Prof. Dr. M. Růžička

Dr. L. Diening

Funktionalanalysis II

SS 2003 — Blatt 1

Abgabe: Dienstag, 06.05.2003

Aufgabe 1

Sei T ein k-kontraktive Abbildung mit $0 \le k < 1$ auf einem vollständigen metrischen Raum (X, d). Sei $x_0 \in X$, $x_{n+1} := Tx_n$ für alle $n \in \mathbb{N}$ und $x := \lim_{n \to \infty} x_n$. Zeigen Sie, dass die folgenden Abschätzungen gelten:

$$d(x_n, x) \le \frac{k^n}{1 - k} d(x_1, x_0),$$

$$d(x_{n+1}, x) \le \frac{k}{1 - k} d(x_{n+1}, x_n),$$

$$d(x_{n+1}, x) \le k d(x_n, x).$$

Aufgabe 2

Sei H ein reeller Hilbertraum.

Definition: Eine beschränkte Bilinearform ist eine Abbildung von $H \times H$ nach \mathbb{R} mit den Eigenschaften

- a) [u, v] ist linear in u und v.
- b) Es existiert eine Konstante $K \geq 0$ mit

$$\label{eq:sum} \big| \big[[u,v] \big| \leq K \, \|u\| \, \|v\| \qquad \text{für alle } u,v \in H.$$

Definition: Ein Bilinearform heißt koerziv, wenn eine Konstante $c_0 > 0$ existert mit $[u, u] \ge c_0 ||u||^2$ für alle $u \in H$. Man beachte, dass wir keine Symmetrie für [u, v] voraussetzen.

Zeigen Sie:

Sei $[\cdot, \cdot]$ eine koerzive, beschränkte Bilinearform auf einem reellen Hilbertraum H. Dann gibt es zu jedem beschränkten, linearen Funktional $f \in H^*$ ein eindeutiges $u \in H$ mit

$$[v, u] = f(v)$$
 für alle $v \in H$.

Tipp: Betrachte $v \mapsto [v, u] + \text{Riesz'scher Darstellungssatz}$.