$T \colon M \subseteq X \to X$ kompakt, Mbeschränkt und abgeschlossen.

$$\Longrightarrow \exists P_n \colon M \to X \text{ kompakt mit } \dim R(P_n) < \infty \text{ und}$$

$$\|Tx - P_n x\| \le \frac{1}{n} \quad \forall x \in M.$$

$$(2.1)$$

Daher ist es sinnvoll, für kompakte Operatoren einen Abbildungsgrad zu definieren. Im Weiteren werden wir mit den im Beweis von Satz 1.2.37 konstruierten "Schauder"-Operatoren arbeiten.

4.2.1 Abbildungsgrad für endlich-dimensionale Vektorräume

Bisher haben wir einen Abbildungsgrad auf \mathbb{R}^n definiert. Jetzt wollen wir dies auf beliebige endlich-dimensionale normierte Vektorräume verallgemeinern. Sei nun X ein normierter Vektorraum mit dim $X < \infty$. Dann gibt es ein n und einen isometrischen Isomorphismus $h \colon X \to \mathbb{R}^n$, d.h. h ist eine lineare bijektive Abbildung mit $\|h(x)\|_{\mathbb{R}^n} = \|x\|_X$.

Sei $f \colon \overline{\Omega} \subseteq X \to X$ eine stetige Abbildung, Ω offen und beschränkt, $p \notin f(\partial \Omega)$. Wir definieren den **Abbildungsgrad** der Abbildung f bezüglich Ω und p durch

$$d_X(f,\Omega,p) := d_{\mathbb{R}^n} \left(h \circ f \circ h^{-1}, h(\Omega), h(p) \right). \tag{2.2}$$

2.3 Lemma. Die Definition (2.2) ist unabhängig von der Wahl von h.

Beweis. Sei $f \in C^1(\Omega) \cap C(\overline{\Omega})$ und o.B.d.A. sei p=0.. Seien $h_i\colon X\to \mathbb{R}^n$, i=1,2 isometrische Isomorphismen. Dann ist $h=h_2\circ h_1^{-1}\colon \mathbb{R}^n\to \mathbb{R}^n$ ein isometrischer Isomorphismus von \mathbb{R}^n auf \mathbb{R}^n , und insbesondere gilt: J(h)=1. Enthalte das Urbild von $h_1(0)$ unter der Abbildung $h_1\circ f\circ h_1^{-1}$ nur reguläre Punkte. Dann enthält auch das Urbild von $h_1(h^{-1}(0))=h_2(0)$ unter der Abbildung $h\circ h_1\circ f\circ h_1^{-1}\circ h^{-1}=h_2\circ f\circ h_2^{-1}$ nur reguläre Punkte. Sei φ eine Funktion mit den Eigenschaften aus Lemma 1.15. Dann gilt aufgrund von Lemma 1.15, des Substitutionssatzes und der Eigenschaften der Isometrie h, insbesondere $J(h)=1,\ h^{-1}\circ h_1=h_2$ und $\|h(z)\|=\|z\|$:

$$d_{\mathbb{R}^{n}}(h_{1} \circ f \circ h_{1}^{-1}, h_{1}(\Omega), h_{1}(0)) = \int_{h_{1}(\Omega)} \varphi(\|h_{1} \circ f \circ h_{1}^{-1}(x)\|) J(h_{1} \circ f \circ h_{1}^{-1}(x)) dx$$

$$= \int_{h_{2}(\Omega)} \varphi(\|h_{1} \circ f \circ h_{1}^{-1} \circ h^{-1}(y)\|) J(h_{1} \circ f \circ h_{1}^{-1} \circ h^{-1}(y)) dy$$

$$= \int_{h_{2}(\Omega)} \varphi(\|h_{1} \circ f \circ h_{2}^{-1}(y)\|) J(h_{1} \circ f \circ h_{2}^{-1}(y)) dy$$

$$= \int_{h_{2}(\Omega)} \varphi(\|h_{2} \circ f \circ h_{2}^{-1}(y)\|) J(h_{2} \circ f \circ h_{2}^{-1}(y)) dy$$

$$= d_{\mathbb{R}^{n}}(h_{2} \circ f \circ h_{2}^{-1}, h_{2}(\Omega), h_{2}(0)).$$

Damit folgt die Behauptung, mithilfe von Approximationsargumenten, aus der Theorie, die wir in Abschnitt 4.1 entwickelt haben.

2.4 Satz (Reduktion). Sei $\Omega \subseteq \mathbb{R}^n$ offen und beschränkt. Sei m < n und $\mathbb{R}^m \subseteq \mathbb{R}^n$, d.h. der Raum \mathbb{R}^m ist identifiziert mit dem Teilraum des \mathbb{R}^n , für dessen Elemente x gilt

$$x_{m+1} = \ldots = x_n = 0.$$

Sei $f: \overline{\Omega} \to \mathbb{R}^m$ stetig und $g: \overline{\Omega} \to \mathbb{R}^n$ definiert durch

$$g(x) = x + f(x), \quad x \in \overline{\Omega}.$$

Dann gilt für alle $p \in \mathbb{R}^m$ mit $p \notin g(\partial \Omega)$

$$d_n(g, \Omega, p) = d_m(g|_{\overline{\Omega} \cap \mathbb{R}^m}, \Omega \cap \mathbb{R}^m, p)$$
.

Beweis. Es ist leicht zu sehen, dass $g(\overline{\varOmega} \cap \mathbb{R}^m) \subseteq \mathbb{R}^m$ und somit ist die rechte Seite in obiger Formel wohldefiniert. Sei $f \in C(\overline{\varOmega}) \cap C^1(\varOmega)$ und sei p derart, dass $f^{-1}(p)$ nur reguläre Punkte enthält. Sei nun x aus \varOmega so, dass $g(x) = x + f(x) = p \in \mathbb{R}^m$. Diese Forderung ist äquivalent zu $x = p - f(x) \in \mathbb{R}^m$, d.h. $x \in \mathbb{R}^m$, und x ist also im Urbild von p bzgl. $g|_{\overline{\varOmega} \cap \mathbb{R}^m}$. Somit gilt $g^{-1}(p) = (g|_{\overline{\varOmega} \cap \mathbb{R}^m})^{-1}(p)$. Zu zeigen ist nun, dass $J(g(x)) = J(g|_{\overline{\varOmega} \cap \mathbb{R}^m}(x))$. Dazu müssen wir die jeweiligen Gradienten berechnen. Es gilt:

$$\nabla g|_{\overline{\Omega}\cap\mathbb{R}^m}(x) = I_m + \left(\frac{\partial f_i}{\partial x_j}\right)_{i,j=1,\dots,m},$$

$$\nabla g(x) = \left(\frac{I_m + \nabla f \left| \left(\frac{\partial f_i}{\partial x_k}\right)_{i=1,\dots,m} \right|}{0 \quad | \quad I_{n-m}}\right).$$

Entwicklung nach der "rechten unteren Ecke" liefert $J(g(x)) = J(g|_{\overline{\Omega} \cap \mathbb{R}^m}(x))$. Somit folgt aus der Definition 1.3 die Behauptung im Falle $f \in C(\overline{\Omega}) \cap C^1(\Omega)$ und p derart, dass $f^{-1}(p)$ nur reguläre Punkte enthält. Aus der Theorie des Abschnittes 4.1 folgt daher die Behauptung im allgemeinen Fall.

4.2.2 Konstruktion des Abbildungsgrades von Leray-Schauder

Wir wollen nun einen Abbildungsgrad für kompakte Pertubationen der Identität definieren. Sei X ein Banachraum und $\Omega \subseteq X$ eine beschränkte, offene Menge, die die Null enthält, d.h. $0 \in \Omega$. Ferner sei

$$T:\overline{\Omega}\subset X\to X$$

ein kompakter Operator und sei

$$0 \notin (I - T)(\partial \Omega)$$

wobei $I: X \to X$ die Identität ist.

Der Einfachheit halber definieren wir den Abbildungsgrad nur für den Punkt 0. Es ist jedoch kein Problem, den Begriff des Abbildungsgrades auf beliebige Punkte $p \in X$ und $0 \notin \Omega$ zu erweitern.

Zuerst zeigen wir, dass eine positive Zahl r>0 existiert so, dass für alle $x\in\partial\Omega$ gilt:

$$||x - Tx|| \ge r. \tag{2.5}$$

Angenommen die Behauptung gilt nicht. Dann gibt es eine Folge $(x_n) \in \partial \Omega$ so, dass

$$||x_n - Tx_n|| \to 0 \quad (n \to \infty).$$

Da T kompakt ist, gibt es ein $x_0 \in X$ und eine Teilfolge, wiederum mit (x_n) bezeichnet so, dass $Tx_n \to x_0$ $(n \to \infty)$. Damit folgt

$$||x_n - x_0|| \le ||x_n - Tx_n|| + ||Tx_n - x_0||.$$

Beide Summanden auf der rechten Seite konvergieren gegen 0 für $n \to \infty$. Also gilt:

$$\lim_{n \to \infty} x_n = x_0 = \lim_{n \to \infty} Tx_n = Tx_0 \,,$$

auf Grund der Stetigkeit von T. Wir haben gezeigt, dass $x_0 - Tx_0 = 0$ mit $x_0 \in \partial \Omega$, da $\partial \Omega$ eine abgeschlossene Menge ist. Dies ist aber ein Widerspruch zur Voraussetzung $0 \notin (I - T)(\partial \Omega)$.

Wir betrachten nun die Schauder Operatoren $P_n: \overline{\Omega} \to X$, die (2.1) erfüllen. Demnach gibt es $n_0 \in \mathbb{N}$ so, dass für alle $n \geq n_0$ und alle $x \in \partial \Omega$ gilt:

$$||P_n x - Tx|| \le \frac{r}{2}$$
. (2.6)

Sei $X_n := R(P_n)$ ein linearer, endlich-dimensionaler Unterraum von X. Dann sieht man sofort, dass $X_n \cap \Omega =: \Omega_n$ eine offene beschränkte Menge in X_n ist, mit $\partial \Omega_n \subseteq \partial \Omega$. Da $(I - P_n)(\Omega_n) \subseteq X_n$ und

$$\inf_{x\in\partial\Omega}\|x-P_nx\|\geq\inf_{x\in\partial\Omega}\left(\|x-Tx\|-\|Tx-P_nx\|\right)\overset{(2.5)}{\geq}r-\frac{r}{2}=\frac{r}{2}>0\,,$$

d.h. $0 \notin (I - P_n)(\partial \Omega)$, können wir $d_{X_n}(I - P_n, \Omega_n, 0)$ wie in (2.2) definieren. Den **Leray–Schauder Abbildungsgrad** von I - T bezüglich Ω und 0 definieren wir nun als

$$d_X(I-T,\Omega,0) := \lim_{n \to \infty} d_{X_n}(I-P_n,\Omega_n,0).$$
 (2.7)

Um diese Definition zu rechtfertigen, müssen wir zeigen, dass der Grenzwert existiert und unabhängig von der Wahl der P_n ist.

Seien dazu P_{n_1} und P_{n_2} zwei Abbildungen so, dass für alle $x \in \overline{\Omega}, i = 1, 2$ gilt:

$$||P_{n_i}x - Tx|| \le \frac{r}{2}.$$

Außerdem seien X_{n_i} die zugehörigen linearen, endlich-dimensionalen Unterräume von X, dim $X_{n_i} < \infty$. X_m sei der kleinste lineare Raum, der X_{n_1} und X_{n_2} enthält. Aus Satz 2.4 folgt

$$d(I - P_{n_i}, \Omega_{n_i}, 0) = d(I - P_{n_i}, \Omega_m, 0), \quad i = 1, 2,$$
(2.8)

wobei $\Omega_{n_i} = X_{n_i} \cap \Omega$ und $\Omega_m = X_m \cap \Omega$. Wir betrachten die Homotopie $H \colon \Omega_m \times [0,1] \to X_m$, definiert durch

$$H(x,t) = t(I - P_{n_1})(x) + (1-t)(I - P_{n_2})(x).$$

Für alle $x \in \partial \Omega$ gilt:

$$||H(x,t) - (I-T)(x)|| = ||H(x,t) - (t+(1-t))(I-T)(x)||$$

$$\leq t||(I-P_{n_1})(x) - (I-T)(x)||$$

$$+ (1-t)||(I-P_{n_2})(x) - (I-T)(x)||$$

$$\leq t\frac{r}{2} + (1-t)\frac{r}{2} = \frac{r}{2}.$$
(2.9)

Somit erhalten wir für alle $t \in [0,1], \, x \in \partial \Omega$

$$||H(x,t)|| \ge ||(I-T)(x)|| - ||H(x,t) - (I-T)(x)||$$

$$\stackrel{(2.5)}{\ge} r - \frac{r}{2} > 0.$$

Daher folgt nach Satz 1.30 (Homotopie
eigenschaft des Abbildungsgrades im X_m), dass $d(H(\cdot,t),\Omega_m,0)$ auf [0,1] konstant ist, d.h. für alle $t_1,t_2\in[0,1]$ gilt:

$$d(t_1(I-P_{n_1})+(1-t_1)(I-P_{n_1}),\Omega_m,0)=d(t_2(I-P_{n_2})+(1-t_2)(I-P_{n_2}),\Omega_m,0).$$

Für $t_1 = 0$ und $t_2 = 1$ erhalten wir insbesondere

$$d(I - P_{n_1}, \Omega_m, 0) = d(I - P_{n_2}, \Omega_m, 0)$$
.

Dies und (2.8) ergeben also

$$d(I - P_{n_1}, \Omega_{n_1}, 0) = d(I - P_{n_2}, \Omega_{n_2}, 0), \qquad (2.10)$$

somit ist die Folge in (2.7) für $n \ge n_0$ konstant, der Grenzwert existiert und ist unabhängig von der Wahl der Leray–Schauder Operatoren P_n .

4.2.3 Eigenschaften des Abbildungsgrades von Leray-Schauder

Jetzt zeigen wir, dass der Abbildungsgrad von Leray-Schauder dieselben Eigenschaften hat wie der Abbildungsgrad von Brouwer.

2.11 Satz. Falls $d(I-T,\Omega,0)\neq 0$, dann gibt es ein $x_0\in\Omega$ so, dass

$$Tx_0 = x_0$$
.

Beweis. Wir wählen Leray-Schauder Operatoren P_n , die (2.1) erfüllen. Für diese gilt nach Konstruktion des Abbildungsgrades (cf. (2.10)) für alle $n \ge n_0$

$$d(I - P_n, \Omega_n, 0) \neq 0$$
.

Daher folgt aus Satz 1.29, dass es ein $x_n \in \Omega_n$ gibt mit $P_n x_n = x_n$. Für die Folge (x_n) gilt

$$||x_n - Tx_n|| \le ||x_n - P_n x_n|| + ||P_n x_n - Tx_n||$$

 $\le 0 + \frac{1}{n}$.

Da T kompakt ist und die Folge $(x_n) \subset \Omega_n \subseteq \Omega$ beschränkt ist, gibt es eine Teilfolge, wiederum mit (x_n) bezeichnet, und einen Punkt $y \in \overline{\Omega}$ so, dass $Tx_n \to y \ (n \to \infty)$. Aus obiger Abschätzung folgt, dass $x_n \to y \ (n \to \infty)$. Da T stetig ist, gilt außerdem $Tx_n \to Ty \ (n \to \infty)$. Wegen der Eindeutigkeit des Grenzwertes impliziert dies Ty = y. Da $0 \notin (I - T)(\partial \Omega)$ ist, gilt also $y \in \overline{\Omega} \setminus \partial \Omega = \Omega$.

2.12 Definition. Für $t \in [0,1]$ seien die Operatoren $T(t) : M \subseteq X \to X$ kompakt. Dann ist $T : t \mapsto T(t)$ genau dann eine **Homotopie**, wenn für alle $\varepsilon > 0$ und alle beschränkten Teilmengen $G \subseteq M$ ein $\delta > 0$ existiert so, dass für alle t_1, t_2 mit $|t_1 - t_2| < \delta$, und alle $x \in G$ gilt:

$$||T(t_1)(x) - T(t_2)(x)|| \le \varepsilon.$$

2.13 Satz. Sei T eine Homotopie auf $\overline{\Omega}$, wobei Ω eine offene und beschränkte Teilmenge von X sei. Sei ferner $T(t)(x) \neq x$ für alle $t \in [0,1]$ und alle $x \in \partial \Omega$. Dann hat für alle $t \in [0,1]$ der Abbildungsgrad $d(I-T(t),\Omega,0)$ denselben Wert.

Beweis. 1. Zuerst zeigen wir, dass eine Zahl r>0 existiert so, dass für alle $t\in[0,1]$ und alle $x\in\partial\Omega$ gilt:

$$||(I-T(t))(x)|| \ge r.$$

Angenommen dies sei nicht so, dann existieren Folgen $(x_n) \subset \partial \Omega$, $(t_n) \subset [0,1]$ so, dass

$$x_n - T(t_n)(x_n) = y_n,$$
 (2.14)

mit $||y_n|| \leq \frac{1}{n}$. Aufgrund von $(x_n) \subset \partial \Omega$, ist die Folge (x_n) beschränkt. Weiterhin folgt aus $(t_n) \subset [0,1]$, die Existenz einer Teilfolge, wiederum mit (t_n) bezeichnet, und eines Punktes $t_0 \in [0,1]$ mit $t_n \to t_0 \ (n \to \infty)$. Da der Operator $T(t_0)$ kompakt ist, folgt auch für eine Teilfolge, wiederum mit (x_n)

bezeichnet, $T(t_0)(x_n) \to y \in X \ (n \to \infty)$. Dies impliziert zusammen mit Definition 2.12 im Grenzübergang $n \to \infty$

$$||T(t_n)(x_n) - y|| \le ||T(t_n)(x_n) - T(t_0)(x_n)|| + ||T(t_0)(x_n) - y|| \to 0.$$

Also gilt $T(t_n)(x_n) \to y \ (n \to \infty)$. Dies zusammen mit (2.14) und $y_n \to 0$ $(n \to \infty)$ liefert: $x_n \to y \in \partial\Omega \ (n \to \infty)$. Die Stetigkeit von $T(t_0)$ impliziert dann $T(t_0)(x_n) \to T(t_0)(y) \ (n \to \infty)$. Insgesamt erhalten wir

$$||T(t_n)(x_n) - T(t_0)(y)|| \le ||T(t_n)(x_n) - T(t_0)(x_n)|| + ||T(t_0)(x_n) - T(t_0)(y)||$$

$$\to 0 \qquad (n \to \infty).$$

d.h. $T(t_n)(x_n) \to T(t_0)(y)$ $(n \to \infty)$. Wenn wir daher in (2.14) den Grenzübergang $n \to \infty$ durchführen, erhalten wir

$$y - T(t_0)(y) = 0,$$

wobei $y \in \partial \Omega$. Dies ist aber ein Widerspruch zur Voraussetzung des Satzes.

2. Wir wählen nun ein $t_1 \in [0,1]$ fest und Schauder Operatoren P_n , die (2.1) erfüllen, d.h. für $n \geq n_0$ und alle $x \in \overline{\Omega}$ gilt:

$$||P_n(x) - T(t_1)(x)|| \le \frac{r}{4}.$$

Da T eine Homotopie ist, gibt es ein $\delta > 0$ so, dass für alle t mit $|t - t_1| < \delta$ und alle $x \in \overline{\Omega}$ gilt:

$$||T(t_1)(x) - T(t)(x)|| \le \frac{r}{4}.$$

Daher haben wir für alle t mit $|t-t_1|<\delta$

$$||P_n(x) - T(t)(x)|| \le ||P_n(x) - T(t_1)(x)|| + ||T(t_1)(x) - T(t)(x)|| \le \frac{r}{2}$$

d.h. die Schauder Operatoren P_n erfüllen (2.1) auch für $T(t), t \in (t_1 - \delta, t_1 + \delta)$. Die Definition des Abbildungsgrades von Leray-Schauder (2.7) impliziert somit für alle t mit $|t - t_1| < \delta$ und n groß genug

$$d(I - P_n, \Omega_n, 0) = d(I - T(t), \Omega, 0),$$

wobei $\Omega_n = \Omega \cap X_n$ und $X_n = R(P_n)$, d.h. der Abbildungsgrad ist konstant auf dem Intervall $(t_1 - \delta, t_1 + \delta)$. Nun ist $[0, 1] \subseteq \bigcup_{t_1 \in [0, 1]} (t_1 - \delta, t_1 + \delta)$. Da

[0,1] kompakt ist, gibt es t_1,\ldots,t_m mit $[0,1]\subseteq\bigcup_{t_j=1}^m(t_j-\delta,t_j+\delta)$. Also hat für alle $t\in[0,1]$ der Abbildungsgrad $d(I-T(t),\Omega,0)$ denselben Wert.

2.15 Satz (Schauder). Sei $\Omega \subseteq X$ eine offene, konvexe und beschränkte Teilmenge mit $0 \in \Omega$ und sei $T \colon \overline{\Omega} \to \overline{\Omega}$ kompakt. Dann hat T einen Fixpunkt, d.h. es gibt ein $x_0 \in \Omega$ mit $T(x_0) = x_0$.

 \underline{Beweis} . Die Menge $\overline{\Omega}$ ist homöomrph zur abgeschlossenen Einheitskugel $\overline{B_1(0)}$, d.h. es existiert ein Homöomorphismus $h:\overline{B_1(0)}\to \overline{\Omega}$. Der Operator $h^{-1}\circ T\circ h:\overline{B_1(0)}\to \overline{B_1(0)}$ ist dann offensichtlich kompakt. Die Abbildung

$$H(x,t) = x - t h^{-1} \circ T \circ h(x)$$

ist eine Homotopie im Sinne von Definition 2.12. Analog zum Beweis von Satz 1.33 zeigt man, dass für alle $x \in \partial B_1(0)$ und alle $t \in [0,1]$ gilt: $H(x,t) \neq 0$. Satz 2.13 liefert also

$$1 = d(I, B_1(0), 0) = d(I - h^{-1} \circ T \circ h, B_1(0), 0),$$

und somit folgt aus Satz 2.11 die Existenz eines Punktes $y_0 \in B_1(0)$ mit $T \circ h(y_0) = h(y_0)$, d.h. $x_0 = h(y_0)$ ist der gesuchte Fixpunkt von T.

2.16 Satz (Borsuk). Sei $\Omega \subseteq X$ eine beschränkte, offene und symmetrische Teilmenge mit $0 \in \Omega$ und sei $T \colon \overline{\Omega} \to \overline{\Omega}$ ungerade und kompakt. Ferner sei $T(x) \neq x$ für alle $x \in \partial \Omega$. Dann ist $d(I - T, \Omega, 0)$ ungerade.

Beweis. Da $\overline{T(\overline{\Omega})}$ kompakt ist, existiert ein endliches ε -Netz v_1,\ldots,v_p . Setze $v_{p+1}=-v_1,\ldots,v_{2p}=-v_p$, sowie $v_{2p+1}=v_1,\ldots,v_{3p}=v_p$. Definiere

$$P_n(x) = \frac{\sum_{i=1}^{2p} m_i(Tx)v_i}{\sum_{i=1}^{2p} m_i(Tx)} ,$$

wobei

$$m_i(x) = \begin{cases} \varepsilon - \|x - v_i\| & \text{für } \|x - v_i\| \le \varepsilon, \\ 0 & \text{für } \|x - v_i\| > \varepsilon. \end{cases}$$

Es gilt: dim $R(P_n) < \infty$, $\Omega \cap R(P_n)$ ist symmetrisch und $P_n \rightrightarrows T \ (n \to \infty)$ (cf. Beweis von Satz 1.2.37). Außerdem sind die P_n ungerade, denn

$$P_n(x) = \frac{\sum_{i=1}^{2p} m_i(Tx)v_i}{\sum_{i=1}^{2p} m_i(Tx)} = \frac{-\sum_{i=1}^{2p} m_{i+p}(T(-x))v_{i+p}}{\sum_{i=1}^{2p} m_{i+p}(T(-x))}, \qquad (2.17)$$

denn $v_i = -v_{i+p}, \ i = 1, \dots, 2p, \ Tx = -T(-x),$ und somit gilt für x mit $\|Tx - v_i\| \le \varepsilon$

$$m_i(Tx) = \varepsilon - ||Tx - v_i|| = \varepsilon - ||-T(-x) - v_i||$$

= $\varepsilon - ||T(-x) - v_{i+p}|| = m_{i+p}(T(-x))$.

Da $v_i = v_{i+2p}$, i = 1, ..., p, gilt auch $m_i = m_{i+2p}$, i = 1, ..., p, und somit erhält man

$$\sum_{i=1}^{2p} m_i(Tx)v_i = \sum_{i=1}^{p} m_{i+2p}(Tx)v_{i+2p} + \sum_{i=p+1}^{2p} m_i(Tx)v_i$$

$$= \sum_{i=p+1}^{2p} m_{i+p}(Tx)v_{i+p} + \sum_{i=1}^{p} m_{i+p}(Tx)v_{i+p}$$

$$= \sum_{i=1}^{2p} m_{i+p}(Tx)v_{i+p}.$$

Also kann man $P_n(x)$ auch schreiben als

$$P_n(x) = \frac{\sum_{i=1}^{2p} m_{i+p}(T(x))v_{i+p}}{\sum_{i=1}^{2p} m_{i+p}(T(x))},$$

und wir erhalten aus (2.17), dass

$$P_n(x) = -P_n(-x).$$

Mit Satz 1.31 folgt, dass $d(I - P_n, \Omega_n, 0)$ ungerade ist. Demnach ist nach Definition des Abbildungsgrades $d(I - T, \Omega, 0)$ ungerade.

4.2.4 Quasilineare elliptische Gleichungen III

Diesmal wollen wir quasilineare elliptische Gleichungen in Räumen Hölderstetiger Funktionen $C^{0,\alpha}(\overline{\Omega})$ betrachten. Dazu betrachten wir zuerst die lineare Gleichung

$$Au = f, (2.18)$$

wobei $A:X\to Y$ ein linearer Operator ist und $f\in Y$ ein gegebenes Element. Sei $B:X\to Y$ ein weiterer linearer Operator und sei

$$D_t u := tAu + (1-t)Bu, \qquad 0 \le t \le 1.$$
 (2.19)

Anstelle von (2.18) betrachten wir die Schar von Problemen

$$D_t u_t = f, \qquad 0 \le t \le 1,$$
 (2.20)

und machen folgende Annahme: Es gibt eine Konstante c_0 , die unabhängig von $f \in Y$ und $t \in [0,1]$ ist, so, dass für alle Lösungen u von (2.20) für beliebige $f \in Y$ und beliebige $t \in [0,1]$, die apriori Abschätzung

$$||u||_X \le c_0 ||f||_Y \tag{2.21}$$

gilt.

2.22 Satz. Seien X, Y Banachräume und seien $A, B: X \to Y$ stetige, lineare Operatoren. Ferner gelte für (2.20) die apriori Abschätzung (2.21) und das Problem (2.20) habe für t=0 und alle $f \in Y$ eine eindeutige Lösung. Dann hat auch das Problem (2.18) für alle $f \in Y$ eine eindeutige Lösung.

Beweis. 1. Sei $N \subseteq [0,1]$ die Menge der t, für welche das Problem (2.20) für gegebenes t und alle $f \in Y$ eine eindeutige Lösung hat. Offensichtlich ist $0 \in N$ und wir wollen zeigen, dass auch $1 \in N$ ist. Sei $\tau > 0$ derart, dass

$$\tau c_0 (\|A\| + \|B\|) < 1.$$
 (2.23)

Wir werden zeigen, dass dann die Implikation

$$s \in N \qquad \Rightarrow \qquad [s, s + \tau] \subseteq N \tag{2.24}$$

gilt. Da τ unabhängig von s ist, können wir in endlich vielen Schritten von 0 zu 1 kommen, d.h. $1 \in N$.

2. Es bleibt zu zeigen, dass $[s,s+\tau]\subseteq N$ ist, falls $s\in N$ und τ wie in (2.22) gewählt wurde. Das Problem (2.20) für $t=s+\tau\delta$, $\delta\in[0,1]$ läßt sich aufgrund der Definition (2.19) von D_t schreiben als

$$D_s u = f - \delta \tau A u + \delta \tau B u. \tag{2.25}$$

Da $s \in N$ existiert der inverse Operator $D_s^{-1}: Y \to X$, der linear ist und für den aufgrund von (2.21) gilt:

$$||D_s^{-1}|| \le c_0$$
.

Also ist (2.25) äquivalent zu

$$u = D_s^{-1}(f - \delta \tau Au + \delta \tau Bu) =: Lu. \qquad (2.26)$$

Für $L: X \to X$ gilt:

$$||Lu - Lv|| \le \delta \tau c_0 (||A|| + ||B||) ||u - v||,$$

und somit liefert der Banachsche Fixpunktsatz, dass (2.26) für alle $\delta \in [0, 1]$ eine eindeutige Lösung besitzt, d.h. $[s, s + \tau] \subseteq N$.

Wir wollen Satz 2.22anwenden um zu zeigen, dass das lineare elliptische Problem

$$(Lu)(x) := -\sum_{i,j=1}^{n} a_{ij}(x)\partial_i\partial_j u(x) = f(x) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{auf } \partial\Omega,$$
(2.27)

eine Lösung besitzt.

2.28 Satz (Schauder, 1934). Sei Ω ein beschränktes Gebiet des \mathbb{R}^n mit Rand $\partial \Omega \in C^{2,\alpha}$, $\alpha \in (0,1)$. Seien ferner $f, a_{ij} \in C^{0,\alpha}(\overline{\Omega}), i,j = 1,\ldots,n$ und gelte

$$||a_{i,j}||_{C^{0,\alpha}} \le c_1, \qquad i,j=1,\ldots,n.$$
 (2.29)

Der Operator L sei elliptisch, d.h. es existiert ein $\lambda_0 > 0$ so, dass für alle $x \in \overline{\Omega}$ und $\zeta \in \mathbb{R}^n$ gilt:

$$\sum_{i,j=1}^{n} a_{ij}(x)\zeta_{i}\zeta_{j} \ge \lambda_{0} \|\zeta\|^{2}.$$
 (2.30)

Dann besitzt das Problem (2.27) eine eindeutige Lösung $u \in C^{2,\alpha}(\overline{\Omega})$, die der Abschätzung

$$||u||_{C^{2,\alpha}} \le c_2(c_1, \lambda_0) ||f||_{C^{0,\alpha}}$$
(2.31)

 $gen\ddot{u}gt.$

Der Beweis beruht auf folgenden zwei Beobachtungen:

(i) Für den Laplace Operator gilt die Behauptung des Satzes, d.h. für alle $f \in C^{0,\alpha}(\overline{\Omega})$ existiert eine eindeutige Lösung von

$$\begin{split} -\Delta u &= f && \text{in } \Omega \,, \\ u &= 0 && \text{auf } \partial \Omega \,, \end{split} \tag{2.32}$$

die der Abschätzung

$$||u||_{C^{2,\alpha}} \le c_3(c_1, \lambda_0) ||f||_{C^{0,\alpha}}$$
(2.33)

genügt. Der Beweis dieser Aussage sprengt den Rahmen des Buches. Man kann ihn in [?] oder [?] nachlesen.

(ii) Für das Problem (2.27) gelten Schauder-Abschätzungen, d.h. falls a_{ij} , i, j = 1, ..., n die Bedingungen von Satz 2.28 erfüllen und u eine Lösung von (2.27) ist, dann gilt:

$$||u||_{C^{2,\alpha}} \le c_2(c_1, \lambda_0) ||f||_{C^{0,\alpha}}. \tag{2.34}$$

Man beachte, dass die Schauder-Abschätzungen (2.34) keine Aussage über die Existenz von Lösungen enthält. Auch dies kann in [?] nachgelesen werden.

Beweis (Satz 2.28). Wir wollen Satz 2.22 anwenden. Dazu setzen wir $X = C^{2,\alpha}(\overline{\Omega}), Y = C^{0,\alpha}(\overline{\Omega}), Bu = -\Delta u$, und Au = Lu. Wir müssen also die apriori Abschätzung (2.21) für den Operator D_t definiert in (2.20) herleiten. Dazu benötigen wir die folgende Eigenschaften Hölder-stetiger Funktionen: Seien $g, h \in C^{0,\alpha}(\overline{\Omega})$, dann ist auch $g, h \in C^{0,\alpha}(\overline{\Omega})$. Dies folgt sofort aus

$$|g(x) h(x) - g(y) h(y)| \le |g(x)(h(x) - h(y)) + h(y)(g(x) - g(y))|$$

$$< c |g(x)| |x - y|^{\alpha} + c |h(y)| |x - y|^{\alpha}.$$

Aufgrund der Definition von D_t und dieser Eigenschaft erhalten wir für $u \in X$

$$||D_t u||_{C^{0,\alpha}} \le c \, ||u||_{C^{2,\alpha}} \,,$$

d.h. $D_t: X \to Y$ ist stetig und linear für alle $t \in [0,1]$. Die Gleichung

$$D_0 u = f$$

hat nach den Voraussetzungen von Satz 2.28 eine eindeutige Lösung. Da die apriori Abschätzungen (2.33) und (2.34) nur von λ_0 und c_1 abhängen erhalten wir für die Lösungen u von

$$D_t u = f$$

sofort

$$||u||_X \le c ||f||_Y,$$

wobei c von $t \in [0,1]$ unabhängig ist. Satz 2.22 liefert also, dass

$$D_1 u = f$$

genau eine Lösung in X besitzt.

Nun haben wir alle Hilfsmittel zusammen um folgende quasilineare elliptische Gleichung

$$Lu(x) = \varepsilon g(x, u, \nabla u)$$
 in Ω ,
 $u = 0$ auf $\partial \Omega$, (2.35)

wobei ε klein genug ist, und $g:\overline{\varOmega}\times\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}$ eine $C^{0,\alpha}$ -Funktion ist, zu betrachten.

2.36 Satz. Sei Ω ein beschränktes Gebiet des \mathbb{R}^n mit Rand $\partial \Omega \in C^{2,\alpha}$, $\alpha \in (0,1)$ und sei $g: \overline{\Omega} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ eine $C^{0,\alpha}$ -Funktion. Ferner erfülle der Operator L definiert in (2.27) die Bedingungen (2.29), (2.30). Dann gibt es für alle $\varepsilon \in \mathbb{R}$ mit $|\varepsilon|$ klein genug eine Lösung $u \in C^{2,\alpha}(\overline{\Omega})$ des Problems (2.35).

Beweis. 1. Wir setzen $X=C^{1,\beta}(\overline{\varOmega}),\ \beta\in(0,1)$ beliebig. Aufgrund der Eigenschaften Hölder–stetiger Funktionen erhalten wir für alle Funktionen mit

$$||u||_{C^{1,\beta}} \le c_4 \,, \tag{2.37}$$

dass für $\gamma = \alpha \beta$ gilt:

$$||g(x, u, \nabla u)||_{C^{0,\gamma}} \le c_5,$$
 (2.38)

wobei die Konstante c_5 nur von c_4 und g abhängt.

2. Aufgrund von Satz 2.28 ist der Operator $L:C^{2,\gamma}(\overline{\Omega})\to C^{\gamma}(\overline{\Omega})$ invertierbar. Wir setzen

$$T(t)u = t L^{-1}(\varepsilon g(x, u, \nabla u)), \qquad (2.39)$$

mit $T(t): C^{1,\beta}(\overline{\Omega}) \to C^{2,\gamma}(\overline{\Omega}) \subseteq C^{1,\beta}(\overline{\Omega})$, d.h. der Operator T(t) ordnet jedem $u \in C^{1,\beta}(\overline{\Omega})$ die Lösung $v \in C^{2,\gamma}(\overline{\Omega})$ des Problems

$$Lv = t \varepsilon g(x, u, \nabla u) \quad \text{in } \Omega,$$

$$v = 0 \quad \text{auf } \partial\Omega.$$
(2.40)

zu. Satz 2.28 und die kompakte Einbettung $C^{2,\gamma}(\overline{\Omega}) \hookrightarrow \subset C^{1,\beta}(\overline{\Omega})$ liefern, dass die Operatoren $T(t), t \in [0,1]$ kompakt sind. Für $t_1, t_2 \in [0,1]$ gilt aufgrund von (2.39), (2.40) und (2.31)

$$||T(t_1)u - T(t_2)u||_{C^{2,\gamma}} \le c_2 \le c_2 |\varepsilon| |t_1 - t_2| ||g(x, u, \nabla u)||_{C^{0,\gamma}}.$$
 (2.41)

Aufgrund von (2.38) gilt also

$$||T(t_1)u - T(t_2)u||_{C^{2,\gamma}} \le c_2 c_5 \varepsilon |t_1 - t_2|,$$

für beliebige Funktionen u mit $||u||_{C^{1,\beta}} \leq c_4$. Somit haben wir mithilfe der Einbettung $C^{2,\gamma}(\overline{\Omega}) \hookrightarrow C^{1,\beta}(\overline{\Omega})$ gezeigt, dass

$$T \colon t \mapsto T(t) \colon C^{1,\beta}(\overline{\Omega}) \to C^{1,\beta}(\overline{\Omega})$$

eine Homotopie ist.

3. Sei $B_r(0)$ die Kugel mit Radius r in $C^{1,\beta}(\overline{\Omega})$. Für alle $t \in [0,1]$ und $u \in \partial B_{c_4}(0)$ gilt

$$T(t)u \neq u \tag{2.42}$$

falls $|\varepsilon|$ klein genug ist. In der Tat, sei $u \in \partial B_{c_4}(0)$ ein Element mit T(t)u = u, dann gilt aufgrund von (2.40), (2.31) und (2.38)

$$||u||_{C^{1,\beta}} \le c_6 ||u||_{C^{2,\gamma}} \le c_6 c_2 t |\varepsilon| ||g(x,u,\nabla u)||_{C^{0,\gamma}} \le c_6 c_2 c_5 |\varepsilon|,$$

wobei c_6 die Einbettungskonstante von $C^{2,\gamma}(\overline{\Omega}) \hookrightarrow C^{1,\beta}(\overline{\Omega})$ ist. Wir wählen nun $|\varepsilon|$ so klein, dass gilt

$$c_6 c_2 c_5 |\varepsilon| < c_4$$
.

Wir erhalten einen Widerspruch und somit ist (2.42) bewiesen.

4. Satz 2.13 besagt nun, dass für alle $t \in [0, 1]$ der Abbildungsgrad

$$d(I-T(t), B_{c_4}(0), 0)$$

konstant ist. Aufgrund von (2.40) und der eindeutigen Lösbarkeit aus Satz 2.28 ist aber T(0) die triviale Abbildung, d.h. T(0)u=0. Da also

$$d(I - T(0), B_{c_4}(0), 0) = 1$$

gilt, haben wir auch

$$d(I - T(1), B_{c_4}(0), 0) = 1$$
,

d.h. es existiert eine Lösung $u \in C^{1,\beta}(\overline{\Omega})$ von (2.35).

5. In Schritt 2. haben wir gezeigt, dass

$$T(1): C^{1,\beta}(\overline{\Omega}) \to C^{2,\gamma}(\overline{\Omega}),$$

was, aufgrund der Einbettung $C^{2,\gamma}(\overline{\Omega}) \hookrightarrow C^{1,1}(\overline{\Omega})$, impliziert (cf. (2.37), (2.38))

$$g(x, u, \nabla u) \in C^{0,\alpha}(\overline{\Omega})$$
.

Dies zusammen mit (2.34) liefert

$$u \in C^{2,\alpha}(\overline{\Omega})$$
.

Somit ist der Satz bewiesen.