Introduction to the Theory and Numerics for Partial Differential Equations

Series 5

Return: November 19, 2025

Heat

Problem 17 (4 Points). Scaling

Suppose u is smooth and solves $u_t - \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$.

- (1) Show $u_{\lambda}(x,t) = u(\lambda x, \lambda^2 t)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.
- (2) Show $v(x,t) = x \cdot \nabla u(x,t) + 2tu_t(x,t)$ solves the heat equation as well.

Problem 18 (4 Points). Subsolutions

We say $v \in C_1^2(\Omega_T)$ – i.e., v twice continuously differentiable with respect to the spatial variables, once continuously differentiable with respect to the temporal variable – is a subsolution of the heat equation if

$$v_t - \Delta v \le 0$$
 in Ω_T .

(1) Prove for a subsolution v that

$$v(x,t) \le \frac{1}{4r^n} \iint_{E_r(x,t)} v(y,s) \frac{|x-y|^2}{(t-s)^2} dy ds$$

for all $E_r(x,t) \subset \Omega_T$.

- (2) Prove that therefore $\max_{\overline{\Omega}_T} v = \max_{\Gamma_T} v$.
- (3) Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume u solves the heat equation and $v := \phi(u)$. Prove v is a subsolution.
- (4) Prove $v = |\nabla u|^2 + u_t^2$ is a subsolution, whenever u solves the heat equation.

Problem 19 (4 Points). Discretization

For $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$, let $A \in \mathbb{R}^{n \times n}$ be the band matrix

$$A = \left(\begin{array}{cccc} a & b & & \\ b & \ddots & \ddots & \\ & \ddots & \ddots & b \\ & & b & a \end{array}\right).$$

Show that A has the eigenvalues $\lambda_p = a + 2b\cos(p\pi/(n+1)), p = 1, 2, \dots, n$.

<u>Hint:</u> Show that for a=0, corresponding eigenvectors $v_p \in \mathbb{R}^n$ are given by $(v_p)_j = \sin(pj\pi/(n+1))$, $j=1,2,\ldots,n$.

Problem 20 (4 Points). Stiff

- (1) Show that the discretization in the space of the heat equation leads to a stiff initial value problem $\partial_t U + AU = 0$, $U(0) = U_0$, which admits a unique solution on every time interval [0, T]. A linear initial value problem is called "stiff" if the corresponding matrix has only negative eigenvalues, some of which are of large magnitude.
- (2) Show that the explicit Euler scheme is unstable if $\tau > \frac{h^2}{2}$ by constructing appropriate initial data.

Hand in the exercise sheets in the box marked "ITaN" on the 2nd floor at Hermann-Herder-Str. 10, next to the entrance to room 201 (CIP). The exercise sheets must be turned in by 12 pm (noon) on the specified date.