Prof. Dr. M. Růžička 19.10.2014

T. Malkmus

Praktische Übung zur Vorlesung

Einfühung in Theorie und Numerik partieller Differentialgleichungen

WS 2015/16 — Blatt 1

Abgabe: Montag, den 26.10.2014, via Email an den Assistenten

Aufgabe 1 (8 Punkte)

Wir betrachten die eindimensionale Poisson Gleichung

$$-\Delta u(x) = f(x) \quad \text{für } x \in [0, 1]$$
$$u(x) = g(x) \quad \text{für } x = 0, 1$$

für gegebene rechte Seite f und Rand Daten g.

Wir wählen eine Diskretisierung des Intervalls [0,1]: Zu gegebenem N>0 sei $h=\frac{1}{N}$ und $x_i=ih, 1\leq i\leq N$. Für $u_h,b_h\in\mathbb{R}^N$ und $A_h\in\mathbb{R}^{N\times N}$ mit

$$(A_h u_h)_i = \begin{cases} \frac{-u_{h,i-1} + 2u_{h,i} - u_{h,i+1}}{h^2} & \text{für } 2 \le i \le N-1\\ u_{h,i} & \text{für } i = 1, N \end{cases}$$

und

$$b_{h,i} = \begin{cases} f(x_i) & \text{für } 2 \le i \le N - 1\\ g(x_i) & \text{für } i = 1, N \end{cases}$$

lässt sich die Lösung der Poisson Gleichung u durch die Lösung $u_h \in \mathbb{R}^N$ der linearen Gleichung

$$A_h u_h = b_h \tag{1}$$

approximieren. Schreiben Sie ein Programm das System (1) löst. Implementieren Sie hierzu die Matrix-Vektor-Multiplikation $(A_h u_h)_i$ und ein Verfahren zum Lösen des linearen Gleichungssystems. Das Programm sollte darüber hinaus die Lösung u_h in ein Datei schreiben.

Testen Sie ihr Programm mit folgender rechten Seite und Rand Daten:

$$f(x) = \pi^2 \sin(\pi x)$$
$$g(x) = 0$$

für $N=\{10,100,200,500,1000\}.$ Visualisieren Sie die Lösungen $u_{\frac{1}{N}}$ mittels Gnuplot.