Prof. Dr. M. Růžička Dr. L. Diening

Analysis II

SS 2005 — Woche 3

Abgabe: Montag, den 2. Mai, vor der Vorlesung

Aufgabe 1: 3 Punkte

Seien $L, K \subset \mathbb{R}^n$ kompakt. Zeigen Sie, dass $L+K := \{x+y \in \mathbb{R}^n : x \in L, y \in L\}$ ebenfalls kompakt ist.

Aufgabe 2: 6 Punkte

Sei $M \subset \mathbb{R}^n$. Dann wird M mit der Standardmetrik d(x,y) := |x-y| von \mathbb{R}^n zum metrischen Raum. Zeigen Sie, dass eine Menge $U \subset M$ genau dann offen bzgl. (M,d) ist, wenn es eine offene Menge $W \subset \mathbb{R}^n$ gibt mit $U = M \cap W$.

Aufgabe 3: 4 Punkte

Seien M_1 und M_2 metrische Räume und sei $\varphi: M_1 \to M_2$ stetig. Weiterhin sei M_1 zusammenhängend. Zeigen Sie, dass $\varphi(M_1)$ zusammenhängend ist.

Aufgabe 4: 3+3+2 Punkte

Seien X, Y metrische Räume. Eine Abbildung $\varphi: X \to Y$ heißt Homeomorphismus, falls φ stetig und bijektiv ist und die Umkehrabbildung ebenfalls stetig ist. Gibt es so einen Homeomorphismus, so heißen X und Y homeomorph.

- (a) Seien X, Y metrische Räume und $\varphi: X \to Y$ ein Homeomorphismus. Zeigen Sie, dass X genau dann zusammenhängend ist, wenn Y zusammenhängend ist.
- (b) Zeigen Sie, dass $\mathbb{R}^2 \setminus \{0\}$ zusammenhängend sind. (Tipp: Zeigen Sie, dass jede stetige Funktion von $\mathbb{R}^2 \setminus \{0\}$ nach \mathbb{R} jeden Wert zwischen zwei Funktionswerten annimmt. Benutzen Sie anschließend die Aussage aus dem Beweis von Satz 4.9.)
- (c) Zeigen Sie dass \mathbb{R} homeomorph zu (0,1) aber nicht zu \mathbb{R}^2 ist. (Tipp: \mathbb{R}^2 bleibt zusammenhängend, wenn ein Punkt entfernt wird.)