Analysis II

SoSe 2018 — Woche 5

Aufgabe 1: (6 Punkte)

Welche der folgenden Gleichheiten sind für beliebige $A, B \subseteq \mathbb{R}^n$ korrekt (\mathbb{R}^n mit der euklidischen Metrik)? Man bearbeite 4 der 6 Teilaufgaben.

- (a) $(\overline{A})^{\circ} = A^{\circ}$
- (b) $\overline{A^{\circ}} = \overline{A}$
- (c) $A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$
- (d) $A^{\circ} \cup B^{\circ} = (A \cup B)^{\circ}$
- (e) $\overline{A} \cap \overline{B} = \overline{A \cap B}$
- (f) $\overline{A} \cup \overline{B} = \overline{A \cup B}$

Aufgabe 2: (6 Punkte)

Sei M ein metrischer Raum und $x,y\in M$. Eine stetige Abbildung $\gamma:[0,1]\to M$ mit $\gamma(0)=x$ und $\gamma(1)=y$ heißt Weg von x nach y. Ein metrischer Raum M heißt wegzusammenhängend, falls es für alle $x,y\in M$ einen Weg $\gamma:[0,1]\to M$ von x nach y gibt.

(a) Man zeige: Jeder wegzusammenhängende metrische Raum ist zusammenhängend.

Hinweis: Der Beweis von Satz 4.9 kann als Inspiration dienen.

- (b) Man zeige: Die offene Einheitskugel $B:=U(0,1)\subseteq \mathbb{R}^2$ ist zusammenhängend.
- (c) Sei I := (0,1) das offene Einheitsintervall in \mathbb{R} . Gibt es eine stetige, bijektive Abbildung $f : B \to I$?

Hinweis: Man betrachte die Menge $I \setminus \{\frac{1}{2}\}.$

Aufgabe 3: (4 Punkte)

(a) Man zeige: Ist V ein reeller Vektorraum und $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf V und $\| \cdot \| := \sqrt{\langle \cdot, \cdot \rangle}$ die zugehörige Norm, so gilt

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$$

(b) Man zeige: Es gibt kein Skalarprodukt $\langle \cdot, \cdot \rangle_{\text{max}}$ auf \mathbb{R}^n , sodass $||x||_{\text{max}} = \sqrt{\langle x, x \rangle_{\text{max}}}$ für alle $x \in \mathbb{R}^n$.

Aufgabe 4: (4 Punkte)

Sei (M,d) ein metrischer Raum und $(x_n)_{n\in\mathbb{N}}$ eine konvergente Folge in M (etwa gegen $x\in M$). Man zeige: Die Menge $A:=\{x,x_1,x_2,x_3,\ldots\}$ ist kompakt.