Introduction to the Theory and Numerics for Partial Differential Equations

Series 1

Return: October 22, 2025

Transport

Problem 1 (4 Points). Transport and growth

Write down an explicit formula for a function u solving the initial value problem

$$\begin{cases} u_t + b \cdot Du + cu = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

Here $c \in \mathbb{R}$ and $b \in \mathbb{R}^n$ are constants.

Problem 2 (4 Points). Characteristics

Let u solve the partial differential equation

$$\partial_t u + b(x,t)\partial_x u = 0 \text{ on } \mathbb{R} \times (0,\infty).$$

- (1) Show that u is constant along curves (y(t), t) for solutions of the initial boundary value problems y'(t) = b(y(t), t), $y(0) = x_0$, called characteristics.
- (2) Determine the characteristics for the equation for b(x,t) = tx and for b(x,t) = 2t, sketch them, and determine the solution for the initial condition $u(0,x) = u_0(x) = \cos(x)$.

Problem 3 (4 Points). Finite Differences

(1) Prove the following estimates for difference quotients:

$$\left| \partial^{\pm} u(x_{j}) - u'(x_{j}) \right| \leq \frac{\Delta x}{2} \left\| u'' \right\|_{C([0,1])}$$
$$\left| \widehat{\partial} u(x_{j}) - u'(x_{j}) \right| \leq \frac{\Delta x^{2}}{6} \left\| u''' \right\|_{C([0,1])}$$
$$\left| \partial^{+} \partial^{-} u(x_{j}) - u''(x_{j}) \right| \leq \frac{\Delta x^{2}}{12} \left\| u^{(4)} \right\|_{C([0,1])}$$

Show that these estimates do not hold if u does not satisfy the required differentiability properties.

- (2) Show that $\partial^+\partial^- = \partial^-\partial^+$.
- (3) Prove an error estimate for the difference $\partial^{+}\partial^{+}u(x_{j}) u''(x_{j})$.

Problem 4 (4 Points). Finite Differences

Let b<0 and consider the numerical scheme $\partial_t^+ U_j^k + b \partial_x^+ U_j^k = 0$. Show that the scheme is stable under appropriate conditions on τ and h and prove an error estimate.

Hand in the exercise sheets in the box marked "ITaN" on the 2nd floor at Hermann-Herder-Str. 10, next to the entrance to room 201 (CIP). The exercise sheets must be handed in by 12 pm (noon) on the specified date.