6.3 Vektorräume 109

Falls $V = \mathbb{R}^2$, \mathbb{R}^3 heißt dies, dass die Vektoren \mathbf{v} , \mathbf{u} parallel sind.

3.8 Lemma. Die Vektoren sind genau dann linear abhängig, wenn sich einer von ihnen als Linearkombination der anderen darstellen läßt.

3.9 Lemma.

- a) Jedes endliche System von Vektoren, das linear abhängige Vektoren enthält, ist linear abhängig.
- b) Jedes endliche System von Vektoren, das den Nullvektor enthält, ist linear abhängig.
- c) Jedes Teilsystem linear unabhängiger Vekotoren ist linear unabhängig.
- **3.10 Satz.** In einer Matrix in Stufenform sind die nichttrivialen Zeilenvektoren linear unabhängig.
- **3.11 Satz.** Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$ eine quadratische Matrix. Dann sind die folgenden Aussagen äquivalent:
 - a) A ist invertierbar.
 - b) Die Spalten von A sind linear unabhängig.
 - c) Die Zeilen von A sind linear unabhängig.
- **3.12 Satz.** Für Vektoren $\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{w} \in V$ gilt:
 - a) $\operatorname{Lin}(\mathbf{v}_1,\ldots,\mathbf{v}_k,\mathbf{w}) = \operatorname{Lin}(\mathbf{v}_1,\ldots,\mathbf{v}_k) \Leftrightarrow \mathbf{w} \in \operatorname{Lin}(\mathbf{v}_1,\ldots,\mathbf{v}_k)$
 - b) Die Vektoren $\mathbf{v}_1, \ldots, \mathbf{v}_k$ sind linear unabhängig \Leftrightarrow Zur Erzeugung von Lin $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ kann kein $\mathbf{v}_i, i = 1, \ldots, k$, weggelassen werden. In diesem Fall nennt man $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ ein **minimales Erzeugendensystem**.
- **3.13 Definition.** Ein System $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ von Vektoren aus V heißt eine **Basis** des \mathbb{R} -Vektorraumes V, wenn gilt:
- (B.1) Die Vektoren $\mathbf{v}_1, \ldots, \mathbf{v}_n$ sind linear unabhängig,
- (B.2) Die \mathbf{v}_i erzeugen V, d.h. $\operatorname{Lin}(\mathbf{v}_1, \ldots, \mathbf{v}_n) = V$.

3.14 Satz. Ist $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ eine Basis von V, dann gibt es zu jedem Vektor $\mathbf{a} \in V$ genau ein n-Tupel reeller Zahlen $(\alpha_1, \dots, \alpha_n)$ mit

$$\mathbf{a} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n.$$

Ferner sind je m Vektoren aus V linear abhängig, falls m > n.

- Die Menge der Basisspaltenvektoren $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ ist eine Basis des \mathbb{R}^n im Sinne obiger Definition.
- **3.15 Satz.** Die Zeilen (bzw. Spalten) einer invertierbaren $n \times n$ Matrix bilden eine Basis des \mathbb{R}_n (bzw. \mathbb{R}^n).
- Im Raum $P_k(\mathbb{R}) = \{\text{Polynome vom Grad} \leq k\}$ bilden die Polynome $\{1, x, x^2, \dots, x^k\}$ eine Basis.
- **3.16 Definition.** Ein Vektorraum V heißt endlichdimensional, wenn es endlich viele Vektoren $\mathbf{w}_1, \ldots, \mathbf{w}_r$ mit $V = \text{Lin}(\mathbf{w}_1, \ldots, \mathbf{w}_r)$ gibt.
 - Die Räume \mathbb{R}^n , \mathbb{R}_n , $P_{\mathbb{R}}$ sind endlichdimensional.
 - Der Raum $P(\mathbb{R}) = \{\text{Polynom mit beliebigem Grad}\}$ ist nicht endlichdimensional.
- **3.17 Satz (Basisergänzungssatz).** In einem endlichdimensionalen Vektorraum $V \neq \{0\}$ bilden linear unabhängige Vektoren $\mathbf{v}_1, \ldots, \mathbf{v}_k$ bereits eine Basis $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ von V oder man kann sie durch Hinzunahme weiterer Vektoren $\mathbf{u}_1, \ldots, \mathbf{u}_l$ zu einer Basis $(\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{u}_1, \ldots, \mathbf{u}_l)$ von V ergänzen.
- **3.18 Satz.** Jeder endlichdimensionale Vektorraum $V \neq \{0\}$ besitzt eine endliche Basis $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$. Ist $(\mathbf{w}_1, \ldots, \mathbf{w}_m)$ ebenfalls eine Basis von V, so gilt: m = n.
- **3.19 Definition.** Die gemeinsame Länge n aller Basen eines endlichdimensionalen Vektorraumes $V \neq \{0\}$ heißt **Dimension** von V, abgekürzt $\dim V = n$. Man setzt $\dim \{0\} = 0$.

Beispiele:

$$\dim \mathbb{R}^n = \dim \mathbb{R}_n = n,$$

 $\dim P_k(\mathbb{R}) = k+1,,$
 $\dim \{x \in \mathbb{R}^3, 3x_1 + x_2 + x_3 = 0\} = 2.$ (zwei Parameter frei wählbar)

3.20 Lemma. Ist r die Maximalzahl linear unabhängiger Vektoren aus $(\mathbf{v}_1, \dots, \mathbf{v}_k)$, dann gilt:

$$r = \dim \operatorname{Lin}(\mathbf{v}_1, \dots, \mathbf{v}_k).$$

- **3.21 Satz.** In einem \mathbb{R} -Vektorraum V der Dimension n gilt:
 - a) Je n linear unabhängige Vektoren aus V bilden eine Basis von V.
 - b) Jedes Erzeugendensystem von V mit n Elementen ist eine Basis von V.
 - c) Je n+1 Vektoren aus V sind linear abhängig.
- **3.22 Satz.** Jeder Unterraum U eines endlichdimensionalen Vektorraumes V ist endlichdimensional. Im Falle $U \neq V$ gilt: $\dim U < \dim V$.
- \bullet Nach Satz 3.22 ist ein Unterraum U eines endlichdimensionalen Vektorraumes wieder ein endlichdimensionaler Vektorraum. Also gelten die Sätze 3.17, 3.18, 3.21 analog für U.
- Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{A} \neq \mathbf{0}$. Dann ist Ker $\mathbf{A} := \{\mathbf{x} \in \mathbb{R}^n, \mathbf{A}\mathbf{x} = 0\} \subseteq \mathbb{R}^n$ ein Unterraum des \mathbb{R}^n der Dimension r < n.

6.4 Elementarmatrizen

4.1 Definition. Sei $\mathbf{A} \in \mathbb{R}^{m \times n}$ eine Matrix mit den Zeilenvektoren $\mathbf{z}_1, \dots, \mathbf{z}_m \in \mathbb{R}_n$ und den Spaltenvektoren $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$. Dann heißt

$$\operatorname{Lin}(\mathbf{z}_1,\ldots,\mathbf{z}_m)\subseteq\mathbb{R}_n$$

der Zeilenraum von A und

$$\operatorname{Lin}(\mathbf{a}_1,\ldots,\mathbf{a}_n)\subseteq\mathbb{R}^m$$

der **Spaltenraum** von **A**.

- Nach Lemma 3.20 ist die Dimension des Spaltenraumes die Maximalzahl linear unabhängiger Spaltenvektoren von A. Analog für den Zeilenraum.
- Beim Transponieren gehen Zeilen in Spalten über und umgekehrt. Also spiegeln sich die Eigenschaften des Spaltenraumes (Zeilenraumes) von A wieder im Zeilenraum (Spaltenraum) von A^T.

• Aus
$$\mathbf{A}\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{a}_i$$
, $\mathbf{x} \in \mathbb{R}^n$ bzw. $\mathbf{y}\mathbf{A} = \sum_{j=1}^{m} y_j \mathbf{a}_j$, $\mathbf{y} \in \mathbb{R}_m$ folgt

Spaltenraum von
$$\mathbf{A} = \{\mathbf{A}\mathbf{x}, \mathbf{x} \in \mathbb{R}^n\},\$$

Zeilenraum von $\mathbf{A} = \{\mathbf{y}\mathbf{A}, \mathbf{y} \in \mathbb{R}_m\} = \{\mathbf{y}^T\mathbf{A}, \mathbf{y} \in \mathbb{R}^m\}.$ (4.2)

4.3 Satz. Sei $\mathbf{A} \in \mathbb{R}^{m \times n}$. Für alle invertierbaren Matrizen $\mathbf{P} \in \mathbb{R}^{m \times m}$ und $\mathbf{Q} \in \mathbb{R}^{n \times n}$ gilt:

A und AQ haben denselben Spaltenraum, A und PA denselben Zeilenraum.

- Elementare Zeilen- bzw. Spaltenumformungen werden in folgende Typen eingeteilt:
- Typ 1: Vertauschen zweier Zeilen (Spalten),
- Typ 2: Multiplizieren einer Zeile (Spalte) mit Faktor ungleich Null,
- Typ 3: Addition eines Vielfachen einer Zeile (Spalte) zu einer anderen.

4.4 Definition. Eine $m \times m$ Matrix $\tilde{\mathbf{E}}$ heißt **Elementarmatrix vom Typ** i, i=1,2,3, wenn sie aus der $m \times m$ Einheitsmatrix \mathbf{E} durch **eine** elementare Zeilenumformung vom Typ i hervorgeht.

Beispiele:

$$\begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Vertauschen von \mathbf{e}_1 und $\mathbf{e}_2 \Rightarrow \text{Typ } 1$

$$\begin{pmatrix} \mathbf{e}_1 \\ \alpha \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Multiplikation von \mathbf{e}_2 mit $\alpha \Rightarrow \text{Typ } 2$

$$\begin{pmatrix} \mathbf{e}_1 + \alpha \mathbf{e}_3 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \alpha \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Addition des α fachen von \mathbf{e}_3 zu $\mathbf{e}_1 \Rightarrow \text{Typ } 3$

4.5 Satz.

a) Entsteht $\tilde{\mathbf{A}}$ aus $\mathbf{A} \in \mathbb{R}^{m \times n}$ durch <u>eine</u> elementare Zeilenumformung, dann gilt:

$$\tilde{\mathbf{A}} = \tilde{\mathbf{E}}\mathbf{A}$$

 $mit\ der\ zugeh\"{o}rigen\ Elementarmatrix\ ilde{\mathbf{E}}.$

- b) Die Elementarmatrizen sind invertierbar, die Inversen sind ebenfalls Elementarmatrizen.
- c) Entsteht \mathbf{M} bzw. \mathbf{N} aus $\mathbf{A} \in \mathbf{E}^{m \times n}$ durch endlich viele elementare Zeilen- bzw. Spaltenumformungen, dann gibt es invertierbare Matrizen $\mathbf{P} \in \mathbb{R}^{m \times n}$, $\mathbf{Q} \in \mathbb{R}^{n \times n}$ mit

$$\mathbf{M} = \mathbf{P}\mathbf{A}, \qquad \mathbf{N} = \mathbf{A}\mathbf{Q}. \tag{4.6}$$

P und Q sind Produkte von Elementarmatrizen.

- **4.7 Folgerung.** Der Zeilenraum einer Matrix ändert sich nicht bei elementaren Zeilenumformungen, der Spaltenraum nicht bei elementaren Spaltenumformungen.
- **4.8 Folgerung.** In einer Matrix in Stufenform bilden die nichttrivialen Zeilenvektoren eine Basis des Zeilenraumes. Die Dimension des Zeilenraumes ist die Anzahl der Elemente der Buchführungsmenge.
 - Man kann statt Zeilenumformungen auch Spaltenumformungen durchführen und erhält so die sogenannte "Spaltenstufenform", z.B.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ * & * & * & 0 & 0 \end{pmatrix}$$

4.9 Folgerung. In einer Matrix in "Spaltenstufenform" bilden die nichttrivialen Spaltenvektoren eine Basis des Spaltenraumes. Die Dimension ist die Anzahl der Elemente der Buchführungsmenge.

• Wir bezeichnen mit

$$\begin{pmatrix} \mathbf{E}_s & 0 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{m \times n}$$

die Matrix die an den ersten s Diagonalstellen eine 1 und sonst nur Nullen hat.

4.10 Satz.

- a) Die Dimension des Spaltenraumes von A ist gleich der Dimension des Zeilenraumes von A.
- b) Es gibt invertierbare Matrizen $\mathbf{P} \in \mathbb{R}^{m \times m}, \mathbf{Q} \in \mathbb{R}^{n \times n}$, so dass

$$\mathbf{PAQ} = \begin{pmatrix} \mathbf{E}_r & 0\\ 0 & 0 \end{pmatrix},\tag{4.11}$$

 $wobei \ r = \dim (Zeilenraumes \ von \ \mathbf{A})$

- c) Gilt für invertierbare Matrizen $\mathbf{P} \in \mathbb{R}^{m \times m}$ und $\mathbf{Q} = (\mathbf{q}_1, \dots, \mathbf{q}_n) \in \mathbb{R}^{n \times n}$ die Beziehung $\mathbf{P}\mathbf{A}\mathbf{Q} = \begin{pmatrix} \mathbf{E}_s & 0 \\ 0 & 0 \end{pmatrix}$, dann ist s = r und $(\mathbf{q}_{r+1}, \dots, \mathbf{q}_n)$ bilden eine Basis von Kern \mathbf{A} .
- **4.12 Definition.** Der **Rang** einer Matrix ist die Dimension ihres Zeilenraumes und wird mit Rang **A** bezeichnet.
- **4.13 Folgerung.** Für jede $m \times n$ Matrix **A** gilt:

$$\operatorname{Rang} \mathbf{A} + \dim(\operatorname{Ker} \mathbf{A}) = n.$$

4.14 Folgerung. $F\ddot{u}r \mathbf{A} \in \mathbb{R}^{m \times n}$ gilt:

$$Rang(\mathbf{A}) = Rang(\mathbf{A}^T),$$
 (i)

und für alle invertierbaren Matrizen $\mathbf{P} \in \mathbb{R}^{m \times m}$, $\mathbf{Q} \in \mathbb{R}^{n \times n}$

$$Rang(\mathbf{PAQ}) = Rang(\mathbf{A}). \tag{ii}$$

4.15 Blockmatrizen. Aus Matrizen $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n) \in \mathbb{R}^{m \times n}$ und $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_k) \in \mathbb{R}^{m \times k}$ gleicher Zeilenzahl kann man eine neue Matrix

$$(\mathbf{A},\mathbf{B}) := (\mathbf{a}_1,\ldots,\mathbf{a}_n,\mathbf{b}_1,\ldots,\mathbf{b}_k) \in \mathbb{R}^{m \times (n+k)}$$

bilden. Analog ist für Matrizen \mathbf{A} , \mathbf{C} gleicher Spaltenzahl eine Matrix $\begin{pmatrix} \mathbf{A} \\ \mathbf{C} \end{pmatrix}$ definiert. Wiederholtes Anwenden solcher Zusammensetzungen liefert eine **Blockmatrix**

$$egin{pmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1k} \ dots & & dots \ \mathbf{A}_{l1} & \cdots & \mathbf{A}_{lk} \end{pmatrix}$$
 ,

wobei nebeneinanderstehende Matrizen dieselbe Zeilenzahl haben und untereinanderstehende dieselbe Spaltenzahl. Umgekehrt kann man eine Matrix A auch in Blöcke zerlegen, z.B.:

$$\mathbf{A} = \left(egin{array}{c|c|c} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} \\ \hline \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{23} \\ \hline \mathbf{A}_{31} & \mathbf{A}_{32} & \mathbf{A}_{33} \end{array}
ight)$$

4.16 Rechenverfahren mit Zeilenumformungen. $Aus \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{m \times k}$ bildet man $(\mathbf{A}, \mathbf{B}) \in \mathbb{R}^{m \times (n+k)}$. An dieser Matrix werden elementare Zeilenumformungen durchgeführt bis man zu einer Matrix (\mathbf{M}, \mathbf{N}) kommt, d.h.

$$\begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \hline & \downarrow Zeilenumformungen \\ \hline & \mathbf{M} & \mathbf{N} \end{array}$$

Nach Satz 4.5c) gibt es eine Matrix $\mathbf{P} \in \mathbb{R}^{m \times m}$ mit

$$\mathbf{M} = \mathbf{PA}, \qquad \mathbf{N} = \mathbf{PB} \tag{4.17}$$

(i) Wählt man nun $\mathbf{B} = \mathbf{E} \in \mathbb{R}^{m \times m}$, so liefert (4.17)

$$E = PA$$
, $N = P$,

d.h. man kann die Matrix P berechnen die A in M überführt.

(ii) Falls $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertierbar ist und man $\mathbf{B} = \mathbf{M} = \mathbf{E}_n$ wählt, liefert (4.17)

$$E = PA$$
, $N = P$,

d.h. $\mathbf{P} = \mathbf{N} = \mathbf{A}^{-1}$. Insbesondere ist nach Satz 4.5c) $\mathbf{P} = \mathbf{A}^{-1}$ ein Produkt aus Elementarmatrizen.

(iii) Soll das Gleichungssystem $\mathbf{A}\mathbf{x} = \mathbf{b}$ für mehrere rechte Seiten $\mathbf{b}_i, i = 1, \ldots, k$ gelöst werden, so wählt man $\mathbf{B} = (\mathbf{b}_1, \ldots, \mathbf{b}_k), \mathbf{M} = \mathbf{E}$. Also liefert (4.17)

$$\mathbf{P} = \mathbf{A}^{-1}, \qquad \mathbf{N} = \mathbf{A}^{-1}\mathbf{B},$$

d.h. die Spalten \mathbf{b}_i von \mathbf{N} sind die Lösungen der Gleichungen $\mathbf{A}\mathbf{x} = \mathbf{b}_i$.

(iv) Sei A ∈ R^{n×n} invertierbar und sei B = E. Wenn man A nur mit Hilfe von Zeilenumformungen vom Typ 3 in eine obere Dreiecksmatrix M überführt (Ausräumen der Spalten unterhalb der Diagonalen), so treten auf der rechten Seite des Schemas nur Veränderungen unterhalb der Diagonalen auf, d.h. P ist eine untere Dreiecksmatrix mit Einsen auf der Diagonalen. Aus (4.17) folgt:

$$\mathbf{A} = \mathbf{P}^{-1}\mathbf{M},\tag{4.18}$$

wobei auch \mathbf{P}^{-1} eine untere Dreiecksmatrix mit Einsen auf der Diagonalen ist. Die multiplikative Zerlegung (4.18) mit $\mathbf{L} := \mathbf{P}^{-1}$ und $\mathbf{R} := \mathbf{M}$ heißt \mathbf{L} - \mathbf{R} - $\mathbf{Zerlegung}$.