M. Ružička

M. Stegemeyer 12. Mai 2025

Analysis II

SoSe 2025 — Blatt 4

https://aam.uni-freiburg.de/agru/lehre/ss25/ana2/index.html

Abgabe: 19.05.2025, 12:00 Uhr.

Aufgabe 2 (3 Punkte)

Sei (X,d) ein metrischer Raum und sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in X. Wir definieren für jedes $N\in\mathbb{N}$ die Menge $T_N=\{x_n\mid n\geq N\}\subseteq X$. Zeigen Sie, dass folgende Aussagen äquivalent sind.

- (a) Die Folge $(x_n)_n$ ist eine Cauchy-Folge.
- (b) Es gilt $\lim_{N\to\infty} \delta(T_N) = 0$, wobei $\delta(A)$ der Durchmesser einer Teilmenge $A\subseteq X$ ist.

Lösung:

Wir zeigen zunächst die Implikation a) \implies b).

Sei $\epsilon > 0$ und wähle $N \in \mathbb{N}$ so, dass $d(x_n, x_m) < \epsilon$ für alle $n, m \ge N$. Nach Definition des Durchmessers gilt also $\delta(T_N) < \epsilon$. Mit der Definition des Durchmessers sehen wir außerdem direkt, dass $\delta(T_M) \le \delta(T_N)$ für alle $M \ge N$. Somit haben wir also gezeigt, dass es zu beliebigem $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt mit

$$\delta(T_M) < \epsilon$$
 für alle $M \ge N$.

Dies bedeutet also, dass $\lim_{N\to\infty} \delta(T_N) = 0$.

Nun zeigen wir die Implikation b) \implies a). Sei $\epsilon > 0$. Da nach Voraussetzung $\delta(T_N) \to 0$ für $N \to \infty$ gibt es ein $N_0 \in \mathbb{N}$ mit $\delta(T_N) < \epsilon$ für alle $N \ge N_0$. Seien nun $n, m \ge N_0$, dann gilt

$$d(x_n, x_m) \le \delta(T_{N_0}) < \epsilon,$$

da ja $x_n, x_m \in T_{N_0}$. Damit sehen wir, dass $(x_n)_{n \in \mathbb{N}}$ eine Cauchy-Folge ist.