Einführung in Theorie und Numerik partieller Differentialgleichungen

WS 2010/11 — Woche 4

Abgabe: Montag, den 15. November, vor der Vorlesung

Aufgabe 1 7 Punkte

Sei $G \subset \mathbb{R}^n$ ein beschränktes Gebiet und sei u harmonisch auf G.

(a) Zeigen Sie, dass für alle Bälle $B = B_R(y) \subset G$ gilt

$$|\nabla u(y)| \le \frac{n}{R} \sup_{\partial B} |u|.$$

Tipp: Mittelwertgleichungen.

(b) Sei $G' \subset\subset G$ und $d := \operatorname{dist}(G', \partial G)$. Zeigen Sie, dass für alle Multiindizes α gilt

$$\sup_{G'} |\nabla^{\alpha} u| \le \left(\frac{n|\alpha|}{d}\right)^{|\alpha|} \sup_{G} |u|.$$

Aufgabe 2: (Superharmonische Funktionen)

7 Punkte

Eine Funktion $u \in C^2(G)$ heisst superharmonisch in G, falls $\Delta u \leq 0$ in G gilt. Zeigen Sie: Falls u superharmonisch in G ist, so gilt für jeden Ball $B = B_R(x) \subset G$

$$u(x) \ge \frac{1}{|\partial B_R(x)|} \int_{\partial B_R(x)} u(\xi) do(\xi).$$

Tipp: Betrachten Sie dazu die Funktion $\varphi(r) := \frac{1}{|\partial B_r(x)|} \int_{\partial B_r(x)} u(\xi) \, do(\xi).$

Folgern Sie anschließend das starke Minimumprinzip für superharmonische Funktionen: Falls u superharmonisch ist und ein Punkt $x_0 \in G$ existiert mit $u(x_0) = \inf_G u$, so ist u konstant auf G.

Aufgabe 3: (schwach singulärer Integralkern) 6 Punkte

Sei G ein beschränktes Gebiet und $\alpha \in [0, n)$. Weiterhin sei $A \in L^{\infty}(G \times G)$. Für $x \in G$ und $f \in L^2(G)$ definieren wir

$$(Tf)(x) := \int_G \frac{A(x,y)}{|x-y|^{\alpha}} f(y) \, dy.$$

Zeigen Sie, dass T ein (wohldefinierter) stetiger, linearer Operator von $L^2(G)$ nach $L^2(G)$ ist. Zeigen Sie insbesondere, dass es ein C > 0 gibt mit

$$||Tf||_{L^2(G)} \le C ||f||_{L^2(G)}$$

für alle $f \in L^2(G)$.