Prof. Dr. M. Růžička 08.11.2010

C. Gersbacher

Praktikum zur Vorlesung

Einführung in die Theorie und Numerik partieller Differentialgleichungen

WS 2010/11 — Blatt 2

PRAKTIKUMSAUFGABE

Abgabe: bis Montag, den 15.11.2010, per Mail an den Assistenten

Aufgabe 2 (4 Punkte)

Wir betrachten das Problem

$$-u'' = f \quad \text{in } (a, b),$$

$$u(a) = u_l, \ u(b) = u_r$$

zu einer gegebenen rechten Seite f und Randwerten $u_l, u_r \in \mathbb{R}$. Das Programm fem-praktikum/src/aufgaben/2/poisson1d.cc ist bereits um die korrekte Behandlung von Randwerten erweitert worden.

Wir verwenden weiter die Notation vom letzten Aufgabenblatt. Es seien aus dem numerischen Verfahren $(x_i, u_i)_{i=0,...,N} \subset [a, b] \times \mathbb{R}$ gegeben, so dass $u_i \approx u(x_i)$, i = 0,...,N. Wir definieren $u_h \in C^0([a, b])$ durch lineare Interpolation

$$|u_h(x)|_{[x_i,x_{i+1}]} = u_i + \frac{u_{i+1} - u_i}{h}(x - x_i) \quad (i = 0,\dots, N-1),$$

und sind interessiert an der Abweichung in der L^2 -Norm

$$||u - u_h||_2 = \left(\int_a^b (u(x) - u_h(x))^2 dx\right)^{\frac{1}{2}}.$$

Das Integral auf der rechten Seite kann im allgemeinen nur näherungsweise mithilfe von Quadraturformeln berechnet werden.

Zu zwei Gitterweiten h_1, h_2 mit $h_1 > h_2$ definieren wir desweiteren

$$EOC(h_1, h_2) = \frac{\log \|u - u_{h_1}\|_2 - \log \|u - u_{h_2}\|_2}{\log h_1 - \log h_2}.$$

Erweitern Sie das Programm fem-praktikum/src/aufgaben/2/poisson1d.cc an den angegebenen Stellen um die Auswertung von u_h und die Berechnung des L^2 -Fehlers und der Größe EOC.

Die Übungsblätter finden Sie auf der Vorlesungshomepage unter