Nichtlineare Funktionalanalysis

WS 2013/14 — Woche 9

Abgabe: Dienstag, den 7. Januar, vor der Vorlesung

Aufgabe 1: Distributionelle Ableitung

8 Punkte

Sei $I \subset \mathbb{R}$ ein offenes Intervall und $\mathcal{L}(C_0^{\infty}(I), X)$ der auf dem vorherigen Blatt definierte Raum der X-wertigen Distributionen. Für $T \in \mathcal{L}(C_0^{\infty}(I), X)$ sei die **distributionelle Ableitung** $T' \in \mathcal{L}(C_0^{\infty}(I), X)$ definiert durch

$$\langle T', \varphi \rangle := -\langle T, \varphi' \rangle, \varphi \in C_0^{\infty}(I).$$

- 1. Zeigen Sie, dass die Abbildung $T \mapsto T'$ eine wohldefinierte und stetige Abbildung von $\mathcal{L}(C_0^{\infty}(I), X)$ in sich selbst ist.
- 2. Sei $u \in C^1(I, X)$. Zeigen Sie, dass dann $(T_u)' = T_{u'}$ gilt, wobei u' die Ableitung von u bezeichnet.
- 3. Zeigen Sie: Gilt T'=0 für $T\in \mathcal{L}(C_0^\infty(I),X)$ so ist T eine konstante Funktion von I nach X. **Tipp:** Zeigen Sie zunächst, dass für $\psi\in C_0^\infty(I)$ gilt: $\psi=\eta'$ mit $\eta\in C_0^\infty(I)\Leftrightarrow \int_I \psi(t)dt=0$. Zeigen Sie dann, dass jedes $\chi\in C_0^\infty(I)$ sich schreiben lässt als $\chi=\psi_1\int_I \chi(t)dt+\eta'$, mit $\psi_1,\eta\in C_0^\infty(I)$, $\int_I \psi_1(t)dt=1$.

Aufgabe 2: Schwache Ableitung

12 Punkte

Seien X,Y Banachräume mit $X \hookrightarrow Y$, $1 < p,q < \infty$ und $I \subset \mathbb{R}$ ein offenes und beschränktes Intervall. Wir nennen eine Funktion $u \in L^1_{loc}(I,X)$ schwach differenzierbar, falls eine Funktion $v \in L^1_{loc}(I,Y)$ existiert mit $(T_u)' = T_v$ und schreiben dann v = u'.

1. Zeigen Sie, dass der verallgemeinerte Sobolevraum

$$W^{1,(p,q)}(I,X,Y) := \{\, u \in L^p(I,X) \,|\, u' \in L^q(I,Y) \,\}$$

mit der Norm $||u||_{W^{1,(p,q)}(I,X,Y)} := ||u||_{L^p(I,X)} + ||u'||_{L^q(I,Y)}$ ein Banachraum ist.

2. Zeigen Sie: Es gilt $W^{1,(p,q)}(I,X,Y)\hookrightarrow C(\overline{I},Y)$ und

$$u(t) = u(s) + \int_{s}^{t} u'(\tau) d\tau,$$

für alle $u \in W^{1,(p,q)}(I,X,Y)$ und alle $s \le t \in I$.

3. Sei nun (V, H, V^*) ein Gelfand-Tripel. Zeigen Sie: Für $u \in L^p(I, V)$ sind die Begriffe "schwache Zeitableitung" und "verallgemeinerte Zeitableitung" äquivalent, falls $u', \frac{du}{dt} \in L^{p'}(I, V^*)$ gilt.

Wir wünschen Ihnen schöne Weihnachten und einen guten Rutsch!