Analysis III

WS 2009/10 — Woche 12

Abgabe: Montag, den 25. Januar, vor der Vorlesung

Aufgabe 37 7 Punkte

Sei (X, \mathcal{A}) ein messbarer Raum und μ ein endliches signiertes Maß auf \mathcal{A} .

- (a) Sei $X = P \cup N$ eine Hahnzerlegung (wie in Aufgabe 17) in eine positive Menge P und eine negative Menge N. Sei $\mu^+(A) := \mu(A \cap P)$ und $\mu^-(A) := -\mu(A \cap N)$. Aus der Lösung von Aufgabe 18 wissen wir bereits, dass μ^+, μ^- endliche Maße sind mit $\mu = \mu^+ \mu^-$. Zeigen Sie, dass zusätzlich $\mu^+ \perp \mu^-$ gilt.
- (b) Zeigen Sie, dass es genau eine Zerlegung $\mu = \mu^+ \mu^-$ in endliche Maße μ^+ und μ^- auf $\mathcal A$ gibt derart, dass $\mu^+ \perp \mu^-$. (Insbesondere ist damit die Konstruktion aus (a) unabhängig von der Hahnzerlegung.)
- (c) Wir definieren ein endliches Maß $|\mu|$ durch $|\mu| := \mu^+ + \mu^-$. Zeigen Sie, dass für jedes $A \in \mathcal{A}$ gilt:

$$|\mu(A)| \le |\mu|(A), \qquad \mu^+(A) \le |\mu|(A), \qquad \mu^-(A) \le |\mu|(A).$$

Definition: Sei (X, \mathcal{A}) ein messbarer Raum und seien μ, ν endliche, signierte Maße auf \mathcal{A} . Wir sagen ν ist absolut stetig bgzl. μ (in kurz: $\nu \ll \mu$), falls $\nu(E) = 0$ für alle $E \in \mathcal{A}$ mit $|\mu|(E) = 0$. Wir sagen $\nu \perp \mu$, falls es ein $M \in \mathcal{A}$ gibt mit $|\mu|(M) = 0 = |\nu|(X \setminus M)$.

Aufgabe 38 3 Punkte

Sei (X, \mathcal{A}) ein messbarer Raum und seien μ, ν endliche, signierte Maße auf \mathcal{A} . Zeigen Sie, dass $\nu \ll \mu$ im Sinne von signierten Maßen genau dann, wenn $|\nu| \ll |\mu|$ im Sinne von Maßen.

Aufgabe 39 5 Punkte

Sei (X, \mathcal{A}) ein messbarer Raum. Seien μ, ν endliche, signierte Maße auf \mathcal{A} . Zeigen Sie, dass es eine eindeutige Zerlegung $\nu = \nu_a + \nu_s$ mit $\nu_a \ll \mu$ und $\nu_s \perp \mu$ gibt.

Tipp: Nutzen Sie die Resultate für endliche Maße aus der Vorlesung.

Aufgabe 40 5 Punkte

Beweisen Sie für das Lebesgue-Maß des durch

$$A:=\{(x,y,z)\in\mathbb{R}^3\,|\,x^2+y^2\leq (r(z))^2,z\in[a,b]\}$$

gegebenen Rotationskörpers mit stetigem $r:[a;b]\to(0,\infty)$ die Formel

$$|A| = \pi \int_{a}^{b} (r(z))^2 dz.$$

Tipp: Verwenden Sie Zylinderkoordinaten.