Dr. B. Mößner

Mathematik I für Studierende des Ingenieurwesens und der Informatik

WS 2008/09 — Blatt 3

Abgabe: Montag, 10.11.2008 (vor der Vorlesung)

Aufgabe 1 (2 Punkte)

Gegeben seien die folgenden Vektoren des \mathbb{R}^3 :

$$\vec{a} := (1, 3, 1)^T, \qquad \vec{b} := (-1, 2, 1)^T, \qquad \vec{c} := (2, -3, 4)^T.$$

Berechnen Sie die Projektionen von \vec{b} und \vec{c} auf \vec{a} .

Aufgabe 2 (5 Punkte)

Die kartesischen Koordinaten der Ecken eines Tetraeders T im \mathbb{R}^3 seien

$$A_1 = (1, 1, 1)^T$$
, $A_2 = (2, -1, -1)^T$, $A_3 = (-1, -1, 1)^T$, $A_4 = (-1, 1, -2)^T$.

- (a) Berechnen Sie das Volumen von T und die Flächen der 4 Seiten s_1 , s_2 , s_3 und s_4 , wobei s_i dem Punkt A_i , mit $i = 1, \ldots, 4$, gegenüber liegt.
- (b) Sind \vec{a} und \vec{b} Vektoren im \mathbb{R}^3 , so beschreibt die Menge

$$\{\vec{a} + t\,\vec{b} \,:\, t \in \mathbb{R}\}$$

eine Gerade. Hierbei ist $\vec{a} + t\vec{b}$ ist die sogenannte **Parameterdarstellung** dieser Geraden. Geben Sie eine Parameterdarstellung der Geraden an, welche durch A_1 geht und senkrecht auf s_1 steht, d.h. die Höhe durch A_1 .

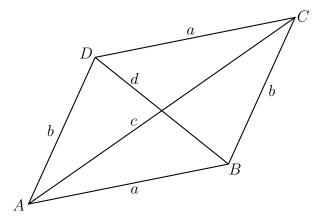
Aufgabe 3 (6 Punkte)

Seien $\vec{a}, \vec{b}, \vec{c}, \vec{d} \in \mathbb{R}^3$ Vektoren. Beweisen Sie:

- (a) Entwicklungssatz: $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} (\vec{a} \cdot \vec{b}) \vec{c}$,
- (b) Jakobi-Identität: $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{c} \times (\vec{a} \times \vec{b}) + \vec{b} \times (\vec{c} \times \vec{a}) = 0$,
- (c) Lagrange-Identität: $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) (\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{d}).$

Aufgabe 4 (3 Punkte)

Gegeben sei wie auf Blatt 2, Aufgabe 3, folgendes Parallelogramm



Finden Sie für die Parallelogrammgleichung, $2a^2+2b^2=c^2+d^2$, einen alternativen Beweis. Repräsentieren Sie hierfür \overline{AB} und \overline{AD} durch Vektoren \vec{x} und \vec{y} und versuchen Sie a^2 , b^2 , c^2 und d^2 mit Hilfe von \vec{x} und \vec{y} auszudrücken.

Aufgabe 5 (4 Punkte)

1. Bringen Sie die folgenden komplexen Zahlen auf die Form z=x+iy mit $x,y\in\mathbb{R}$:

(a)
$$(2+4i)(5-3i)$$
 (b) $\frac{4+i\sqrt{5}}{\sqrt{5}-4i}$

- 2. Bestimmen Sie die folgenden Teilmengen von \mathbb{C} und skizzieren Sie diese in der Ebene, indem Sie eine komplexe Zahl z=x+iy als Punkt $(x,y)\in\mathbb{R}^2$ auffassen:
 - (a) $\{z \in \mathbb{C} \mid |z| < |z+3|\}$
 - (b) $\{z \in \mathbb{C} \setminus \{0\} \mid \operatorname{Re}\left(\frac{1}{z}\right) \ge 1\}$