Funktionalanalysis I

WS 2006/07 — Woche 10

Abgabe: Montag, den 15. Januar, vor der Vorlesung

Aufgabe 1: 5 Punkte

Sei $(X, \|\cdot\|)$ ein Banachraum und sei $|\cdot|$ eine äquivalente Norm auf X, die zusätzlich gleichmäßig konvex ist. Zeigen Sie, dass es für jedes k > 1 eine gleichmäßig konvexe Norm $\|\|\cdot\|\|$ gibt, die äquivalent zu $\|\cdot\|$ ist und

$$||x|| \le |||x||| \le k ||x||$$

für alle $x \in X$ erfüllt.

Tipp: $|||x|||^2 = ||x||^2 + \alpha |x|^2$.

Aufgabe 2: 5 Punkte

Sei c_0 der Raum der Nullfolgen versehen mit der Supremumsnorm. Für $z \in l^1$ sei $\psi_z : c_0 \to \mathbb{R}$ definiert durch $\psi_z(x) := \sum_{j=1}^{\infty} z_n x_n$. Zeigen Sie, dass die Abbildung $z \mapsto \psi_z$ ein isometrischer Isomorphismus von l^1 nach $(c_0)^*$ ist.

Tipp zur Surjektivität: Für $\lambda \in c_0^*$ definiere $z_n := \lambda(e_n)$, wobei e_n die Folge ist, die an der n-ten Stelle gleich Eins und sonst gleich Null ist. Zeigen Sie, dass $(\lambda, x) = \psi_z(x)$ für alle $x \in c_{00}$. Hierbei ist c_{00} der Raum der Folgen, die nur endlich viele von Null verschiedene Folgenglieder haben. Nach Woche 3, Aufgabe 4 ist c_{00} dicht in c_0 .

Aufgabe 3: 5 Punkte

Sei X ein Banachraum.

- (a) Sei $f_n \in X^*$ derart, dass $\langle f_n, x \rangle$ für jedes $x \in X$ konvergiert. Zeigen Sie, dass es ein $f \in X^*$ gibt so, dass $f_n \stackrel{*}{\rightharpoonup} f$.
- (b) Sei X zusätzlich reflexiv. Sei $x_n \in X$ derart, dass $\langle f, x_n \rangle$ für jedes $f \in X^*$ konvergiert. Zeigen Sie, dass es ein $x \in X$ gibt so, dass $x_n \rightharpoonup x$.
- (c) Zeigen Sie, dass man auf die Voraussetzung "reflexiv" in (b) nicht verzichten kann.

Tipp: Betrachten Sie
$$x_n := (\underbrace{1, \dots, 1}_{\text{n mal}}, 0, 0, \dots)$$
 und $X := c_0$.

Aufgabe 4: 5 Punkte

Sei X ein separabler Banachraum und sei $f_n \in X^*$ eine beschränkte Folge. Zeigen Sie auf direktem Wege (d.h. ohne Satz 4.12 über die Metrisierbarkeit von B_{X^*} bzgl. der Schwach-*-Topologie $\tau(X^*,X)$ zu benutzen), dass es eine Teilfolge von f_n gibt, welche schwach-*-konvergiert. Tipp: Diagonalfolgenargument.