Analysis III

WS 2009/10 — Woche 9

Abgabe: Montag, den 21. Dezember, vor der Vorlesung

Aufgabe 31 4 Punkte

Sei $1 \leq p < \infty$ und $f_n, f \in L^p$. Weiterhin konvergiere $f_n \to f$ fast überall und $||f_n||_{L^p} \to ||f||_{L^p}$. Zeigen Sie, dass $f_n \to f$ in L^p gilt.

Tipp: Wenden Sie auf $\varphi_n := 2^{p-1}(|f_n|^p + |f|^p) - |f_n - f|^p$ das Lemma von Fatou an.

Aufgabe 32 2+3+3 Punkte

Wie in Aufgabe 30 sei $\mathcal{L}^0(\mu)$ der lineare Raum der μ -messbaren, μ -fast überall endlichen Funktionen versehen mit der Äquivalenzrelation $f \sim g$, falls f = g μ -fast überall.

Sei (X, \mathcal{A}, μ) ein endlicher Maßraum. Für $f, g \in \mathcal{L}^0(\mu)$ sei

$$d(f,g) := \int_X \frac{|f-g|}{1+|f-g|} d\mu.$$

- (a) Zeigen Sie, dass d eine Metrik auf $L^0(\mu) := \mathcal{L}^0/\sim \text{ist.}$
- (b) Sei $f_n, f \in L^0(\mu)$. Zeigen Sie: $f_n \to f$ im Maß genau dann, wenn $d(f, f_n) \to 0$.
- (c) Zeigen Sie, dass $L^0(\mu)$ vollständig ist.

Aufgabe 33 4 Punkte

Sei (X, \mathcal{A}, μ) ein endlicher Maßraum mit $\mu(X) > 0$. Sei $f \in L^{\infty}(\mu)$. Zeigen Sie, dass $||f||_p \to ||f||_{\infty}$ für $p \to \infty$.

Aufgabe 34 4 Punkte

Verifizieren sie mittels Differentiation unter dem Integral, dass

$$\int_0^1 s^t \log(s) \, ds = -\frac{1}{(1+t)^2}$$

für t > -1.