Einführung in Theorie und Numerik partieller Differentialgleichungen

WS 2010/11 — Woche 4

Abgabe: Montag, den 22. November, vor der Vorlesung

Aufgabe 1: (Eigenschaften von Sobolev-Funktionen) 4 Punkte

Sei $(W^{m,p}(G), \|\cdot\|_{W^{m,p}(G)})$, $m \geq 1$ und $p \in [1, \infty]$, der in der Vorlesung definierte Sobolevraum. Zeigen Sie:

- 1. $|||u|||_{W^{m,p}(G)} := \sum_{|\alpha| \leq m} ||D^{\alpha}u||_{L^p(G)}$ definiert eine äquivalente Norm auf $W^{m,p}(G)$.
- 2. Für $u \in W^{m,p}(G)$ und alle Multiindizes α, β mit $|\alpha| + |\beta| \leq m$ gilt $D^{\beta}(D^{\alpha}u) = D^{\alpha}(D^{\beta}u) = D^{\alpha+\beta}u$.
- 3. Klassisch differenzierbare Funktionen sind schwach differenzierbar mit gleicher Ableitung.
- 4. Die Poincaré Ungleichung gilt im Allgemeinen nicht auf $W^{m,p}(G)$.

Aufgabe 2: (Beispiel für eine Sobolev-Funktion)

Sei $G := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, x > 0, y > 0\}$ und

$$u(x,y) := \arctan \frac{y}{x}.$$

Für welche p gilt $u \in W^{1,p}(G)$?

Aufgabe 3: (stetige lineare Operatoren)

5 Punkte

4 Punkte

Seien X,Ynormierte Vektorräume und sei $T:X\to Y$ ein linearer Operator. Dann sind äquivalent:

- 1. T ist stetig.
- 2. T ist stetig in 0.
- 3. $\sup_{\|x\|_X \le 1} \|Tx\|_Y < \infty$.
- 4. Es gibt eine Konstante C > 0 mit $||Tx||_Y \le C ||x||_X$.

Für normierte Vektorräume X,Y definieren wir

$$L(X,Y) := \{\, T: X \to Y \,|\, T \text{ ist stetig und linear}\,\}.$$

Für $T \in L(X,Y)$ sei die Operatornorm definiert durch

$$||T||_{L(X,Y)} := ||T|| := \sup_{||x||_X \le 1} ||Tx||_Y.$$

Zeigen Sie:

$$||T|| = \sup_{\|x\|_X = 1} ||Tx||_Y = \inf \{ C > 0 \mid ||Tx||_Y \le C \, ||x||_X \, \forall x \in X \}.$$

Zeigen Sie außerdem, dass $(L(X,Y),\|\cdot\|_{L(X,Y)})$ ein normierter Vektorraum ist und ein Banachraum, falls Y ein Banachraum ist.