Funktionalanalysis I

WS 2006/07 — Woche 6

Abgabe: Montag, den 4. Dezember, vor der Vorlesung

Aufgabe 1: 5 Punkte

Seien X_1, \ldots, X_n Banachräume und $b: X_1 \times \cdots \times X_n \to \mathbb{R}$ multilinear. Weiterhin sei für jedes $i \in \{1, \ldots, n\}$ die Abbildung $y_i \mapsto b(x_1, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_n), X_i \to \mathbb{R}$ stetig. Zeigen Sie, dass es eine Konstante C > 0 gibt, so dass

$$|b(x_1,\ldots,x_n)| \le C \|x_1\|_{X_1} \cdots \|x_n\|_{X_n}$$

Aufgabe 2: 5 Punkte

Sei $\|\cdot\|$ eine Norm auf C([0,1]) mit den folgenden Eigenschaften:

- (i) $(C([0,1]), |||\cdot|||)$ ist vollständig.
- (ii) Aus $\lim_{n\to\infty} |||f_n||| = 0$ folgt $\lim_{n\to\infty} f_n(t) = 0$ für alle $t \in [0,1]$.

Zeigen Sie, dass $\|\cdot\|$ äquivalent zur der Standardnorm $\|\cdot\|_{\infty}$ von C([0,1]) ist.

Tipp: Wenden Sie den Satz vom abgeschlossen Graphen auf die Abbildung $f \mapsto f$, $(C([0,1]), |||\cdot|||) \to (C([0,1]), ||\cdot||_{\infty})$ an.

Aufgabe 3: 5 Punkte

Seien E und F Banachräume und $A \in L(E, F)$. Zeigen Sie, dass R(A) in F abgeschlossen ist genau dann, wenn ein C > 0 existiert derart, dass zu jedem $x \in E$ ein $\xi \in E$ existiert mit $A\xi = Ax$ und $\|\xi\| \le C \|A\xi\|$.

Aufgabe 4: 5 Punkte

Sei E ein Banachraum und sei $\varphi: E \to \mathbb{R} \cup \{\infty\}$ konvex und unterhalbstetig. Sei $D(\varphi) := \{x \in E: \varphi(x) < \infty\}$ und sei $x_0 \in \text{Int}(D(\varphi))$. Zeigen Sie:

(i) Es existiert ein R > 0 und ein M > 0 so, dass

$$||x - x_0|| \le R$$
 $\Rightarrow ||\varphi(x)|| \le M$.

Tipp: Betrachten Sie die Mengen $F_n := \{x \in E : ||x - x_0|| \le \rho \text{ und } \varphi(x) \le n\}.$

(ii) Sei $r \in (0,R)$ (mit R wie aus (i)). Dann existiert L>0 derart, dass

$$|\varphi(x_1) - \varphi(x_2)| \le L \|x_1 - x_2\|$$
 für alle $x_1, x_2 \in E$ mit $\max_{i=1,2} \|x_i - x_0\| \le r$.