Dipl.-Math. L. Diening

Funktionalanalysis I

WS 2001/02 — Blatt 5

Abgabe: Donnerstag, 22.11.2001 (vor der Vorlesung)

Aufgabe 1 (4 Punkte)

Sei $l^2=\{(a_j)_{j\in\mathbb{N}}: a_j\in\mathbb{R} \text{ und } \sum_{j=1}^\infty |a_j|^2<\infty\}$. Zeigen Sie, dass l^2 mit dem Skalarprodukt $\langle f,g\rangle:=\sum_{j=1}^\infty a_jb_j$ mit $f=(a_j)_{j\in\mathbb{N}}$ und $g=(b_j)_{j\in\mathbb{N}}$ zum Hilbertraum wird.

Aufgabe 2 (4 Punkte)

Seien H_1, H_2, H_3 Hilberträume. Zeigen Sie, dass für alle stetigen, linearen Abbildungen $A, B: H_1 \to H_2, C: H_2 \to H_3$ und $\lambda \in \mathbb{R}$ gilt:

$$||A + B|| \le ||A|| + ||B||, \qquad ||\lambda A|| = |\lambda| ||A||, \qquad ||CA|| \le ||C|| ||A||.$$

Aufgabe 3 (3 Punkte)

Sei H ein Hilbertraum und $F \in H^*$. Dann gibt es nach dem Rieszschen Darstellungssatz ein $f \in H$, so dass

$$F(u) = (u, f)$$
 für alle $u \in H$.

Zeigen Sie, dass $||F||_{H^*} = ||f||_H$ gilt.

Aufgabe 4 (3 Punkte)

Sei H ein Hilbertraum und M eine dichte Teilmenge. Beweisen Sie für alle $x \in H$:

$$||x|| = \sup_{y \in H, ||y|| \le 1} |(x, y)| = \sup_{y \in M, ||y|| \le 1} |(x, y)|.$$

Aufgabe 5 (6 Punkte)

Seien H_1, H_2 Hilberträume und sei $L(H_1; H_2)$ der Raum der linearen, stetigen Abbildungen von H_1 nach H_2 .

- (a) Zeigen Sie, dass $L(H_1; H_2)$ ein vollständiger, normierter Raum ist.
- (b) Zeigen Sie, dass die Abbildung $\Phi: L(H_1; H_2) \to L(H_2; H_1): A \mapsto A^*$ ein isometrischer Isomorphismus zwischen $L(H_1; H_2)$ und $L(H_2; H_1)$ ist, d.h. Φ ist linear, injektiv, surjektiv und es gilt $||A||_{L(H_1; H_2)} = ||A^*||_{L(H_2; H_1)}$ für alle $A \in L(H_1; H_2)$.
- (c) Zeigen Sie, dass $A = A^{**}$ für alle $A \in L(H_1; H_2)$.