Prof. Dr. M. Růžička

Dr. L. Diening

Analysis II

SS 2005 — Woche 9

Abgabe: Montag, den 20. Juni, vor der Vorlesung

Wir benötigen eine genauere Aufschlüsselung des Begriffs "gleichgradig stetig":

Definition: Sei $I \subset \mathbb{R}$ und $M := \{f_{\alpha}\}_{{\alpha} \in A} \subset C(I)$. Die Menge M heißt gleichgradig stetig im Punkt x mit $x \in I$, falls es zu jedem $\varepsilon > 0$ ein $\delta > 0$ existiert derart, dass für alle $y \in I$ mit $|x - y| < \delta$ und für alle $\alpha \in A$ gilt: $|f_{\alpha}(x) - f_{\alpha}(y)| < \varepsilon$. Die Menge M heißt gleichgradig stetig, falls M in allen Punkten $x \in I$ gleichgradig stetig ist.

Definition: Sei $I \subset \mathbb{R}$ und $M := \{f_{\alpha}\}_{{\alpha} \in A} \subset C(I)$. Die Menge M heißt gleichmäßig gleichgradig stetig, falls es zu jedem $\varepsilon > 0$ ein $\delta > 0$ existiert derart, dass für alle $x, y \in I$ mit $|x - y| < \delta$ und für alle $\alpha \in A$ gilt: $|f_{\alpha}(x) - f_{\alpha}(y)| < \varepsilon$.

Aufgabe 1: 6 Punkte

Sei $M:=\{f_\alpha\}_{\alpha\in A}\subset C([a,b])$ gleichgradig stetig. Zeigen Sie, dass M schon gleichmäßig gleichgradig stetig ist. (Dies rechtfertigt die Benutzung des Begriffs "gleichgradig stetig" statt "gleichmäßig gleichgradig stetig" in Definition 12.7 der Vorlesung.)

Tipp: Benutzen Sie die gleichgradige Stetigkeit in jedem Punkt $x \in [a, b]$, um eine offene Überdeckung der kompakten Menge [a, b] zu konstruieren.

Aufgabe 2: 8 Punkte

Überprüfen Sie, welche dieser Mengen $M \subset C(X)$ gleichgradig und gleichmäßig gleichgradig stetig sind:

- (a) $X = [0, 1], M := \{t \mapsto t^n : n \in \mathbb{N}\}.$
- (b) $X = [0, 1), M := \{t \mapsto t^n : n \in \mathbb{N}\}.$
- (c) $X = [0, 1], M := \{t \mapsto \frac{t^n}{n} : n \in \mathbb{N}\}.$
- (d) $X = [0, 2], M := \{t \mapsto \frac{t^n}{n} : n \in \mathbb{N}\}.$

Aufgabe 3: 6 Punkte

(a) Zeigen Sie, dass die Menge

$$M := \{ f \in C^1([0,1]) : ||f||_{\infty} + ||f'||_{\infty} \le 1 \}$$

relativ kompakt in C([0,1]) ist, d. h. jede Folge $f_n \in M$ hat eine in C([0,1]) konvergente Teilfolge. Tipp: Arzelá-Ascoli.

(b) Zeigen Sie, dass die Menge

$$M_2 := \{ f \in C^2([0,1]) : ||f||_{\infty} + ||f'||_{\infty} + ||f''||_{\infty} \le 1 \}$$

relativ kompakt in $C^1([0,1])$ ist, d. h. jede Folge $f_n \in M_2$ hat eine in $C^1([0,1])$ konvergente Teilfolge.