(ii) Finite differentials can be iterated, for example

∂+x ∂
−
x Uj = ∂−x ∂

+
x Uj =

Uj+1 − 2Uj + Uj−1

h2

Definition 2.1.2. The equation in (ii) defines the difference quotient of the second

degree.

Proposition 2.1.3. (i) |∂±x u(xj)− u′(xj)| ≤ h
2∥u

′′∥C([0,1])

(ii) |∂̂xu(xj)− u′(xj)| ≤ h2

6 ∥u′′∥C([0,1])

(iii) ∂+x ∂
−
x u(xj)− u′′(xj)| ≤ h2

12∥u
′′∥C([0,1])

Proof. by Taylor
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2.1.3 Finite Difference Schemes

We consider for b > 0 and [0, 1]× [0, T ] the initial boundary value problem
ut(x, t) + bux(x, t) = 0 on (x, t) ∈ (0, 1)× (0, T ]

(0, t) = 0 for t ∈ (0, T ]

u(x, 0) = u0(x) for x ∈ [0, 1]

Our domain [0, 1] × [0, T ] is discretesized using spatial- and temporal step sizes h = 1
J

and τ = 1
K . We write (xj , tk) = (jh, kτ) for 0 ≤ j ≤ J, 0 ≤ k ≤ K.

Our finite difference scheme now simply consists of replacing the partial derivatives by

finite differences, i.e.

∂+t U
k
j + b∂−x U

k
j = 0

or writing out the finite differences

Uk+1
j − Uk

j

τ
+ b

Uk
j − Uk

j−1

h
= 0 (∗)

For k = 0, the values U0
j are obtained from the initial condition i.e. U0

j = u0(xj), j =

0, ..., J and for j = 0, we use the boundary conditions i.e. Uk
0 = 0, k = 0, ...,K.

Then Uk
j can be iteratively computed using (∗).

An important consideration is stability. We know that a solution u(x, t) to the initial

boundary value problem satisfies

sup
x∈[0,1], t∈[0,T ]

|u(x, t)| ≤ sup
x∈[0,1]

|u0(x)|

This is clear from the solution formula (considering also the boundary condition).

Proposition 2.1.4 (Stability). Set µ = b·τ
h . If 0 ≤ µ ≤ 1 then the numerical solution

(Uk
j ) computed by the scheme (∗) satisfies

sup
j=0,...,J, k=0,...,K

|Uk
j | ≤ sup

j=0,...,J
|U0

j |

Proof. We have Uk+1
j = Uk

j − µ(Uk
j −Uk

j−1) = (1− µ)Uk
j + µUk

j−1. For 0 ≤ µ ≤ 1 this is

a convex combination of Uk
j and Uk

j−1 which, after iteration, proves our statement.

Remark. (i) The condition on µ is sharp (see exercises for counterexamples)

(ii) This uniform boundness of solutions is called stability. We proved it under the
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condition τ ≤ h
b (for b > 0). That some condition like this must be satisfied is

clear.

Proposition 2.1.5 (Convergence). Set µ = b·τ
h . If 0 ≤ µ ≤ 1 and u ∈ C2([0, 1]× [0, T ]),

then we have

sup
j=0,...,J

|u(xj , tk)− Uk
j | ≤

tk
2
(τ + bh)∥u∥C2([0,1]×[0,T ])

for all k = 0, ...,K and where Uk
j is computed according to (∗).

Proof. (i) We define the consistency term C k
j := ∂+t u(xj , tk) − b∂−x u(xj , tk) which

measures how much the exact solution fails to satisfy the discrete scheme. Since

∂tut + b∂xu = 0 on (0, 1)× (0, T ) we get from proposition 1.2.2(!)

|C k
j | ≤ |∂+t u(xj , tk)− ∂tu(xj , tk) + b∂−x u(xj , tk)− b∂xxu(xj , tk)|

≤ τ

2
sup

t∈[0,T )]
|∂2t u(xj , ·)|+

bh

2
sup

x∈[0,1]
|∂2xu(·, tk)| (1)

(ii) We now subtract the equation u(xj , tk+1) = u(xj , tk) − bτ∂−x u(xj , tk) + τC k
j and

Uk+1
j = Uk

j − bτ∂−x U
k
j to deduce for

Zk
j = u(xj , tk)− Uk

j and Zk+1
j = Zk

j − bτ∂−x Z
k
j + τC k

j

For 0 ≤ µ ≤ 1 we get |Zk+1
j | ≤ sup

j=0,...,J
|Zk

j |+τ |C k
j | (also using Z

k+1
0 ≥ 0). Induction

over k = 0, ...,K − 1 with Z0
j = 0, j = 0, ..., J , using (1), yields the result.

Remark. (i) The condition u ∈ C2 is satisfied if u0 ∈ C2 with u0(0, 0) = 0.

(ii) We used consistency and stability of the scheme.

(iii) The result implies convergence of the approximate solution to an exact solution.

2.1.4 CFL-Condition

Definition 2.1.6. An explicit numerical scheme of the form

Uk+1
j = ϕ(tk, xj , U

k
j−ml

, ..., Uk
j+mr

, τ, j)

satisfies the CFL-Condition if the characteristic through the part (xj , tk+1) intersects the

line {(x, t) | t = tk, x ∈ R} within the convex hull of all grid points (xj−ml
, tk), ..., (xj+mr , tk).

Examples. (i) For our previous scheme with b ≥ 0 the CFL-Condition is satisfied, if

0 ≤ µ ≤ 1.
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(ii) The scheme ∂+t U
k
j + b∂̂xU

k
j = 0 satisfies the CFL-Condition for |µ| ≤ 1, however

the scheme is never stable.

Remark. The so-called upwinding scheme

Uk+1
j = Uk

j −

µkj (Uk
j − Uk

j−1) µkj ≥ 0

µkj (U
k
j+1 − Uk

j ) µkj < 0

with µkj =
b(xj ,tk)τ

h is stable for b : [0, 1]× [0, T ] as long as sup b(x, t) τh ≤ 1.

Remark. (i) If the finite difference scheme is of the form Uk+1 = AUk (our previous

scheme here was of this form), stability, i.e. non-growth of Uk as k increases,

reduces to looking at the spectrum of A( and is stable if all eigenvalues of A are

less than 1).

(ii) If the scheme is of the type Uk+1
j =

∑
ℓ∈ZmℓU

k
j−ℓ (a discrete convolution) then a

stability analysis in Fourier space can be performed.

2.2 Laplace’s Equation

We consider

(i) −∆u = 0 (Laplace’s equation)

(ii) −∆u = f (Poisson’s equation)

for x ∈ Ω, Ω ⊂ Rn open. The unknown is u : Ω → R, u = u(x).

Definition. A C2 function satisfying the Laplace’s equation is called harmonic function.

For some context for physics assume u denotes the concentration of some quantity in

equilibrium. Consider the flux of u through the boundary ∂V of some smooth subdomain

V ⊂ Ω. We have from
´
∂V F · ν dS = 0, where F denotes the flux density of u, but´

∂V F · ν dS =
´
V divF dx = 0. Thus divF = 0 in Ω as V is arbitrary.

A very typical model assumes that F = c · ∇u with c > 0. Thus divc · ∇u = c ·∆u = 0

is the results equation.

2.2.1 Fundamental solution

Lets consider the Laplace’s equation on Rn. The equation is invariant to rotations

(Exercise). We thus look for a solution u(x) = v(|x|) = v(r). We get for

r = (

n∑
i=1

x2j )
1/2 that

∂r

∂xj
=
xj
r

if x ̸= 0.
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Thus uxj = v′(r)
xj

r , uxjxj = v′′(r)
x2
j

r2
+ v′(r)(1r − x2

j

r3
) and ∆u = v′′(r) + n−1

r v′(r). Thus

if ∆u = 0, we get v′′ + n−1
r v′ = 0. If v′ ̸= 0 we get log(|v′|)′ = v′′

v′ = 1−n
r . We obtain

v′(r) = a
rn−1 for some constant a. Thus if r > 0 we get

v(r) =

b log(r) + c n = 2

b
rn−2 + c n ≥ 3

with constants b, c.

Definition 2.2.1. The function

Φ(x) =

− 1
2π log |x| n = 2

1
n(n−2)α(n)

1
|x|n−2 n ≥ 3

defined on x ∈ Rn, x ̸= 0 is the fundamental solution of Laplace’s equation.

Remark. Note that |∇Φ(x)| ≤ C
|x|n−1 and |∇2Φ(x)| ≤ C

|x|n for x ̸= 0.

By construction we have ∆Φ(x) = 0 for x ̸= 0. Similarly x 7→ Φ(x − y) is harmonic as

a function of x for x ̸= y. Taking f : Rn → R, we also get x 7→ Φ(x− y)f(y) (x ̸= y) is

harmonic for any point y ∈ Rn. By linearity so is the sum of such expressions.

One might get the idea, that

u(x) =

ˆ
Rn

Φ(x− y)f(y) dy

solves the Laplace’s equation, but this is wrong.

Instead, we get

Theorem 2.2.2 (Solution Poisson’s Equation). Setting

u(x) =

ˆ
Rn

Φ(x− y)f(y) dy =

 1
2π

´
Rn log(|x− y|)f(y) dy n = 2

1
n(n−2)α(n)

´
Rn

f(y)
(x−y)n−2 dy n ≥ 3

for f ∈ C2
c (Rn), we get

(i) u ∈ C2(Rn)

(ii) −∆u = f in Rn

Proof. 1. We have u(x) =
´
Rn Φ(y)f(x− y) dy, so

u(x+ hei)− u(x)

h
=

ˆ
Rn

Φ(y)
f(x+ hei − y)− f(x− y)

h
dy
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(h ̸= 0, ei = (0, ..., 0, 1, 0, ..., 0)). But

(f(x+ hei − y)− f(x− y))
1

h
→ fxi(x− y)

uniformly on Rn as h→ 0. Thus

uxi(x) =

ˆ
Rn

Φ(y)fxi(x− y) dy

and similary

uxixj =

ˆ
Rn

Φ(y)fxixj (x− y) dy.

As Φ is integrable near the origin (Exercise) and fxixj has compact support, we get

continuous second derivatives of u, i.e. u ∈ C2(Rn).

2. Fix ε > 0, we get

∆u(x) =

ˆ
Bε(0)

Φ(y)∆xf(x− y) dy +

ˆ
Rn\Bε(0)

Φ(y)∆xf(x− y) dy = Iε + Jε

Then

Iε ≤ C · ∥D2f∥C∞(Rn)

ˆ
Bε(0)

|Φ(y)| dy ≤

Cε2| log ε| n = 2

Cε2 n ≥ 3

For Jε, integration by parts yields

Jε =

ˆ
Rn\Bε(0)

Φ(y)∆yf(x− y) dy

= −
ˆ
Rn\Bε(0)

∇yΦ(y) · ∇yf(x− y) dy +

ˆ
∂Bε(0)

Φ(y)
∂f

∂ν
(x− y) dS(y)

= Kε + Lε,

where ν denotes the inward pointing normal on ∂Bε(0). We check

|Lε| ≤ |∇f |C∞(Rn)

ˆ
∂Bε(0)

|Φ(y)| dS(y) ≤

Cε| log(ε)| n = 2

Cε n ≥ 3

3. Integrating again by parts, we get

Kε =

ˆ
Rn\Bε(0)

∆Φ(y)f(x− y) dy −
ˆ
∂Bε(0)

∂Φ

∂ν
(y)f(x− y) dS(y)
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since ∆Φ = 0 away from origin. Using

∇Φ(y) =
−1

nα(n)

y

|y|n
(y ̸= 0) and ν =

−y
|y|

=
−y
ε

on ∂Bε(0), we get
∂Φ

∂ν
(y) = ν · ∇Φ(y) =

1

nα(n)εn−1

on ∂Bε(0). Taking α(n) to be the volume of the unit ball in n-dimensions, we get

Kε = − 1

nα(n)εn−1

ˆ
∂Bε(0)

f(x− y) dS(y) =

 
∂Bε(0)

f(y) dS(y) → −f(x)

as ε→ 0. Combining the estimates and letting ε→ 0, we get −∆u(x) = f(x).

2.2.2 Mean Value Theorems

A Central property of harmonic functions:

Theorem 2.2.3 (Mean Value Formula). If u ∈ C2(Ω) is harmonic (i.e. ∆u = 0), then

u(x) =

 
∂Br(x)

u dS =

 
Br(x)

u dy

for any ball Br(x) ⊂ Ω.

Proof. Set

ϕ(r) =

 
∂Br(x)

u(y) dS(y) =

 
∂B1(0)

u(x+ rz) dS(z)

Then

ϕ′(r) =

 
B1(0)

∇u(x+ rz) · z dS(z)

=

 
∂Br(x)

∇u(y)y − x

r
dS(y)

=

 
∂Br(x)

∂u

∂ν
dS(y)

=
r

n

 
Br(x)

∆u(y) dy = 0.

Thus ϕ is constant, and

ϕ(r) = lim
t→∞

ϕ(t) = lim
t→∞

 
∂Bt(x)

u(y) dS(y) = u(x)

The second formula follows by integrating over r.
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Theorem 2.2.4 (Converse to Mean Value Property). If u ∈ C2(Ω) satisfies

u(x) =

 
∂Br(x)

u dS

for all Br(x) ⊂ Ω, then u is harmonic.

Proof. By contradiction using the previous theorem

2.2.3 Properties of Harmonic Functions

Theorem 2.2.5 (Strong Maximum Principle). Assume u ∈ C2(Ω) ∩C(Ω) is harmonic

in Ω.

(i) Then max
x∈Ω

u(x) = max
x∈∂Ω

u(x) (Maximum Principle)

(ii) Furthermore, if Ω is connected and there exists x0 ∈ Ω, s.t. u(x0) = max
x∈Ω

u(x),

then u is constant (Strong Maximum Principle)

Remark. Similar statement follows for minu, by v = −u

Proof. Assume there exists x0 ∈ Ω, u(x0) = M = max
x∈Ω

u(x). Then for 0 < r <

dist(x0, ∂Ω), we have, by theorem 2.2.4 that

M = u(x0) =

 
Br(x0)

u dy ≤M

with equality if and only if u ≡ M in Br(x0), i.e. u(y) = M for all y ∈ Br(x0). Thus,

the set {x ∈ Ω | u(x) = M} is both open and relatively closed in Ω, thus it equals Ω if

Ω is connected. This proves (ii) and (i) follows immediately,

Remark. If u ∈ C2(Ω) ∩ C(Ω), ∆u = 0 in Ω, u = g in ∂Ω, and if also g(x) > 0 for

some x ∈ ∂Ω, then u > 0 on Ω.

Theorem 2.2.6 (Uniqueness). Let g ∈ C(∂Ω), f ∈ C(Ω), the there exists at most one

solution u ∈ C2(Ω) ∩ C(Ω) of the boundary value problem:{
−∆u = f in Ω

u = g on ∂Ω

Proof. If u, v both solve the boundary value problem apply Theorem 2.2.5 (Strong Max-

imum Principle) to w = ±(u− v)
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Theorem 2.2.7 (Smoothness). If u ∈ C(Ω) satisfies the mean value property

u(x) =

 
∂Br(x)

u(y) dS(y)

for each ball Br(x) ⊂ Ω, then u ∈ C∞(Ω)

Remark. u may not be smooth (or even continuous) up to the boundary.

Proof. Consider the standard mollifier

ηε =

e
− 1

1−|x|2/ε |x| < ε

0 otherwise

such that ˆ
Rn

ηε = 1

we know that uε = u ∗ ηε (defined in Ωε = {dist(·, ∂Ω) > ε}) is smooth.

We show that u(x) = uε(x) for dist(x, ∂Ω) < ε. Consider

uε(x) =

ˆ
Ω
ηε(x− y)u(y) dy

=
1

εn

ˆ
Bε(x)

η

(
(x− y)

ε

)
u(y) dy

=
1

εn
u(x)

ˆ ε

0
η
(r
ε

)
nα(n)rn−1 dr = u(x)

Theorem 2.2.8. Assume u is harmonic in Ω. Then

|Dαu(x0)| ≤
Ck

rn+k
∥u∥C1(Br(x0))

for any ball Br(x0) ⊂ Ω and any multi-index α of order |α| ≤ k. We have

C0 =
1

α(n)
, Ck =

(2n+1nk)k

α(n)

for k = 1, 2, ...

Proof. We prove the statement by induction on k, with k = 0 being obvious from the

mean value formula (Quote: I still think there should be a nice value formula).

For k = 1, note that uxi is harmonic (by smoothness and differentiating ∆u = 0). We
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obtain

|uxi(x0)| =

∣∣∣∣∣
 
Br/2(x0)

uxi dx

∣∣∣∣∣ =
∣∣∣∣∣ 2n

α(n)r2

ˆ
∂Br/2(x0)

u · νi dS

∣∣∣∣∣ ≤ 2n

r
∥u∥L∞(∂Br/2(x0)).

For x ∈ ∂Br/2(x0), we have Br/2(x) ⊂ Br(x0) ⊂ Ω. So, by the k = 0 estimate, we get

|u(x)| ≤ 1

α(n)

(
2

r

)2

∥u∥L1(Br(x0))

This yields

|Dαu(x0)| ≤
2n+1n

α(n)

1

rn+1
∥u∥L1(Br(x0))

for |α| ≤ 1. The higher derivative estimates follow analogously ...

Theorem 2.2.9 (Liouville’s Theorem). Suppose u : Rn → R is harmonic and bounded.

Then, u is constant.

Proof. Fix x0 ∈ Rn , r > 0. By Theorem (2.2.8) we get on Br(x0)

|Du(x0)| ≤
√
nC1

rn+1
∥u∥L1(Br(x0)) ≤

√
nC1

r
∥u∥L∞(Rn) → ∞

as r → ∞. Thus Du ≡ 0 and u is constant.

Theorem 2.2.10. Let f ∈ C2
c (Rn), n ≥ 3. Then any bounded solution of −∆u = f in

Rn has the form

u(x) =

ˆ
Rn

Φ(x− y)f(y) dy + C

for x ∈ Rn

Proof. Clearly, since Φ(x) → 0 as |x| → ∞, the rhs. is bounded and ũ = Φ ∗ f is a

bounded solution of Laplace’s equation. If u is any other solution, then u− ũ is bounded

and harmonic, thus constant due to theorem 2.2.9.

Remark. (i) One can even prove analyticity of harmonic functions.

(ii) There are non-bound harmonic functions on Rn.

Theorem 2.2.11 (Harnack’s Inequality). Consider V ⊂⊂ Ω (∃K ⊂ Ω, K compact, s.t

V ⊂ K is open). Then there exists C depending only on V , s.t.

sup
V

u ≤ C inf
V
u

for any non-negative harmonic function u in Ω.
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Proof. Take r = 1
4dist(V, ∂Ω), x, y ∈ V , s.t. |x− y| < r. Then

u(x) =

 
B2r(x)

u(z) dz ≥ 1

α(n)2nrn

ˆ
Br(y)

u(z) dz =
1

2n

 
Br(y)

u(z) dz =
1

2n
u(y)

Thus, 2nu(y) ≥ u(x) ≥ 1
2nu(y) if x, y ∈ V, |x− y| < r.

Since V is connected and V is compact, we can cover V by finitely many balls {Bi}Ni=1,

each with radius r
2 , and Bi ∩ Bi−1 ̸= ∅ for i = 1, ..., N and thus u(x) ≥ 1

2n(N+1)u(y) for

all x, y ∈ V .

Now, take Ω ⊂ Rn, with ∂Ω in C1. We would like to solve{
−∆u = f in Ω

u = g on ∂Ω.

This is the classic boundary value problem.

Assume u ∈ C2(Ω) is given, fix x ∈ Ω, ε > 0 s.t. Bε(x) ⊂ Ω and apply the divergence

theorem on Vε = Ω \Bε(x) to u(y) and Φ(x− y). We compute

ˆ
Vε

u(y)∆Φ(y−x)−Φ(y−x)∆u(y) dy =

ˆ
∂Vε

u(y)
∂Φ

∂ν
(y−x)−Φ(y−x)∂u

∂ν
(y) dS(y) (2∗)

Note: ∆Φ(x− y) = 0 for x ̸= y and∣∣∣∣ˆ −∂Bε(x)Φ(x− y)
∂u

∂ν
(y) dS(y)

∣∣∣∣ ≤ Cεn−1 max
∂Bε(0)

|Φ| = as ε→ 0.

We also, from the proof of theorem 2.2.2 have

ˆ
∂Bε(x)

u(y)
∂Φ

∂ν
(y − x) dS(y) =

 
∂Bε(x)

u(y) dS(y) → u(x)

Takin ε→ 0 in (2∗) the yields

u(x) =

ˆ
∂Ω

Φ(y − x)
∂u

∂ν
(y)︸ ︷︷ ︸

(3∗)

−u(y)∂Φ
∂ν

(y − x) dS(y)−
ˆ
Ω
Φ(y − x)∆u(y) dy

for any x ∈ R, any u ∈ C2(Ω). We can compute the rhs. except for (3∗). Consider thus
a ”correcter” φx = φx(y) solving{

∆φx = 0 in Ω

φx = Φ(y − x) on ∂Ω.

12



This yields using Gauß-Green again,

−
ˆ
Ω
φx(y)∆u(y) dy =

ˆ
∂Ω
u(y)

∂φx

∂ν
(y)− φx(y)

∂u

∂ν
(y) dS(y)

=

ˆ
∂Ω
u(y)

∂φx

∂ν
(y)− Φ(y − x)

∂u

∂ν
(y) dS(y) (4∗)

Definition 2.2.12. Green’s function for the domain Ω is

G(x, y) = Φ(y − x)− φx(y)

for x, y ∈ Ω with x ̸= y.

Now adding (3∗) and (4∗), we get

u(x) = −
ˆ
∂Ω
u(y)

∂G

∂ν
(x, y) dS(y)−

ˆ
Ω
G(x, y)∆u(y) dy (5∗)

where ∂G
∂ν (x, y) = ∇yG(x, y) · ν(y). If now u ∈ C2(Ω) solves

(6∗) =

{
−∆u = f in Ω

u = g on ∂Ω

for given continuous functions f, g, we know by plugging into (5∗)

Theorem 2.2.13. If u ∈ C2(Ω) solves (6∗) then

u(x) = −
ˆ
∂Ω
g(y)

∂G

∂ν
(x, y) dS(y) +

ˆ
Ω
f(y)G(x, y) dy

for x in Ω.

We could say {
−∆yG = δx in Ω

G(·, y) = 0 on ∂Ω

Theorem 2.2.14. For x, y ∈ Ω, x ̸= y, we have

G(y, x) = G(x, y)

Proof. Fix x, y ∈ Ω, x ̸= y. Set

v(z) = G(x, z), w(z) = G(y, z), z ∈ Ω

then

∆v(x) = ∆w(z) = 0

13



for z ̸= x, z ̸= y respectively. Also, w = v = 0 on ∂Ω. Applying Gauß-Green on

V = Ω \ (Bε(x) ∪Bε(y)) for ε > 0 sufficiently small, we get

ˆ
∂Bε(x)

∂v

∂ν
w − ∂w

∂ν
v dS(z) =

ˆ
∂Bε(y)

∂w

∂ν
v − ∂v

∂ν
w dS(z) (7∗)

Also, v(z) = Φ(z − x)− Φx(z), where Φx is smooth in Ω. Thus

lim
ε→0

ˆ
∂Bε(x)

∂v

∂ν
w dS = lim

ε→0

ˆ
∂Bε(x)

∂Φ

∂ν
(x− z)w(z) dS(z) = w(x)

Thus, the lhs. of (7∗) converges to w(x) as ε→ 0, the rhs. converges to v(y), thus

G(y, x) = w(x) = v(y) = G(x, y)

2.2.4 Green’s Function on the Half Space

Consider Rn
+ := {(x1, ..., xn) ∈ Rn | xn > 0}, the so-called half space.

Definition 2.2.15. Green’s function for the half space Rn
+ is

G(x, y) = Φ(y − x)− Φ(y − x̃),

x, y ∈ Rn
+, x ̸= y, where

x̃ = (x1, ..., xn−1,−xn) ∈ Rn
−.

We obtain, for y ∈ ∂Rn
+, that

∂G

∂ν
(x, y) = −Gyn(x, y) =

−2xn
nα(n)

1

|x− y|n

We would thus expect

u(x) =
2xn
nα(n)

ˆ
∂Rn

+

g(y)

|x− y|n
dy, x ∈ Rn

+ (8∗)

solves

∆u = 0 in Rn
+

u = g on ∂Rn
+

(in a limit sense).
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The function

K(x, y) =
2xn
nα(n)

1

|x− y|n
, x ∈ Rn

+, y ∈ ∂Rn
+

is called Poisson-Kernel of the half space, and (8∗) is called Poisson’s formula of the half

space.

Theorem 2.2.16. Assume g ∈ C(Rn−1) ∩ L∞(Rn−1) and define u by (8∗). Then

(i) u ∈ C∞(Rn
+) ∩ L∞(Rn

+)

(ii) ∆u = 0 in Rn
+ and

(iii) lim
x→x0

u(x) = g(x0) for x0 ∈ ∂Rn
+

Proof. 1. For a fixed x, y 7→ G(x, y) is harmonic for x ̸= y. By symmetry of G,

x 7→ G(x, y) is also harmonic for x ̸= y. Thus

x 7→ − ∂G

∂yn
(x, y) = K(x, y)

is harmonic for x ∈ Rn
+, y ∈ ∂Rn

n.

2. We note that ˆ
∂Rn

+

K(x, y) dy = 1 (9∗)

for any x ∈ Rn
+. Thus, as g is bounded, u defined by (9∗) is also bounded. As x 7→ K(x, y)

is smooth, we see that u ∈ C∞(Rn
+) (just take derivatives w.r.t. x in (9∗) and note that

integration and differentiation can be exchanged here). We get

∆u(x) =

ˆ
∂Rn

+

∆xK(x, y)g(y) dy = 0

as ∆xK(x, y) = 0 for x ̸= y.

3. Fix now x0 ∈ ∂Rn
+, ε > 0, take δ > 0 such that

|g(y)− g(x0)| < ε for |y − x0| < δ, y ∈ ∂Rn
+ (10∗)

Then, if |x− x0| < δ/2, x ∈ Rn
+, we get

|u(x)− g(x0)| =

∣∣∣∣∣
ˆ
∂Rn

+

K(x, y)(g(y)− g(x0)) dy

∣∣∣∣∣
≤
ˆ
∂Rn

+∩Bδ(x0)
K(x, y)|g(y)− g(x0)| dy +

ˆ
∂Rn

+\Bδ(x0)
K(x, y)|g(y)− g(x0)| dy

15



= I + J

We note I < ε by (9∗), (10∗). Further, if |x− x0| < δ/2 as |y − x0| ≥ δ/2, we get

|y − x0| ≤ |y − x|+ δ

2
≤ |y − x|+ 1

2
|y − x0|

So, |y − x| ≥ 1/2|y − x0| and we get

J ≤ 2∥g∥L∞

ˆ
∂Rn

+\Bδ(x0)
K(x, y) dy ≤ 2n+2∥g∥L∞xn

nα(n)

ˆ
∂Rn

+\Bδ(x0)

1

|y − x0|n
dy → 0

as xn → 0. This yields

|u(x)− g(x0)| ≤ 2ε

for |x− x0| sufficiently small.

Remark. To get Green’s function for a ball B1(0) ⊂ Rn, use the dual point x̃ to x ̸= 0

given by x̃ = x/|x|2 and set

φx(y) = Φ(|x|(y − x̃))

and note that φx is harmonic in B1(0). The rest follows as before, with

G(x, y) = Φ(y − x)− Φ(|x|(y − x̃)) x, y ∈ B1(0), x ̸= y.

2.2.5 Finite Difference Schemes for Poisson’s Equation

Consider {
−∆u = f in Ω = [0, 1]2

u = 0 on ∂Ω.

For J ≥ 1, set h = 1/J and define grid points

xj,m = (jh,mh), 0 ≤ j,m ≤ J

and replace the Laplacian by central difference quotients. We thus want to find

{Uj,m}Jj,m=0 ⊂ R

such that

−∂+x1
∂−x1

Uj,m − ∂+x2
∂−x2

Uj,m = f(xj,m) = (F )j,m

for 1 ≤ m ≤ J

U0,m = UJ,m = Uj,0 = Uj,J = 0

16



for j,m = 0, ..., J . We see that

−∆hUj,m =
−1

h2
(Uj+1,m + Uj,m+1 − 4Uj,m + Uj−1,m + Uj,m−1)

One can also do this for n > 2.

We note that the finite difference scheme (above) can be written as a suitable linear

system of equations, by setting

(j,m) ∼ j + (m− 1)(J − 1) = l

for j,m = 1, ..., J − 1, l = 1, ..., L = (J − 1)2.

Setting X ∈ R(J−1)×(J−1) to

X =


4 −1

−1 4 −1

−1
. . .

. . .

. . . 4


we can write (the above scheme) as AU = b with

A =


X −I

−I . . .
. . .

. . .
. . . −I
−I X

 , b = h2


f(x1)

f(x2)
...

f(xL)

 ,

where I ∈ R(J−1)×(J−1) is the identity-matrix.

To include boundary conditions u = g on ∂Ω, assume that there exists a function

ũD ∈ C2(Ω), such that ũD|∂Ω = g, write u = û + ũD and note that if u solves the

boundary value problem, we have

−∆û = f +∆ũD

in Ω and û = 0 on ∂Ω.

For the finite difference scheme, just set

(ŨD)i,j = g(xi,j) xi,j ∈ ∂Ω
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and solve

−∆hÛ = (F )i,j + (∆hŨD)i,j xi,j ∈ Ω

and Ûi,j = 0 for xi,j ∈ ∂Ω.

Note that one can also impose so-called Newmann-Conditions on part of the boundary,

where, instead of u, we prescribe the values of

∂u

∂ν
.

We are looking at {
−∆u = f in Ω = (0, 1)2

u = 0 on ∂Ω

Discretization

−∆hUj,m =
−1

h2
(Uj+1,m + Uj,m+1 − 4Uj,m + Uj−1,m + Um,j−1)

Lemma 2.2.17 (Discrete Maximum Principle). If U = (Uj,m, j,m = 0, ..., J) satisfies

−∆hUj,m ≤ 0

for all j,m = 1, ..., J − 1, then U attains its maximum for j = 0, j = J, m = 0 or

m = J .

Proof. From −∆hUj,m ≤ 0, we get

Uj,m ≤ 1

4
(Uj−1,m + Uj+1,m + Uj,m−1 + Uj,m+1)

For 1 ≤ j,m ≤ J−1. So Uj,m is a convex combination of its surroundings. If, thus, Uj,m

is a maximum, the estimate has to hold with equality and the maximum is also attained

at all of the neighboring points, we can continue this until we reach a boundary.

Lemma 2.2.18 (Discrete Boundedness). For all (Zj,m, j,m = 0, ..., J) with Zj,m = 0

for j = 0, j = J, m = 0, m = J , we have

max
j,m=0,...,J

|Zj,m| ≤ 1

2
sup

j,m=1,...,J−1
|∆hZj,m|

Proof. Write

S = max
j,m=1,...,J−1

|∆hZj,m|

and set Wj,m = (jh)2 + (mh)2, which, on the grid points, coincides with w(x1, x2) =
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x21 + x22. Notice Wj,m ≥ 0, j,m = 0, ..., J and ∆hWj,m = 4, j,m = 1, ..., J − 1. Now set

Vj,m = Zj,m +
S

4
Wj,m

and get

−∆hVj,m = −∆hZj,m − S ≤ 0

The discrete maximum principle implies that Vj,m attains its maximum on the boundary,

there

Zj,m = 0 and 0 ≤Wj,m ≤ 2

Therefore

Zj,m = Vj,m − S

4
Wj,m ≤ S

2

Similary, the result

−Zj,m ≤ S

2

holds and we obtain the lemma.

Proposition 2.2.19 (Error Estimate). Let u ∈ C2(Ω) and U = (Uj,m, j,m = 0, ..., J)

be the solution to the Poisson boundary value problem

−∆u = f in (0, 1)2 = Ω

u = 0 on ∂Ω

and its discretization respectively, then we have

sup
j,m=0,...,J

|u(xj,m)− Uj,m| ≤ h2

24
(∥∂4x1

u∥C0([0,1]2) + ∥∂4x2
u∥C0([0,1]2))

Proof. Since −∆u(xj,m) = f(xj,m) for j,m = 0, ..., J , the error

Zj,m = u(xj,m)− Uj,m

satisfies

−∆hZj,m = −∆hu(xj,m) + ∆hUj,m

= f(xj,m)− f(xj,m) + ∆u(xj,m)−∆hu(xj,m)

= ∂2x1
u(xj,m)− ∂+x1

∂−x1
u(xj,m) + ∂2x2

u(xj,m)− ∂+x2
∂−x2

u(xj,m)
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From our estimates on the difference quotients, we get

| −∆hZj,m| ≤ h2

24
(∥∂4x1

u∥C0([0,1]29 + ∥∂4x2
u∥C0([0,1]2))

Together with the discrete boundedness lemma we obtain the result.

2.3 Heat Equation

We study the equation

ut −∆u = 0

and its non-homogeneous pendant

ut −∆u = f

subjected to appropriate initial and boundary conditions. We take t > 0, x ∈ Ω, Ω ⊂ Rn

open. The sought after function is

u : Ω× [0,∞) → R, u = u(x, t)

and the laplacian is stable w.r.t the spatial variables x. The function f : Ω× [0,∞) → R
is given.

For a physical interpretation, consider V ⊂ Ω, then

d

dt

ˆ
V
u dx = −

ˆ
∂V
F · ν dS

(if the quantity does not get produced or destroyed within V ). Again we assume F =

a · ∇u (a > 0) and the divergence theorem yields

ut = div(a · ∇u) = a ·∆u

2.3.1 Fundamental Solution

Consider functions of the form

(11∗) u(x, t) = 1

tα
v
( x
tβ

)
x ∈ Rn, t > 0

with constants α, β, and the function v : Rn → R to be found.

Equation (11∗) shows up if we look for solutions to the heat equation, that are invariant
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under the scaling

u(x, t) 7→ λαu(λβx, λt)

for any λ > 0, x ∈ Rn, t > 0. Setting λ = 1/t yields (11∗) for v(y) = u(y, 1).

Inserting (11∗) into the heat equation, we get

αt−(α+1)v(y) + βt−(α+1)y · ∇V (y) + t−α+2β∆v(y) = 0

for y = t−βx, try β = 1/2, then our equation reduces to

αv +
1

2
y · ∇v(y) + ∆v(y) = 0.

Assume u is radial, i.e. v(y) = w(|y|) for some w : R → R. This yields

αw +
1

2
rw′ + w′′ +

u− 1

r
w′ = 0,

where r = |y|, ′ = d/dr. Setting α = n/2, we get

(rn−1w′)′ +
1

2
(r2w)′ = 0,

i.e.

rn−1w′ +
1

2
rnw = α

Assuming limr→∞w,w′ = 0, we conclude that u = 0, so w′ = −1/2rw. This has

solutions

w = b · e−
r2

4

for some constant b. Plugging in our choices for α, β, we get then

b

tn/2
exp

(
−|x|2

4t

)
solves the heat equation. This can easily be concluded for x ∈ Rn, t > 0.

Definition 2.3.1. The function

Φ(x, t) =


1

(4πt)n/2 exp
(
−|x|2
4t

)
x ∈ Rn, t > 0

0 x
´
Rn, t < 0

is called the fundamental solution for the heat equation.

Note that we have a singularity a the origin.
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Lemma 2.3.2. For t > 0, we have

ˆ
Rn

Φ(x, t) dx = 1

Proof. Exercise.

We now use the fundamental solution to solve the initial value (or Cauchy) problem{
ut −∆u = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}

Note that (x, t) 7→ Φ(x − y, t) solves the heat equation for any given y ∈ Rn, t > 0.

Therefore the convolution

u(x, t) =

ˆ
Rn

Φ(x− y, t)g(y) dy =
1

(4πt)n/2

ˆ
Rn

exp

(
|x− y|2

4t

)
g(y) dy, x ∈ Rn, t > 0,

should also be a solution to the heat equation.

Theorem 2.3.3. Assume g ∈ C(Rn) ∩ L∞(Rn) and define u by

u(x, t) =

ˆ
Rn

Φ(x− y, t)g(y) dy =
1

(4πt)n/2

ˆ
Rn

exp

(
−|x− y|2

4t

)
g(y) dy

then

(i) u ∈ C∞(Rn × (0,∞))

(ii) ut(x, t)−∆u(x, t) = 0 for x ∈ Rn, t > 0.

(iii) For any x0 ∈ Rn we have

lim
(x,t)→(x0,t)

u(x, t) = g(x0)

Proof. 1. Since
1

tn/2
exp

(
−|x|2

4t

)
is infinitely differentiable with uniformly bounded derivatives of all orders on Rn× [δ,∞)

for each δ > 0, we see then u ∈ C∞(Rn × (0,∞)). (Exercise)

Also,

ut(x, t)−∆u(x, t) =

ˆ
Rn

(Φt −∆xΦ)(x− y, t) g(y) dy = 0

for x ∈ Rn, t > 0, as Φ solves the heat equation.
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2. Fix x0 ∈ Rn, ε > 0. Choose δ > 0 s.t. |g(y)− g(x0)| < ε, if |y − x0| < δ, for y ∈ Rn.

Then for |x− x0| < δ/2, we have

|u(x, t)− g(x0)| ≤
∣∣∣∣ˆ

Rn

Φ(x− y, t)(g(y)− g(x0)) dy

∣∣∣∣
≤
ˆ
Rn

Φ(x− y, t)|g(y)− g(x0)| dy

=

ˆ
Bδ(x0)

Φ(x− y, t)|g(y)− g(x0)| dy +
ˆ
Rn\Bδ(x0)

Φ(x− y, t)|g(y)− g(x0)| dy

= I + J

But

I ≤ ε

ˆ
Rn

Φ(x− y, t) dy = ε

Further, note that if |x− x0| ≤ δ/2 and |y − x0| ≥ δ then

|y − x0| ≤ |y − x|+ δ

2
≤ |y − x|+ 1

2
|y − x0|

so, |y − x| ≥ 1/2|y − x0|. Thus

J ≤ 2∥g∥L∞

ˆ
Rn\Bδ(x0)

Φ(x− y, t) dy

≤ C

tn/2

ˆ
Rn\Bδ(x0)

exp

(
−|x− y|2

4t

)
dy

≤ C

tn/2

ˆ
Rn\Bδ(x0)

exp

(
−|y − x0|2

16t

)
dy

≤ C

ˆ
Rn\Bδ/

√
t(x

0)
exp

(
−|z|2

16

)
dz → 0

as t→ 0 from above. Thus, if |x− x0| < δ/2 and t > 0 is small enough,

|u(x, t)− g(x0)| < 2ε

Remark. Consider g ∈ C(Rn), supp(g) ⊂ B1(0), then

u(x, t) =

ˆ
Rn

Φ(x− y)g(y) dy > 0 ∀x ∈ Rn, t > 0.

→Infinite speed of propagation (different from transport- or wave-equation).

What about the non-homogeneous equation?
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Consider

(12∗) =

{
ut −∆u = f in Rn × (0,∞)

u = 0 on Rn × {t = 0}

Note that (x, t) 7→ Φ(x− y, t− s) solves the heat equation for y ∈ Rn, 0 < s < t.

Thus (for fixed s) the function

u = us(x, t) =

ˆ
Rn

Φ(x− y, t− s)f(y, s) dy

solves

ust −∆us = 0 in Rn × (0,∞)

us = f(·, s) on Rn × {t = s}

(This is just the initial value problem with starting time t = s instead of t = 0 and g

replaced by f(·, s).)

Duhamel’s principle suspects we can build a solution of (12∗) from this us.

Consider

u(x, t) =

ˆ t

0
us(x, t) ds x ∈ Rn, t ≥ 0,

that is

u(x, t) =

ˆ t

0

ˆ
Rn

Φ(x− y, t− s)f(y, s) dy ds.

Theorem 2.3.4. Consider f ∈ C2(Rn × (0,∞)), with compact support, s.t. ft, D
2f ∈

C(Rn × [0,∞)) and set

u(x, t) =

ˆ t

0

ˆ
Rn

Φ(x− y, t− s)f(y, s) dy ds

Then,

(i) We have ut, D
2u, u,∇u are in C(Rn × (0,∞))

(ii) ut(x, t)−∆u(x, t) = f(x, t) for x ∈ Rn, t > 0.

(iii) For x0 ∈ Rn we have

lim
(x,t)→(x0,t)

u(x, t) = 0
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Proof. 1. Change variables to get

u(x, t) =

ˆ t

0

ˆ
Rn

Φ(y, s)f(x− y, t− s) dy ds.

The properties of f together with smoothness of Φ = Φ(y, s) near s = t > 0, we compute

ut(x, t) =

ˆ t

0

ˆ
Rn

Φ(y, s)ft(x− y, t− s) dy ds+

ˆ
Rn

Φ(y, t)f(x− y, 0) dy

and

uxixj (x, t) =

ˆ t

0

ˆ
Rn

Φ(y, s)fxixj (x− y, t− s) dy ds

Thus, ut, D
2u are continuous (and so are u,∇u).

2. We calculate

ut(x, t)−∆u(x, t) =

ˆ t

0

ˆ
Rn

Φ(y, s)

[(
∂

∂t
−∆x

)
(f(x− y, t− s))

]
︸ ︷︷ ︸

=:a

dy ds+

ˆ
Rn

Φ(y, t)f(x− y, 0) dy

=

ˆ t

ε
a dy ds+

ˆ ε

0
a dy ds+

ˆ
Rn

Φ(y, t)f(x− y, 0) dy

= Iε + Jε +K

We immediatly see that

|Jε| ≤ (∥ft∥L∞ + ∥D2f∥L∞) ·
ˆ ε

0

ˆ
Rn

Φ dy ds = ε · C.

Also

Iε =

ˆ t

ε

ˆ
Rn

[(
d

ds
−∆y

)
Φ(y, s)

]
︸ ︷︷ ︸

=0

f(x− y, t− s) dy ds

+

ˆ
Rn

Φ(y, ε)f(x− y, t− ε) dy−
ˆ
Rn

Φ(y, t)f(x− y, 0) dy︸ ︷︷ ︸
=−K

=

ˆ
Rn

Φ(y, ε)f(x− y, t− ε) dy −K

Thus

ut(x, t)−∆u(x, t) = lim
ε→0

ˆ
Rn

Φ(y, ε)f(x− y, t− ε) dy = f(x, t)

for x ∈ Rn, t > 0 (with this limit being computed as in the proof of theorem 2.3.3.).

25



Note also that

∥u(·, t)∥L∞ ≤ t∥f∥L∞ → 0

as t→ 0.

Remark. Note that theorem 2.3.3. and 2.3.4. can be combined to yield

u(x, t) =

ˆ
Rn

Φ(x− y)g(y) dy +

ˆ t

0

ˆ
Rn

Φ(x− y, t− s)f(y, s) dy ds

as a solution of

ut −∆u = f in Rn × (0,∞)

u = g on Rn × {t = 0}.

2.3.2 Mean Value Formulas

Definition 2.3.5. For Ω ⊂ Rn, T > 0 define

∼ the parabolic cylinder ΩT = Ω× (0, T ] and

∼ the parabolic boundary ΓT = ΩT \ ΩT .

Definition 2.3.6. For fixed x ∈ Rn, t ∈ R, r > 0 we define

Er(x, t) =

{
(y, s) ∈ Rn+1 | s ≤ t, Φ(x− y, t− s) ≥ 1

rn

}
a so-called heat ball.

Theorem 2.3.7 (Mean value property of the heat equation). Let u ∈ C2
1 (ΩT ) (i.e.

u ∈ C(ΩT ), uxi,xj ∈ C(ΩT )) solve the heat equation, then

u(x, t) =
1

4rn

ˆ ˆ
Er(x,t)

u(y, s)
|x− y|2

(t− s)2
dy ds

for Er(x, t) ⊂ ΩT .

Proof. Assume x = 0, t = 0, Er = Er(0, 0). Set

ϕ(r) =
1

rn

ˆ ˆ
Er

u(y, s)
|y|2

s2
dy ds =

ˆ ˆ
E1

u(ry, r2s)
|y|2

s2
dy ds

because Φ(rx, r2t) = r−nΦ(x, t). We differentiate with respect to r

ϕ′(r) =

ˆ ˆ
E1

|y|2

s2
(y∇u(ry, r2s) + 2rsus(ry, r

2s)) dy ds
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=
1

rn+1

ˆ ˆ
Er

|y|2

s2
y∇u(y, s) + 2us(y, s)

|y|2

s2
dy ds

=
1

rn+1

ˆ ˆ
Er

|y|2

s2
y∇u(y, s) dy ds+ 1

rn+1

ˆ ˆ
Er

2us(y, s)
|y|2

s2
dy ds

= A+B

Also introduce

ψ := −n
2
log(−4πs) +

|y|2

4s
+ n log(r) (12∗)

and obtain Er = {(y, s) | ψ(y, s) ≥ 0

⇒ ψ = 0 on ∂Er

We use (12∗) and write

B =
1

rn+1

ˆ ˆ
Er

4usy∇ψ dy ds
Green
= − 1

rn+1

ˆ ˆ
Er

4nusψ + 4ψy∇us dy ds

Integration by parts in s

B =
1

rn+1

ˆ ˆ
Er

4nusψ + 4ψsy∇u dy ds

=
1

rn+1

ˆ ˆ
Er

4nusψ + 4

(
− n

2s
− |y|2

4s2

)
y∇u dy ds

=
1

rn+1

ˆ ˆ
Er

−4nusψ − 2n

s
y∇u dy ds−A

Consequently, since u solves the heat equation

ϕ′(r) = A+B =
1

rn+1

ˆ ˆ
Er

−4n∆uψ − 2n

s
y∇u dy ds

Green
=

1

rn+1

ˆ ˆ
Er

4n∇u∇ψ − 2n

s
y∇u dy ds (12∗)

= 0

Thus ϕ is constant, and therefore

ϕ(r) = lim
t→0

ϕ(t) = u(0, 0)

(
lim
t→0

1

tn

ˆ ˆ
Et

|y|2

s2
dy ds

)
= 4u(0, 0)

as
1

tn

ˆ ˆ
Et

|y|2

s2
dy ds =

ˆ ˆ
E1

|y|2

s2
dy ds = 4.
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2.3.3 Properties of Solutions

Theorem 2.3.8 (Strong Maximum Principle). Assume u ∈ C2
1 (ΩT )∩C(ΩT ) solves the

heat equation in ΩT

(i) Then

max
ΩT

u = max
ΓT

u

(ii) If Ω is connected and there exists a point (x0, t0) ∈ ΩT with

u(x0, t0) = max
ΩT

u

then u is constant.

Proof. 1. Suppose (x0, t0) ∈ ΩT with

u(x0, t0) =M := max
ΩT

u

for all sufficiently small r > 0, we employ for Er(x0, t0) ⊂ Ω the mean value property

M = u(x0, t0) =
1

4rn

ˆ ˆ
Er(x0,t0)

u(y, s)
|x0 − y|2

(t0 − s)2
dy ds ≤M

since

1 =
1

4rn

ˆ ˆ
Er(x0,t0)

|x0 − y|2

(t0 − s)2
dy ds.

Equality only holds if u is identically equal to M in Er(x0, t0), therefore u(y, s) =

M ∀(y, s) ∈ Er(x0, t0). Let L be a line segment in ΩT connecting (x0, t0) ∈ ΩT with

(y0, s0) ∈ ΩT , s0 < t0. Consider r0 := min{s ≥ s0 | u(x, t) =M ∀(x, t) ∈ L, s ≤ t ≤ t0.

Assume r0 > s0: u(z0, r0) = M for some (z0, r0) on L ∩ ΩT , thus u ≡ M on Er(z0, r0)

for all sufficiently small r > 0. Since

Er(z0, r0) ⊃ L ∩ {r0 − σ ≤ t ≤ r0}

for small σ > 0, we get a contradiction and thus r0 = s0 and we get u =M on L.

2. Fix any x ∈ Ω, 0 ≤ t < t0. There exists points {x0, x1, ..., xm = x} such that the line

segments in Rn connecting xi−1 to xi lie in Ω for i = 1, ...,m. (Set of points in Ω which

can be connected like this by a polygonal path is non-empty, open and relatively closed

on Ω.)
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Select times t0 > t1... > tm = t, then the line segments connecting (xi−1, ti−1) to (xi, ti)

lie in ΩT . According to 1. u ≡M on such a segment and thus u(x, t) =M .

Remark. If Ω is connected, u ∈ C2
1 (ΩT ) ∩ C(ΩT ) satisfies

ut −∆u = 0 in ΩT

u = 0 on ∂Ω× [0, T ]

u = g on Ω× {t = 0}

where g ≥ 0, then u is positive everywhere within ΩT , if g is positive somewhere on Ω.

Theorem 2.3.9 (Uniqueness on bounded domains). Let g ∈ C(ΓT ), f ∈ C(ΩT ). Then

there exists at most one solution u ∈ C2
1 (ΩT ) ∩ C(ΩT ) of the initial value problem

(13∗) =

{
ut −∆u = f in ΩT

u = g on ΓT

Proof. If u, ũ are solutions of (13∗), apply theorem 2.3.8. to w := ±(u− ũ)

Theorem 2.3.10 (Maximum Principle for Cauchy Problem). Suppose u ∈ C2
1 (Rn ×

(0, T ]) ∩ C(Rn × [0, T ]) solves{
ut −∆u = 0 in Rn × (0, T )

u = g on Rn × {t = 0}

and satisfies growth estimate

u(x, t) ≤ Aea|x|
2

(x ∈ Rn, 0 ≤ t ≤ T )

for constants A, a > 0. Then

sup
x∈Rn×[0,T ]

u(x) = sup
x∈Rn

g(x)

Proof. 1. Assume first that 4aT < 1, such that

4a(T + ε) < 1

for suitable ε > 0. Fix y ∈ Rn, µ > 0 and set

v(x, t) = u(x, t)− µ

(T + ε− t)n/2
exp(

|x− y|2

4(T + ε− t)
)
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for x ∈ Rn, t > 0. We have

vt −∆v = 0

in Rn × (0, T ). Fix r > 0, and set Ω = Br(y), ΩT = Br(y)× (0, T ]. Then using theorem

2.3.8., we have

max
x∈ΩT

v(x) = max
x∈ΓT

v(x)

2. Now, for x ∈ Rn,

v(x, 0) = u(x, 0)− µ

(T + ε)n/2
exp(

|x− y|2

4(T + ε)
) ≤ u(x, 0) = g(x)

and, if |x− y| = r, 0 ≤ t ≤ T ,

v(x, t) = u(x, t)− µ

(T + ε− t)n/2
exp(

r2

4(T + ε− t)
)

≤ Aea|x|
2 − µ

(T + ε− t)n/2
exp(

r2

4(T + ε− t)
)

≤ Aea(|y|+r)2 − µ

(T + ε− t)n/2
exp(

r2

4(T + ε− t)
)

We have
1

4(T + ε)
= a+ γ

for some γ > 0, and thus

v(x, t) ≤ Aea(|y|+r)2 − µ(4(a+ γ))n/2e(a+γ)r2 ≤ sup
x∈Rn

g(x)

for r sufficiently large (remember |x − y| = r), since the negative term ”wins” at some

point. This, however, implies that

v(y, t) ≤ sup
x∈Rn

g(x)

for all y ∈ Rn, 0 ≤ t ≤ T as long as 4aT < 1. For µ→ 0, we obtain

u(x, t) ≤ sup
y∈Rn

g(y) x ∈ Rn, 0 ≤ t ≤ T

3. In the general case repeatedly apply the above result on time intervals [0, T1], [T1, 2T1], ...

for T1 = 1/(γa).

Theorem 2.3.11 (Uniqueness of the Cauchy-Problem). Let g ∈ C(Rn), f ∈ C(Rn ×
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[0, T ]), then there exists at most one solution u ∈ C2
1 (Rn × (0, T ]) ∩ C(Rn × [0, T ]) of{

ut −∆u = f in Rn × (0, T )

u = g on Rn × {t = 0}

satisfying the growth estimate

u(x, t) ≤ Aea|x|
2

x ∈ Rn, 0 ≤ t ≤ T

for some a,A > 0.

Proof. Apply theorem 2.3.10 to w = ±(u−ũ) when both u, ũ satisfy the assumption.

Remark. There are so-called ”unphysical” solutions to the heat equation on Rn with

very rapid growth and zero initial conditions (so-called Tychonov solutions).

2.3.4 Finite Difference Schemes for the Heat equation

We simply replace the derivatives in the problem
ut −∆u = 0 in (0, 1)× (0, T )

u = g on (0, 1)× {t = 0}

u = 0 on ({0} ∪ {1})× (0, T ]

to get the forward Euler scheme

∂+t U
k
j − ∂+x ∂

−
x U

k
j = 0, j = 1, ..., J, k = 0, ...,K − 1

Uk
0 = Uk

J = 0, k = 0, ...,K − 1 and U0
j = g(xj), j = 0, ..., J , with spatial discretization

size h = 1/J , and temporal discretization size τ = 1/K. We have, equivalently,

Uk+1
j = (1− 2λ)Uk

j + λUk
j−1 + λUk

j+1

for λ = τ/h2.

This is an explicit scheme, since Uk+1
j can be computed explicitly for {Uk

j }Jj=0

Proposition 2.3.12 (Stability and Convergence). If λ ≤ 1/2, then the solution of the

forward Euler scheme satisfies

sup
j=0,...,J

|Uk
j | ≤ sup

j=0,...,J
|U0

j |
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for all 0 ≤ k ≤ K, and if in addition, we have u ∈ C4([0, 1]× [0, T ]), then

sup
j=0,...,J

|u(xj , tk)− Uk
j | ≤

tk
2
(τ + h2)

(
∥∂4xu∥C([0,1]×[0,T ]) + ∥∂2t u∥C([0,1]×[0,T ])

)
for all 0 ≤ k ≤ K.

Proof. As 1− 2λ ≥ 0, we have that

|Uk+1
j | ≤ (1− 2λ) sup

j=0,...,J
|Uk

j |+ 2λ sup
j=0,...,J

|Uk
j | ≤ sup

j=0,...,J
|Uk

j |

which implies

sup
j=0,...,J

|Uk
j | ≤ sup

j=0,...,J
|U0

j |

For the error estimate, consider

C k
j = ∂+t u(xj , tk)− ∂+x ∂

−
x u(xj , tk)

which satisfies

|C k
j | ≤ |∂+t u− ∂tu+ ∂2xu− ∂+x ∂

−
x u|

≤ |∂+t u− ∂tu|+ |∂+x ∂−x u− ∂2xu|

≤ 1

2
(τ + h2)

(
∥∂4xu∥C([0,1]×[0,T ]) + ∥∂2t u∥C([0,1]×[0,T ])

)
The error Zk

j = u(xj , tk)− Uk
j satisfies

∂+t Z
k
j − ∂+x ∂

−
x Z

k
j = C k

j

and thus

Zk+1
j = (1− 2λ)Zk

j + λZk
j−1 + λZk

j+1 + τC k
j

Again using the convex combination property, we obtain

sup
j=0,...,J

|Zk+1
j | ≤ sup

j=0,...,J
|Zk

j |+ τ sup
j=0,...,J

C k
j

By induction, we obtain our estimate.

Remark. The bad news is, that λ ≤ 1/2 requires very small time steps. This is the

classical example of a stiff equation.

We therefore instead use an implicit Euler scheme

∂−t U
k
j − ∂+x ∂

−
x U

k
j = 0, j =, ..., J − 1, k = 1, ...,K
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Uk
0 = Uk

j = 0 k = 1, ...,K

U0
j = u0(xj), j = 0, ..., J

that is,

Uk+1
j − λ(Uk+1

j−1 − 2Uk+1
j + Uk+1

j+1 ) = Uk
j

i.e.

AUk+1 = Uk

with

A =


(1 + 2λ) −λ

−λ (1 + 2λ) −λ
. . .

. . .
. . .

−λ (1 + 2λ) −λ


Remark. The Matrix A is regular, so the implicit Euler scheme does admit a solution.

Proposition 2.3.13. There exists unique coefficients (Uk
j ) that solve the implicit Euler

scheme. They satisfy

sup
j=0,...,J

|Uk
j | ≤ sup

j=0,...,J
|U0

j | k = 0, ...,K

(independently of λ = τ/h2). If u ∈ C4([0, 1]× [0, T ]), we have

sup
j=0,...,J

|u(xj , tk)− Uk
j | ≤

tk
2
(τ + h2)(∥∂4xu∥∞ + ∥∂2t u∥∞)

for k = 0, ...,K.

Proof. 1. The matrix from the scheme is strictly diagonally dominant, hence regular.

2. Take j′ ∈ {1, ..., J} such that

|Uk+1
j′ | ≤ sup

j=0,...,J
|Uk+1

j |,

then

(1 + 2λ)|Uk+1
j′ | ≤ |Uk

j′ |+ λ|Uk+1
j′−1|+ λ|Uk+1

j′+1| ≤ sup
j=1,...,J

|Uk
j |+ 2λ sup

j=0,...,J
|Uk+1

j |

So,

(1 + 2λ) sup
j=0,...,J

|Uk+1
j | ≤ sup

j=0,...,J
|Uk

j |+ 2λ sup
j=0,...,J

|Uk+1
j |

and the discrete maximum principle follows.
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3. The error bound follows similarly to the explicit scheme.

Remark. The implicit Euler scheme is thus unconditionally stable. The error estimate

is the same as for the explicit scheme.

∼ Regularity of the heat equation.

Theorem 2.3.14. Suppose u ∈ C2
1 (ΩT ) solves the heat equation in ΩT . Then u ∈

C∞(ΩT )

Remark. This even holds of the boundary values are not smooth.

Proof. Set

Cr(x, t) = {(y, s) | |x− y| ≤ r, t · r2 ≤ s ≤ t}

(a closed cylinder). Fix (x0, t0) ∈ ΩT and choose r > 0 so that C = Cr(x0, t0) ⊂ ΩT ,

define also C ′ = C3/4·r(x0, t0), C
′′ = C1/2·r(x0, t0).

Pick a smooth cutoff function ζ(x, t) such that{
0 ≤ ζ ≤ 1, ζ ≡ 1 on C ′

ζ ≡ 0 near the parabolic boundary of C.

Extend ζ by 0 in (Rn \ [0, t0]) \ C.

2. Assume for now that u ∈ C∞(ΩT ) and set

v(x, t) = ζ(x, t) · u(x, t)

then

vt = ζut + ζtut, ∆v = ζ∆u+ 2∇ζ∇u+ u∆ζ

Thus, v = 0 in Rn × {t = 0} and

vt −∆v = ζtu− 2∇ζ∇u− u∆f =: f̃

in Rn × (0, t0). Set

ṽ(x, t) =

ˆ t

0

ˆ
Rn

Φ(x− y, t− s)f̃(y, s) dy ds

Thus {
ṽt −∆ṽ = f̃ in Rn × (0, t0)

ṽ = 0 on Rn × {t = 0}
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and theorem 2.3.11. (uniqueness) yields ṽ = v.

Now suppose (x, t) ∈ C ′′. Since ζ = 0 away from C, we get

u(x, t) =

ˆ ˆ
C
Φ(x− y, t− s) [(ζs(y, s)−∆ζ(y, s)u(y, s))− 2∇ζ(y, s) · ∇u(y, s)] dy ds

The expression in the square brackets vanishes near the singularity of Φ. Integrating by

parts, we get

u(x, t) =

ˆ ˆ
C
[Φ(x− y, t− s)(ζs(y, s) + ∆ζ(y, s)) + 2∇yΦ(x− y, t− s)∇ζ(y, s)]u(y, s) dy ds (14∗)

We have derived (14∗) assuming u ∈ C∞. If u only satisfies the hypothesis of the theo-

rem, we still arrive at (14∗) considering uε = ηε ∗ u in the calculation and taking ε→ 0.

3. Formula (14∗) is of the form

u(x, t) =

ˆ ˆ
C
K(x, t, y, s)u(y, s) dy ds

for (x, t) ∈ C ′′, where K(x, t, y, s) = 0 for all points (y, s) ∈ C ′ (since ζ = 1 on C ′). Also

K is smooth on C \ C ′. We therefore see that u ∈ C∞ in C ′′ = C1/2·r(x0, t0).

Theorem 2.3.15 (Estimates on the derivatives). For each pair of integers k, l = 1, 2, ...

there exists a constant Ck,l such that

max
Cr/2(x,t)

|Dk
xD

l
tu| ≤

Ckl

rk+2l+n+2
∥u∥L1(Cr(x,t))

for all cylinders Cr/2(x, t) ⊂ Cr(x, t) ⊂ ΩT and all solutions of the heat equation in ΩT

Proof. 1. Fix a point in ΩT , we may assume that this point is (0, 0). Suppose that

C1 = C1(0, 0) is in ΩT and that C1/2 = C1/2(0, 0). Then as in the proof of theorem

2.3.14 we get

u(x, t) =

ˆ ˆ
C1

K(x, t, y, s)u(y, s) dy ds

for some smooth function K. Thus

|Dk
xD

l
tu(x, t)| ≤

ˆ ˆ
C
|Dk

xD
l
tK(x, t, y, s)||u(y, s)| dy ds ≤ Ckl∥u∥L1(C1) (15∗)

for some constant Ckl.

2. Now suppose Cr = Cr(0, 0) lies in ΩT , set Cr/2 = Cr/2(0, 0). Set v(x, t) = u(rx, r2t).
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Then vt −∆v = 0 in C1 and by (15∗)

|Dk
xD

l
tv(x, t)| ≤ Ckl∥v∥L1(C1).

Noting

Dk
xD

l
tv(x, t) = r2l+kDk

xD
l
tu(rx, r

2t)

and

∥v∥L1(C1)∥ =
1

rn+2
∥u∥L1(Cr)

we get our desired estimate.

2.4 The Wave Equation

We consider solutions to the wave equation

utt −∆u = 0.

Note that there is also the non-homogeneous wave equation

utt −∆u = f.

These equations are again subject to suitable boundary and initial conditions. The

unkown is

u : Ω× [0, T ] → R, u = u(x, t), x ∈ Ω, t ∈ [0, T ].

Sometimes, the notation

□u = ttt −∆u

can be seen.

For one physical interpretation, consider an elastic string, membrane or a solid. Denote

by u(x, t) the displacement of the material at point x, time t. Then, Newton’s second

law states (for some V ⊂ Ω)

d

dt2

ˆ
V
u dx =

ˆ
V
utt dx−

ˆ
∂V
F · ν dS.

Again we get

utt = −div(F ) in Ω.

Take (coming from continuum Mechanics)

F = c · ∇u,
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and we get

utt − c∆u = 0.

This suggests also that we need two initial conditions, one for displacement, one for

velocity (i.e ut).

∼ Solution for n = 1.

We consider {
utt − uxx = 0 in R× (0,∞)

u− g, ut = h in R× {t = 0}.

Note that (
∂

∂t
+

∂

∂x

)(
∂

∂t
− ∂

∂x

)
u = utt − uxx.

Write

v(x, t) =

(
∂

∂t
− ∂

∂x

)
u,

then vt + vx = 0 for x ∈ R, t > 0. Thinking back to the transport equation, we get

v(x, t) = a(x− t)

for some a(x) = v(x, 0). Plugging back in, we get

ut(x, t)− ux(x, t) = a(x− t)

This is a non-homogeneous transport equation, with solution

u(x, t) =

ˆ t

0
a(x+ (t− s)− s) ds+ b(x+ t) =

1

2

ˆ x+t

x−t
a(y) dy + b(x+ t)

for b(x) = u(x, 0) = g(x). Noting that

a(x) = v(x, 0) = ut(x, 0)− ux(x, 0) = h(x)− g′(x)

so,

u(x, t) =
1

2

ˆ x+t

x−t
h(y)− g′(y) dy + g(x+ t) =

1

2
(g(x+ t) + g(x− t)) +

1

2

ˆ x+t

x−t
h(y) dy.

This is called d’Alembert’s formula.

Theorem 2.4.1. Assume g ∈ C2(R), h ∈ C1(R) and define u(x, t) by D’Alemberts

formula. Then
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(i) u ∈ C2(R× [0,∞))

(ii) utt − uxx = 0 in R× [0,∞)

(iii) For all x0 ∈ R we have

lim
(x,t)→(x0,t)

u(x, t) = g(x0) and lim
(x,t)→(x0,t)

ut(x, t) = h(x0)

Proof. By direct calculation.

Remark. Note that

u(x, t) = F (x− t) +G(x+ t)

for appropriate functions F,G and any such expression is a solution to the wave equation.

Remark. The initial/boundary value problem
utt − uxx = 0 in R+ × (0,∞)

u = g, ut = h on R+ × {t = 0}

u = 0 on {x = 0} × (0,∞)

can be solved by reflection, setting

g̃(x) =

g(x) x ≥ 0

−g(x) x < 0
, h̃(x) =

h(x) x ≥ 0

−h(−x) x < 0

and using d’Alembert’s formula (for g, h vanishing at x = 0).

∼ Solution for n = 2, 3.

Assume u ∈ Cm(Rn × [0,∞)) solves{
utt −∆u = 0 in Rn × [0,∞]

u = g, ut = h on Rn × {t = 0}

For given x ∈ Rn, t > 0, r > 0 set

U(x; r, t) =

 
Br(x)

u(y, t) dy

and

G(x; r) =

 
Br(x)

g(y) dy, H(x; r) =

 
Br(x)

h(y) y
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Lemma 2.4.2 (Euler-Poisson-Darboux-Equation). Fix x ∈ Rn, and define u, U,G,H

as above. Then

U ∈ Cm(R+ × [0,∞))

and Utt − Urr −
n− 1

r
Ur = 0 in R+ × (0,∞)

U = G, Ut = H on R+ × {t = 0}

Proof. We get for r > 0, that

Ur(x; r, t) =
r

n

 
∂Br(x)

∆u(y, t) dy =
1

nα(n)rn−1

ˆ
Br(x)

∆u(y, t) dy. (16∗)

Note that hus

lim
r→0+

Ur(x; r, t) = 0

and

Urr(x; r, t) =

 
∂Br(x)

∆u(y) dS(y) +
1− n

n

 
Br(x)

∆u(y) dy

Thus,

lim
r→0+

Urr(x; r, t) =
1

n
∆u(x, t).

Similarly, verify that Urrr, etc. are continuous.

Now, from (16∗), we get

Ur =
r

n

 
Br(x)

utt dy,

and so

rn−1Ur =
1

nα(n)

ˆ
Br(x)

utt dy

and

(rn−1Ur)r =
1

nα(n)

ˆ
∂Br(x)

utt dS(y) = rn−1

 
∂Br(x)

utt dS(y) = rn−1Utt

Which yields the result by product rule and division by rn−1.

Now take n = 3, and set

Ũ = rU, G̃ = rG, H̃ = rH

to get 
Ũtt − Ũrr = 0 in R+ × (0,∞)

Ũ = G̃, Ũt = H̃ on R+ × {t = 0}

Ũ = 0 on {r = 0} × (0,∞)
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by direct calculation.

Using d’Alembert’s formula, we find for 0 ≤ r ≤ t

Ũ(x; r, t) =
1

2
(G̃(r + t)− G̃(r − t)) +

1

2

ˆ r+t

−r+t
H̃(y) dy.

Our definition of Ũ implies

u(x, t) = lim
r→0+

Ũ(x; r, t)

r
= G̃′(t) + H̃(t).

From the definitions of G̃, H̃, we get

u(x, t) =
∂

∂t

(
t

 
∂Bt(x)

g dS

)
+ t

 
∂Bt(x)

h dS. (17∗)

Noting  
∂Bt(x)

g(y) dS(y) =

 
∂B1(0)

g(x+ tz) dS(z)

we get

∂

∂t

( 
∂Bt(x)

g dS

)
=

 
∂B1(0)

∇g(x+ tz) · z dS(z) =
 
∂Bt(x)

∇g(y)
(
y − x

t

)
dS(y)

Plugging into (17∗), we get

u(x, t) =

 
∂Bt(x)

th(y) + g(y) +∇g(y)(y − x) dS(y).

This is Kirchhoff’s formula for the solution of the initial value problem for the wave

equation in 3 dimensions.
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