Nichtlineare Funktionalanalysis

WS 2013/14 — Woche 10

Abgabe: Dienstag, den 14. Januar, vor der Vorlesung

Aufgabe 1: Dichheit glatter Funktionen

6 Punkte

Sei V ein Banachraum, $I \subset \mathbb{R}$ ein offenes und beschränktes Intervall und $1 \leq p < \infty$. Zeigen Sie, dass die Mengen $C^{\infty}(\bar{I}, V)$ und $C_0^{\infty}(I, V)$ dicht in $L^p(I, X)$ sind. **Tipp:** Glätten Sie durch Faltung und verwenden Sie Blatt 8.

Aufgabe 2: Partielle Integration

8 Punkte

Sei $I \subset \mathbb{R}$ ein offenes und beschränktes Intervall, (V, H, V^*) ein Gelfand-Tripel, 1 und <math>p' der konjugierte Exponent. Ferner sei der Raum $W := W^{1,(p,p')}(I,V,V^*)$ der auf Blatt 9 definierte verallgemeinerte Sobolevraum. Sie dürfen für diese Aufgabe ohne Beweis verwenden, dass die Menge $C^{\infty}(\bar{I},V)$ dicht im Raum W liegt.

1. Zeigen Sie: Für $u \in C^{\infty}(\bar{I}, V)$, $u \neq 0$ ist die Funktion $t \mapsto ||u(t)||_H^2$ klassisch differenzierbar mit

$$\frac{d}{dt}||u(t)||_H^2 = 2(u'(t), u(t))_H = 2\langle u'(t), u(t)\rangle_V.$$
 (1)

2. Folgern Sie aus 1, dass für alle $u \in C^{\infty}(\bar{I}, V)$ die Abschätzung

$$||u||_{C(\bar{I},H)} \le c ||u||_W$$

mit einer von u unabhängigen Konstante c>0 gilt.

3. Zeigen Sie anschließend die stetige Einbettung

$$W \hookrightarrow C(\bar{I}, H).$$

4. Zeigen Sie: Für alle $u,v\in W$ und alle $s,t\in \bar{I}$ gilt

$$\int_{s}^{t} \left\langle \frac{du}{dt}(\tau), v(\tau) \right\rangle_{V} d\tau = (u(t), v(t))_{H} - (u(s), v(s))_{H} - \int_{s}^{t} \left\langle \frac{dv}{dt}(\tau), u(\tau) \right\rangle_{V} d\tau.$$

Aufgabe 3: Schwache Konvergenz

6 Punkte

- 1. Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet und $1 \leq p < \infty$. Sei $(u_n)_{n \in \mathbb{N}} \subset L^p(\Omega)$ eine Folge, für die $u_n \to u$ in $L^p(\Omega)$ und $u_n(x) \to v(x)$ fast überall in Ω gilt. Zeigen Sie, dass dann auch u = v gilt.
- 2. Sei $1 und <math>(u_n)_{n \in \mathbb{N}}$ beschränkt in $L^p(\Omega)$. Zeigen Sie: Falls $(u_n)_{n \in \mathbb{N}}$ fast überall in Ω gegen eine Funktion v konvergiert, so gilt auch $u_n \rightharpoonup v$ in $L^p(\Omega)$.