M. Ružička

M. Stegemeyer 28. April 2025

Analysis II

SoSe 2025 — Blatt 2

https://aam.uni-freiburg.de/agru/lehre/ss25/ana2/index.html

Abgabe: 05.05.2025, 12:00 Uhr.

Präsenzaufgabe

(a) Für $n \in \mathbb{N}$ seien Funktionen $f_n : [0, 2\pi] \to \mathbb{R}$ gegeben durch

$$f_n(x) = \begin{cases} 0, & \text{für } x = 0\\ \sqrt{n}, & \text{für } x \in (0, \frac{1}{n})\\ 0, & \text{für } x \in [\frac{1}{n}, 2\pi]. \end{cases}$$

Zeigen Sie: Die Folge $(f_n)_{n\in\mathbb{N}}$ konvergiert punktweise gegen 0, aber nicht im quadratischen Mittel.

(b) Für $n \in \mathbb{N}$ seien Funktionen $f_n : [0, 2\pi] \to \mathbb{R}$ gegeben durch

$$f_n(x) = \begin{cases} \sqrt{n}, & \text{für } x \in [\pi - \frac{1}{n^2}, \pi + \frac{1}{n^2}] \\ 0, & \text{für } x \notin [\pi - \frac{1}{n^2}, \pi + \frac{1}{n^2}]. \end{cases}$$

Zeigen Sie: Die Folge $(f_n)_{n\in\mathbb{N}}$ konvergiert gegen 0 im quadratischen Mittel, aber nicht punktweise.

- (c) Gibt es eine Folge $(f_n)_{n\in\mathbb{N}}$ von Regelfunktionen auf $[0,2\pi]$ mit den folgenden beiden Eigenschaften?
 - (i) $||f_n||_2 \to 0$ für $n \to \infty$
 - (ii) für kein $x \in [0, 2\pi]$ konvergiert die Folge $(f_n(x))_{n \in \mathbb{N}}$.

Aufgabe 1 (5 Punkte)

Wir wollen mithilfe von Fourierreihen die Differentialgleichung

$$-f'' + 2f' - f = e^{ix} (1)$$

lösen, d.h. wir suchen eine zweimal stetig differenzierbare Funktion $f:[0,2\pi]\to\mathbb{C}$, so dass für alle $x\in[0,2\pi]$ gilt

$$-f''(x) + 2f'(x) - f(x) = e^{ix}.$$

Die Ableitung einer komplexwertigen Funktion $f:[0,2\pi]\to\mathbb{C}$ ist gegeben durch $f'(x)=(\operatorname{Re} f)'(x)+i(\operatorname{Im} f)'(x)$

Anleitung:

(a) Zeigen Sie: Falls (1) eine unendlich oft differenzierbare, periodische Lösung f besitzt, dann erfüllen deren Fourierkoeffizienten c_k die Gleichung

$$(k+i)^{2}c_{k} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-ikx}e^{ix} dx.$$

- (b) Folgern Sie, dass $c_1 = (1+i)^{-2}$ und $c_k = 0$ für $k \neq 1$ und dass damit eine mögliche Lösung die Funktion $f(x) = \frac{e^{ix}}{(1+i)^2}$ ist.
- (c) Rechnen Sie nach, dass f tatsächlich die Gleichung (1) erfüllt.

Aufgabe 2 (5 Punkte)

(a) Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von stetigen Funktionen $f_n\colon [0,2\pi]\to\mathbb{R}$. Nehmen Sie an, dass die Folge $(f_n)_{n\in\mathbb{N}}$ gleichmäßig gegen eine Funktion $f\colon [0,2\pi]\to\mathbb{R}$ konvergiert. Zeigen Sie, dass die Folge dann auch im quadratischen Mittel gegen f konvergiert.

(b) Betrachten Sie die Funktion $f: [0, 2\pi] \to \mathbb{R}$,

$$f(x) = \begin{cases} \sin(\sqrt{2}x), & 0 \le x \le \frac{2\pi}{\sqrt{2}} \\ 0, & \frac{2\pi}{\sqrt{2}} \le x \le 2\pi \end{cases}$$

und zeigen Sie, dass die Folge der Partialsummen der zugehörigen Fourier-Reihe gleichmäßig gegen f konvergiert.

Hinweis: Sie dürfen ohne Beweis verwenden, dass für all $x, y \in \mathbb{R}$ gilt

$$\sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) + \cos(y-x))$$
 und $\sin(x)\cos(y) = \frac{1}{2}(\sin(x-y) + \sin(x+y)).$

(c) Zeigen Sie: die Reihe

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{\sqrt{n}}$$

ist nicht die Fourierreihe einer Funktion aus V (komplexwertige Regelfunktionen, siehe S. 172).

Aufgabe 3 (5 Punkte)

Seien $a, b \in \mathbb{R}$ mit $a \leq b$. Sei $(f_n)_{n \in \mathbb{N}}$ eine Folge von stetigen Funktionen $f_n : [a, b] \to [0, \infty)$. Wir nehmen an, dass für alle $x \in [a, b]$ und für alle $n \in \mathbb{N}$ gilt $f_{n+1}(x) \leq f_n(x)$ und dass für jedes $x \in [a, b]$ die Folge $(f_n(x))_{n \in \mathbb{N}}$ gegen 0 konvergiert.

Zeigen Sie, dass die Folge $(f_n)_{n\in\mathbb{N}}$ gleichmäßig gegen die Nullfunktion konvergiert.