Dr. Alexei Gazca, Tatjana Stiefken

15. April 2024

Numerik II

SoSe 2024 — Blatt 1

https://aam.uni-freiburg.de/agru/lehre/ss24/num/index.html

Abgabe: 2.5.2024, 16:00 Uhr.

Aufgabe 1 (2+2+2+1 Punkte)

- (a) Berechnen Sie die Anzahl der Gleitkommazahlen sowie die positiven Extrema g_{min} und g_{max} für die IEEE-Formate single und double precision.
- (b) Wie viele double Zahlen gibt es, zwischen benachbarten single Zahlen?
- (c) Sei G eine Menge von Gleitkommazahlen mit Präzision $p \ge 1$. Was ist die kleinste positive ganze Zahl, die nicht in G enthalten ist?
- (d) Wie lautet diese Zahl insbesondere für Maschinenzahlen in *single* bzw. *double* Format? Wie würden Sie dies mithilfe eines Computers überprüfen?

Aufgabe 2 (4 Punkte)

Es bezeichne $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$, $\phi(p,q) = (x_1, x_2)$, die Aufgabe der Bestimmung der Nullstellen x_1, x_2 des quadratischen Polynoms $x^2 + px + q$. Bestimmen Sie eine Teilmenge $W \subset \mathbb{R}^2$, auf der ϕ wohldefiniert ist, berechnen Sie für $(p,q) \in W$ die relative Konditionszahl $\kappa_{\phi}(p,q)$ und diskutieren Sie, für welche Paare (p,q) die Aufgabe gut konditioniert ist.

Aufgabe 3 (2+1 Punkte)

- (a) Beweisen Sie, dass die harmonische Reihe $\sum_{k=1}^{\infty} 1/k$ in Gleitkommaarithmetik konvergiert.
- (b) Zeigen Sie, dass die Gleitkommaaddition $+_G$ nicht assoziativ ist.

Aufgabe 4 (2+1+3 Punkte)

Es bezeichne ϕ die Aufgabe der Bestimmung der Singulärwertzerlegung einer Matrix $A \in \mathbb{R}^{m \times n}$. D.h. man sucht Matrizen $U \in O(m), V \in O(n), \Sigma \in \mathbb{R}^{m \times n}$ diagonal und nicht negativ, sodass $A = U \Sigma V^{\top}$.

- (a) Was heißt, dass ein Algorithmus $\tilde{\phi}$ zur Lösung von ϕ stabil bzw. rückwärtsstabil ist?
- (b) Ein Algorithmus für diese Aufgabe kann nicht rückwärtsstabil sein. Warum?
- (c) Zeigen Sie, dass die Aufgabe zur Berechnung des dyadischen Produkts $\phi \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^{n \times n}$, $\phi(x,y) = xy^{\top}$, gut konditioniert ist. Beantworten Sie (a) und (b) in diesem Fall.