Nichtlineare Funktionalanalysis

WS 2013/14 — Woche 3

Abgabe: Dienstag, den 12. November, vor der Vorlesung

Aufgabe 1: stetige, nicht kompakte Abbildung

5 Punkte

Wir definieren die Räume $l^{\infty} := \{ x = (x_i)_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid ||x||_{\infty} < \infty \}$ mit $||x||_{\infty} := \sup_{i \in \mathbb{N}} |x_i|$ und $c_0 := \{ x = (x_i)_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \lim_{i \to \infty} x_i = 0 \}$. Begründen Sie kurz, dass $(c_0, ||\cdot||_{\infty})$ ein Unterraum von $(l^{\infty}, ||\cdot||_{\infty})$ ist und zeigen Sie, dass die Abbildung $f : c_0 \to c_0$ mit $f(x) := (x_i^3)_{i \in \mathbb{N}}$ zwar wohldefiniert und stetig, nicht aber kompakt ist.

Aufgabe 2: Banach+Schauder

10 Punkte

Sei X ein Banachraum und sei $B \subset X$ eine abgeschlossene, konvexe und beschränkte Teilmenge. Ferner sei $T: B \to X$ kompakt, $S: B \to X$ eine Kontraktion und es gelte $T(B) + S(B) \subset B$. Zeigen Sie, dass T + S einen Fixpunkt in B hat. **Tipp:** Zeigen Sie zuerst: für festes $x_0 \in B$ hat der Operator $R = Tx_0 + S$ einen Fixpunkt $x^* = x^*(x_0)$. Zeigen Sie dann, dass die Abbildung $x_0 \mapsto x^*(x_0)$ einen Fixpunkt hat.

Benutzen Sie dieses Resultat um anschließend zu beweisen, dass das Problem

$$u(t) = \frac{1}{3}t + \frac{1}{3}u(t)^{2} + \frac{1}{3}\int_{0}^{t} |u(s) - s|^{\frac{1}{2}} ds, t \in [0, 1]$$

eine Lösung $u \in C^0([0,1],[0,1])$ besitzt.

Aufgabe 3: nichtlineare Gleichungen

5 Punkte

- 1. Für $f \in C^0(\overline{B_R(0)}, \mathbb{R}^n)$ gelte $f(x) \cdot x \leq |x|^2$ auf $\partial B_R(0)$. Zeigen Sie, dass f einen Fixpunkt hat.
- 2. Für $f \in C^0(\mathbb{R}^n, \mathbb{R}^n)$ gelte $\frac{f(x) \cdot x}{|x|} \to \infty$ für $|x| \to \infty$. Zeigen Sie, dass f surjektiv ist.