Prof. Dr. M. Růžička Dipl.-Math. L. Diening

Funktionalanalysis I

WS 2001/02 — Blatt 4

Abgabe: Donnerstag, 15.11.2001 (vor der Vorlesung)

Aufgabe 1 (6 Punkte)

Beweisen Sie folgende Variante des Satzes über die dominierte Konvergenz: Sei $g_k, g \in L^1$ mit $g_k \to g$ fast überall und

$$\lim_{k} \int_{X} g_k \, d\mu \to \int_{X} g \, d\mu.$$

Ist $f_k \in L^1$ und f eine messbare Funktion mit $f_k \to f$ fast überall und $|f_k| \le g_k$ fast überall für alle $k \in \mathbb{N}$, dann gilt $f \in L^1$ und

$$\lim_{n \to \infty} \int\limits_X |f_n - f| \, dx = 0.$$

Tipp: Zeigen Sie zunächst $f \in L^1$. Wenden Sie anschließend das Lemma von Fatou auf $|f| + g_k - |f - f_k|$ an.

Aufgabe 2 (6 Punkte)

Sei H ein Hilbertraum und $F:H\to\mathbb{R}$ ein beschränktes, lineares Funktional. Nach Definition ist

$$||F|| \equiv \inf \{ K ; |F(u)| \le K ||u|| \text{ für alle } u \in H \}.$$

(a) Zeigen Sie, dass gilt

$$||F|| = \sup \left\{ \frac{|F(u)|}{||u||}; u \in H \setminus \{0\} \right\} = \sup \left\{ |F(u)|; ||u|| \le 1 \right\}.$$

(b) Zeigen Sie, dass die Abbildung $F \mapsto ||F||$ eine Norm auf H^* , dem Raum der linearen, beschänkten Funktionale auf H, definiert.

Aufgabe 3 (8 Punkte)

Sei $1 \leq p < \infty$. Für $f \in L^p(\mathbb{R})$ und $s \in \mathbb{R}$ sei der Translationsoperator T_s definiert durch

$$T_s(f)(t) := f(t-s).$$

Die Menge $\{T_s: s \in \mathbb{R}\}$ definiert offensichtlich eine Gruppe mit $T_s \circ T_t = T_{s+t}$ und $T_0 = \mathrm{Id}$.

- (a) Zeigen Sie $||T_s g||_p = ||g||_p$ und $\lim_{s\to 0} ||T_s g g||_p = 0$ für alle $g \in L^p(\mathbb{R})$.
- (b) Zeigen Sie, dass nicht $\lim_{s\to 0} ||T_s \operatorname{Id}||_p = 0$ gilt. (Vorsicht Operatornorm!)

Tipp zu (a): Wählen Sie $h \in C_0^{\infty}(\Omega)$ mit $||g - h||_1 < \varepsilon$.