Lineare Algebra I

WS 1999/2000 — Blatt 5

Abgabe: Montag, 29.11.1999

Dipl.-Math. L. Diening

Aufgabe 1: (3 Punkte)

Man ermittle Basen der Zeilenräume der folgenden Matrizen:

$$\begin{bmatrix} 1 & 3 & -1 & 2 \\ 2 & 8 & 3 & 1 \\ 1 & 3 & 7 & -2 \\ 3 & 11 & 10 & -1 \\ 2 & 8 & 11 & -3 \end{bmatrix} \qquad \begin{bmatrix} 2 & -6 & 0 & 4 & 8 & -2 \\ 3 & -9 & 1 & 8 & 11 & -1 \\ 5 & -15 & 1 & 8 & 21 & 5 \\ 2 & -6 & 3 & 10 & 5 & 4 \end{bmatrix}$$

Aufgabe 2: (3 Punkte)

Man untersuche die folgenden Systeme $S=(v_1,v_2,...,v_m)$ jeweils auf lineare Unabhängigkeit:

- a) $v_1 = (1, 1, 1, 0), v_2 = (1, 1, 2, 0), v_3 = (1, 2, 1, 0), v_4 = (2, 1, 1, 0) \in \mathbb{R}^4$
- b) $v_1, v_2, v_3 \in \mathbb{R}^2$ beliebig,
- c) $v_1 = (1, 1, 2, 2), v_2 = (2, 2, 1, 1), v_3 = (1, 2, 2, 1) \in \mathbb{R}^4$.

Gegeben sei eine Menge X. Eine Teilmenge $R \subset X \times X$ heißt **Relation** auf X. Gilt $(x,y) \in R$, so sagt man "x steht in Relation R mit y". Meist bezeichnet man eine Relation einfach mit " \sim " und schreibt $x \sim y$ statt $(x,y) \in R$. Besitzt \sim weiterhin für alle $x,y,z \in X$ die Eigenschaften

- (i) $x \sim x$ (\sim ist reflexiv),
- (ii) $x \sim y \Rightarrow y \sim x$ (\sim ist symmetrisch),
- (iii) $x \sim y$ und $y \sim z \Rightarrow x \sim z$ (\sim ist transitiv),

so nennt man $\sim \ddot{\mathbf{A}}\mathbf{q}\mathbf{u}\mathbf{i}\mathbf{v}\mathbf{a}\mathbf{l}\mathbf{e}\mathbf{n}\mathbf{z}\mathbf{r}\mathbf{e}\mathbf{l}\mathbf{a}\mathbf{t}\mathbf{i}\mathbf{o}\mathbf{n}$.

a) Sei W ein Untervektorraum von V. Zeigen Sie, dass

$$v_1 \sim v_2 \quad :\Leftrightarrow \quad v_1 - v_2 \in W$$

mit $v_1, v_2 \in V$ eine Äquivalenz
relation definiert.

b) Sei \sim nun seine Äquivalenzrelation. Für $v \in V$ bezeichnen wir dann mit $\widehat{v} := \{w \in V : w \sim v\}$ die sogenannte Äquivalenzklasse von v.

Beweisen Sie: Für $v_1, v_2 \in V$ gilt entweder $\widehat{v_1} = \widehat{v_2}$ oder $\widehat{v_1} \cap \widehat{v_2} = \emptyset$, d.h. zwei Äquivalenzklassen sind entweder gleich oder disjunkt.

Seien U und W Untervektorräme von V. Sei $\{u_1, \ldots, u_m\}$ eine Basis von U und $\{w_1, \ldots, w_n\}$ eine Basis von W.

Sei weiterhin $b_1,\dots,b_r\in\mathbb{R}^{m+n}$ eine Basis des Lösungsraumes des homogenen Gleichungssystems in V

$$x_1u_1 + \dots + x_m u_m + x_{m+1}w_1 + \dots + x_{m+n}w_n = 0.$$
 (*)

Geben Sie mit Hilfe von $u_1, \ldots, u_m, w_1, \ldots w_n, b_1, \ldots, b_r$ eine Basis von $U \cap W$ an.

Hinweis: Stellen Sie einen beliebigen Vektor $v \in U \cap W$ sowohl mit Hilfe von u_1, \ldots, u_m als auch von w_1, \ldots, w_n dar. Welche Beziehung erfüllen dann die Koeffizienten in dieser Darstellung? Durch geschicktes Einsetzen erhält man zwei erzeugende Systeme von $U \cap W$, eins ausgedrückt in u_1, \ldots, u_m und eins in w_1, \ldots, w_m . Unter Verwendung von (*) kann man zeigen, dass es sich hierbei um Basen handelt.