Prof. Dr. M. Růžička Dipl.-Math. L. Diening

Mathematik für Ingenieure und Physiker II ¹

SS 2001 — Blatt 9

Abgabe: Montag, 09.07.2001 (vor der Vorlesung)

Aufgabe 1 (8 Punkte)

Für $a, b, c, d, e, f \in \mathbb{R}$ sei $\mathbf{v}(\mathbf{x})$ definiert durch

$$\mathbf{v}(\mathbf{x}) := \frac{1}{(x+y+z)^3} \begin{pmatrix} x+y-3z \\ ax+by+cz \\ dx+ey+fz \end{pmatrix}.$$

- (a) Bestimmen Sie den Definitionsbereich D von \mathbf{v} . Ist D einfach zusammenhängend?
- (b) Für welche Werte von a, b, c, d, e, f hat \mathbf{v} lokal ein Potential U?
- (c) Wählen Sie ein maximales einfach zusammenhängendes Gebiet $G \subset D$ aus und berechnen Sie das Potential U auf G.

Aufgabe 2 (4 Punkte)

Für $p \in \mathbb{R}$ sei $\mathbf{v} : \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}^3$ gegeben durch

$$\mathbf{v}(\mathbf{x}) := -\|\mathbf{x}\|^{p-2}\mathbf{x}.$$

- (a) Zeigen Sie, dass \mathbf{v} auf dem gesamten Definitionsbereich ein Potential U hat und berechnen Sie dies.
- (b) Nehmen wir an, ein Massepunkt mit Masse m>0 bewege sich auf einer periodischen, kreisförmigen Umlaufbahn γ mit Radius R und Winkelgeschwindigkeit ω um den Nullpunkt im Potentialfeld m U. Bestimmen Sie ω in Abhängigkeit von R so, dass sich das Teilchen kräftefrei bewegt, d.h. die Kräfte der Bewegungsänderung nur auf Grund des Potentials hervorgerufen werden.

¹http://www.mathematik.uni-freiburg.de/IAM/Teaching/scripts/hm2_SS01/

Aufgabe 3 (4 Punkte)

Sei \mathbf{v} die laminare Rohrströmung in einem zur y-Achse koaxialen Rohr vom Radius r > 0, d.h.

$$\mathbf{v}(x,y,z) = \left(\begin{array}{c} 0\\ r^2 - x^2 - z^2\\ 0 \end{array}\right).$$

Berechnen Sie $\int\limits_{\mathbf{w}}\mathbf{v}\cdot d\mathbf{x}$ für die folgenden Wege:

- (a) $\mathbf{w}: [0, 2\pi] \to \mathbf{R}^3: t \mapsto s(\cos(\omega t), 0, \sin(\omega t))^T \text{ mit } 0 \le s \le r \text{ und } \omega > 0.$
- (b) **w**, der lineare Streckenzug von (0,0,0) nach (0,L,0) nach (s,L,0) nach (s,0,0) nach (0,0,0), mit L>0 und $0\leq s\leq r$.

Aufgabe 4 (4 Punkte)

Seien \mathbf{f} und \mathbf{g} zwei C^1 -Vektorfelder im \mathbb{R}^3 , so gilt in der Nabla-Schreibweise

$$\operatorname{div}(\mathbf{f} \times \mathbf{g}) = \nabla \cdot (\mathbf{f} \times \mathbf{g}).$$

Wendet man die Regeln für das Spatprodukt an, so hätte man formal die Beziehung

$$\nabla \cdot (\mathbf{f} \times \mathbf{g}) = \mathbf{g} \cdot (\nabla \times \mathbf{f}) = -\mathbf{f} \cdot (\nabla \times \mathbf{g}),$$

d.h.

$$\operatorname{div}(\mathbf{f} \times \mathbf{g}) = \mathbf{g} \cdot \operatorname{rot} \mathbf{f} = -\mathbf{f} \cdot \operatorname{rot} \mathbf{g}.$$

Diese Formeln sind jedoch falsch. Geben Sie Gegenbeispiele \mathbf{f} und \mathbf{g} für die obigen formalen Formeln an. Wie muss die Formel für $\operatorname{div}(\mathbf{f} \times \mathbf{g})$, ausgedrückt über die Rotation von \mathbf{f} und \mathbf{g} , richtig lauten?