Nichtlineare Funktionalanalysis

WS 2011/12 — Woche 5

Abgabe: Montag, den 28. November, vor der Vorlesung

Aufgabe 1: Separabilität von Bochnerräumen

4 Punkte

Sei $1 \leq p < \infty$, X ein Banachraum und $I \subset \mathbb{R}$ ein kompaktes Intervall. Zeigen Sie, dass $L^p(I, X)$ genau dann separabel ist, wenn X separabel ist.

Aufgabe 2: Vektorwertige Distributionen

10 Punkte

Sei $1 \leq p < \infty$, $I := (a, b) \subset \mathbb{R}$ und X ein Banachraum.

1. Zeigen Sie: Für $u \in L^p(I,X)$ gilt auch $u_h \in L^p(I,X)$, wobei

$$u_h(t) = \begin{cases} u(t+h) & \text{für } t+h \in I\\ 0 & \text{für } t+h \notin I. \end{cases}$$

Zeigen Sie außerdem $\lim_{h\to 0} ||u_h - u||_{L^p(I,X)} = 0.$

- 2. Zeigen Sie: Für $u \in L^p(I, X)$ ist die durch $v(t) := \int_{t_0}^t u(s) \, ds$, $t_0 \in I$, definierte Funktion $v: I \to X$ fast überall in I differenzierbar mit v'(t) = u(t).
- 3. Wir versehen den Raum $C_0^{\infty}(I)$ mit dem folgenden Konvergenzbegriff: eine Folge $(\varphi_n)_{n\in\mathbb{N}}\subset C_0^{\infty}(I)$ konvergiert gegen φ in $C_0^{\infty}(I)$ falls eine kompakte Menge $K\subset I$ existiert, so dass $\operatorname{supp}(\varphi_n)$, $\operatorname{supp}(\varphi)\subset K$ für alle hinreichend großen $n\in\mathbb{N}$ und $\lim_{n\to\infty}\|\varphi_n^{(\alpha)}-\varphi^{(\alpha)}\|_{C^0(K)}=0$ für alle $\alpha\in\mathbb{N}$ gilt. Sei außerdem $\mathcal{L}(C_0^{\infty}(I),X)$ der Raum der stetigen linearen Abbildungen von $C_0^{\infty}(I)$ nach X. Die Konvergenz in $\mathcal{L}(C_0^{\infty}(I),X)$ definieren wir durch $T_n\to T:\Leftrightarrow \langle T_n,\varphi\rangle\to \langle T,\varphi\rangle,\,\forall\varphi\in C_0^{\infty}(I)$. Zeigen Sie, dass die Abbildung $T:L^p(I,X)\to\mathcal{L}(C_0^{\infty}(I),X)$, mit

$$\langle Tu, \varphi \rangle := \int_I u(s)\varphi(s) \, ds$$

wohldefiniert, linear, stetig und injektiv ist.

Aufgabe 3: Wirbelterm

6 Punkte

Sei $\Omega \subset \mathbb{R}^3$ ein beschränktes Gebiet und $X:=W_0^{1,2}(\Omega)^3$. Der Wirbelterm $b_u:X^2\to\mathbb{R}$ ist für festes $u\in X$ definiert durch

$$b_u(v, w) := \sum_{i,j=1}^{3} \int_{\Omega} u_i \partial_i v_j w_j \, dx.$$

Zeigen Sie, dass b_u wohldefiniert und sogar in jedem Punkt Fréchet-differenzierbar ist.