Einführung in Theorie und Numerik partieller Differentialgleichungen

WS 2010/11 — Woche 5

Abgabe: Montag, den 29. November, vor der Vorlesung

Aufgabe 1: (Produkt- und Kettenregel)

9 Punkte

- 1. Für $u \in W_0^{1,p}(G)$ und $v \in W_0^{1,p'}(G)$ gilt $uv \in W_0^{1,1}(G)$ und $\partial_i(uv) = \partial_i uv + u\partial_i v$ für alle i = 1, ..., n.
- 2. Sei $G \subset \mathbb{R}^n$ ein beschränktes Gebiet und sei $F \in C^1(\mathbb{R})$ mit F(0) = 0 und $|F'| \leq K$. Dann gilt für jede Funktion $u \in W_0^{1,p}(G)$, $1 \leq p < \infty$, auch $F(u) \in W_0^{1,p}(G)$ und $\partial_i F(u) = F'(u) \partial_i u$, i = 1, ..., n.
- 3. Für $u \in W_0^{1,p}(G)$, $1 \le p < \infty$, liegen auch $|u|, u_+ := \max\{u,0\}$ und $u_- := \min\{u,0\}$ in $W_0^{1,p}(G)$.

Tipp: Betrachten Sie für $\varepsilon > 0$ die Funktion

$$F_{\varepsilon}(u) = \begin{cases} (u^2 + \varepsilon^2)^{1/2} - \varepsilon & \text{falls } u > 0, \\ 0 & \text{sonst} \end{cases}$$

und verwenden Sie die Kettenregel.

Aufgabe 2: (schwache Ableitung)

4 Punkte

Die Funktion $u: \mathbb{R} \to \mathbb{R}$ sei definiert durch

$$u(x) := \begin{cases} x & \text{falls } x \le 0, \\ 2 & \text{falls } x > 0. \end{cases}$$

Zeigen Sie, dass u auf keinem Intervall, das die 0 enthält, eine schwache Ableitung im Sinne von Definition 1.42 aus der Vorlesung besitzt.

Aufgabe 3: (Dualraum von $L^p(G)$)

7 Punkte

Sei 1 und sei <math>p' definiert durch $\frac{1}{p} + \frac{1}{p'} = 1$. Wir definieren einen Operator $T: L^{p'}(G) \to (L^p(G))^*$ durch

$$\langle Tu, \varphi \rangle := \int_G u\varphi \, dx, \ \varphi \in L^p(G).$$

Zeigen Sie: T ist wohldefiniert und es gilt $||Tu||_{(L^p(G))^*} = ||u||_{L^{p'}(G)}$. Folgern Sie daraus, dass $L^{p'}(G)$ isometrisch isomorph zu einem abgeschlossenen Unterraum von $(L^p(G))^*$ ist.

Bemerkung: Die Aufgabe zeigt insbesondere, dass T injektiv ist und man kann sogar zeigen, dass T surjektiv ist. Daher ist für $1 der Dualraum von <math>L^p(G)$ isometrisch isomorph zu $L^{p'}(G)$, $\frac{1}{p} + \frac{1}{p'} = 1$.