Funktionalanalysis I

WS 2006/07 — Woche 9

Abgabe: Montag, den 8. Januar, vor der Vorlesung

Aufgabe 1: 5 Punkte

Sei X ein reflexiver Banachraum. Zeigen Sie, dass $(X, \tau(X, X^*))$ folgen-vollständig ist, d.h. jede $\tau(X, X^*)$ -Cauchyfolge aus X hat einen schwachen Grenzwert in X. Eine Folge $x_n \in X$ heißt $\tau(X, X^*)$ -Cauchyfolge, falls es für jede $\tau(X, X^*)$ -Nullumgebung U einen Index $N_U \in \mathbb{N}$ gibt, so dass $x_n - x_m \in U$ für alle $n, m \geq N_U$.

Aufgabe 2: 5 Punkte

Sei X ein reflexiver Banachraum mit dim $X = \infty$.

- (a) Zeigen Sie, dass jede offene Menge aus $(X, \tau(X, X^*))$ unbeschränkt ist.
- (b) Zeigen Sie, dass $(X, \tau(X, X^*))$ nicht metrisierbar ist. Tipp: Satz von Baire und Aufgabe 1.

Aufgabe 3: 5 Punkte

Sei X ein Banachraum und $x_n \rightharpoonup x$ in X. Zeigen Sie, dass $\frac{1}{n} \sum_{j=1}^n x_j \rightharpoonup x$.

Aufgabe 4: 5 Punkte

Sei X ein separabler Banachraum, $M \subset X$ ein Untervektorraum und $f_0 \in X^*$. Zeigen Sie, dass es ein $g_0 \in M^{\perp}$ gibt mit

$$\inf_{g \in M^{\perp}} \|f_0 - g\|_{X^*} = \|f_0 - g_0\|_{X^*}.$$

Es gibt 4 Sonderpunkte, wenn man auf die Voraussetzung "separabel" verzichtet.

Sonderaufgabe:

8 Sonderpunkte

Im Allgemeinen ist die schwache Topologie eines Banachraumes strikt schwächer als die starke Topologie. Für den Raum l^1 der summierbaren Folgen gilt jedoch folgende erstaunliche Aussage: Aus $x_n \rightharpoonup x$ in l^1 folgt schon $x_n \rightarrow x$ in l^1 . Beweisen Sie dies!

