M. Ružička

M. Stegemeyer 19. Mai 2025

Analysis II

SoSe 2025 — Blatt 5

https://aam.uni-freiburg.de/agru/lehre/ss25/ana2/index.html

Abgabe: 26.05.2025, 12:00 Uhr.

Präsenzaufgabe

- (a) Sei M eine Menge und sei d die diskrete Metrik auf M. Welche Teilmengen von M sind bzgl. der Metrik d kompakt?
- (b) Zeigen Sie explizit durch Finden einer Überdeckung, die keine endliche Teilüberdeckung besitzt, dass das Intervall (0,1) nicht kompakt ist.
- (c) Sei (X, d) ein kompakter metrischer Raum und $f: X \to \mathbb{R}$ eine möglicherweise unstetige Funktion, die lokal beschränkt ist, d.h. für jeden Punkt $x \in X$ gibt es eine Umgebung $U \subseteq X$ von x und ein C > 0 mit $f(y) \le C$ für alle $y \in U$. Zeigen Sie, dass f beschränkt ist.

Aufgabe 1 (7 Punkte)

Seien $a, b \in \mathbb{R}$ reelle Zahlen mit $a \leq b$. Betrachten Sie die Menge $C^1([a, b])$ der stetig differenzierbaren Funktionen auf [a, b] sowie die Menge der stetigen Funktion $C^0([a, b])$ auf [a, b].

- (a) Geben Sie an, wie auf $C^1([a,b])$ und $C^0([a,b])$ eine Vektorraum-Struktur definiert wird.
- (b) Zeigen Sie, dass die Abbildung

$$\|\cdot\|_1 \colon C^1([a,b]) \to \mathbb{R}, \quad \|f\|_1 = \sup\{|f(x)| + |f'(x)| \mid x \in [a,b]\}$$

eine Norm ist.

- (c) Zeigen Sie, dass $C^1([a,b])$ bzgl. der Norm $\|\cdot\|_1$ vollständig ist.
- (d) Wir definieren nun eine Abbildung $D: C^1([a,b]) \to C^0([a,b])$ durch D(f) = f'. Zeigen Sie, dass diese Abbildung stetig ist, wobei wir $C^1([a,b])$ mit der oben definierten $\|\cdot\|_1$ -Norm und $C^0([a,b])$ mit der Supremumsnorm und den jeweils induzierten Metriken versehen.

Aufgabe 2 (4 Punkte)

Sei (X, d) ein metrischer Raum. Beweisen Sie die folgenden Aussagen

- (a) Seien $K_1, \ldots, K_m \subseteq X$ kompakte Teilmengen. Dann ist die Vereinigung $K_1 \cup \ldots \cup K_m$ kompakt.
- (b) Zeigen Sie, dass die entsprechende Aussage nicht gilt für unendlich viele kompakte Teilmengen K_i , $i \in \mathbb{N}$.

Aufgabe 3 (4 Punkte)

Seien (M,d) und (M',d') metrische Räume und $f: M \to M'$ eine stetige, surjektive Abbidlung. Zeigen Sie, dass M' zusammenhängend ist, falls M zusammenhängend ist.